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Preface
This book deals with the combination-based approach to permutation hypothesis testing in several
complex problems frequently encountered in practice. It also deals with a wide range of difficult
applications in easy-to-check conditions. The key underlying idea, on which the large majority of
testing solutions in multidimensional settings are based, is the nonparametric combination (NPC) of
a set of dependent partial tests. This methodology assumes that a testing problem is properly broken
down into a set of simpler sub-problems, each provided with a proper permutation solution, and that
these sub-problems can be jointly analysed in order to maintain underlying unknown dependence
relations.

The first four chapters are devoted to the theory of univariate and multivariate permutation
tests, which has been updated. The remaining chapters present real case studies (mainly obser-
vational studies) along with recent developments in permutation solutions. Observational studies
have enjoyed increasing popularity in recent years for several reasons, including low costs and
availability of large data sets, but they differ from experiments because there is no control of
the assignment of treatments to subjects. In observational studies the experimenter’s main con-
cern is usually to discover an association among variables of interest, possibly indicating one or
more causal effects. The robustness of the nonparametric methodology against departures from
normality and random sampling are much more relevant in observational studies than in controlled
clinical trials. Hence, in this context, the NPC method is particularly suitable. Moreover, given
that the NPC method is conditional on a set of sufficient statistics, it shows good general power
behaviour, and the Fisher, Liptak or direct combining functions often have power functions which
are quite close to the best parametric counterparts, when the latter are applicable, even for mod-
erate sample sizes. Thus NPC tests are relatively efficient and much less demanding in terms of
underlying assumptions with respect to parametric competitors and to traditional distribution-free
methods based on ranks, which are generally not conditional on sufficient statistics and so rarely
present better unconditional power behaviour. One major feature of the NPC with dependent tests,
provided that the permutation principle applies, is that we must pay attention to a set of partial
tests, each appropriate to the related sub-hypotheses, because the underlying dependence relation
structure is nonparametrically and implicitly captured by the combining procedure. In particular,
the researcher is not explicitly required to specify the dependence structure on response variables.
This aspect is of great importance particularly for non-normal and categorical variables in which
dependence relations are generally too difficult to define, and, even when well defined, are hard
to cope with. Furthermore, in the presence of a stratification variable, NPC through a multi-phase
procedure allows for quite flexible solutions. For instance, we can firstly combine partial tests with
respect to variables within each stratum and then combine the combined tests with respect to strata.
Alternatively, we can first combine partial tests related to each variable with respect to strata and
then combine the combined tests with respect to variables. Moreover, once a global inference is
found significant, while controlling for multiplicity it is possible to recover which partial inferences
are mostly responsible of that result.
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Although dealing with essentially the same methodology as contained in Pesarin (2001), almost
all the material included in this book is new, specifically with reference to underlying theory and
case studies.

Chapter 1 contains an introduction to general aspects and principles concerning the permutation
approach. The main emphasis is on the principles of conditionality, sufficiency and similarity,
relationships between conditional and unconditional inferences, why and when conditioning may
be necessary, why the permutation approach results from both conditioning with respect to the data
set and exchangeability of data in the null hypothesis, etc. Moreover, permutation techniques are
discussed along with computational aspects. Basic notation is then introduced. Through a heuristic
discussion of simple examples on univariate problems with paired data, two-sample and multi-
sample (one-way ANOVA) designs, the practice of permutation testing is introduced. Moreover,
discussions on conditional Monte Carlo (CMC) methods for estimating the distribution of a test
statistic and some comparisons with parametric and nonparametric counterparts are also presented.

Chapters 2 and 3 formally present: the theory of permutation tests for one-sample and multi-
sample problems; proof and related properties of conditional and unconditional unbiasedness; the
definition and derivation of conditional and unconditional power functions; confidence intervals for
treatment effect δ; the extension of conditional inferences to unconditional counterparts; and a brief
discussion on optimal permutation tests and of the permutation central limit theorem.

Chapter 4 presents multivariate permutation testing with the NPC methodology. It includes a
discussion on assumptions, properties, sufficient conditions for a complete theory of the NPC of
dependent tests, and practical suggestions for making a reasonable selection of the combining
function to be used when dealing with practical problems. Also discussed are: the concept of
finite-sample consistency, especially useful when the number of observed variables in each subject
exceeds that of subjects in the study; the multi-aspect approach; separate testing for two-sided
alternatives; testing for multi-sided alternatives; the Behrens–Fisher problem, etc.

Chapter 5 deals with multiple comparisons and multiple testing issues. A brief overview of
multiple comparison procedures (MCPs) is presented. The main focus is on closed testing procedures
for multiple comparisons and multiple testing. Some hints are also given with reference to weighted
methods for controlling family-wise error (FWE) and false discovery rate (FDR), adjustment of
stepwise p-values, and optimal subset procedures.

Chapter 6 concerns multivariate permutation approaches for categorical data. A natural multi-
variate extension of McNemar’s test is presented along with the multivariate goodness-of-fit test
for ordered variables, the multivariate analysis of variance (MANOVA) test with nominal categor-
ical data, and the issue of stochastic ordering in the presence of multivariate categorical ordinal
variables. A permutation approach to test allelic association and genotype-specific effects in the
genetic study of a disease is also discussed. An application concerning how to establish whether the
distribution of a categorical variable is more heterogeneous (less homogeneous) in one population
than in another is presented as well.

Chapter 7 discusses some quite particular problems with repeated measurements and/or missing
data. Carry-over effects in repeated measures designs, modelling and inferential issues are treated
extensively. Moreover, testing hypothesis problems for repeated measurements and missing data
are examined. The rest of the chapter is devoted to permutation testing solutions with missing data.

Chapter 8 refers to permutation approaches for hypothesis testing when a multivariate monotonic
stochastic ordering is present (with continuous and/or categorical variables). Umbrella testing prob-
lems are also presented. Moreover, two applications are discussed: one concerning the comparison
of cancer growth patterns in laboratory animals and the other referring to a functional observational
battery study designed to measure the neurotoxicity of perchloroethylene, a solvent used in dry
cleaning (Moser, 1989, 1992).

Chapter 9 is concerned with permutation methods for problems of hypothesis testing in the
framework of survival analysis.
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Chapter 10 deals with statistical shape analysis. Most of the inferential methods known in the
shape analysis literature are parametric in nature. They are based on quite stringent assumptions,
such as the equality of covariance matrices, the independency of variation within and among
landmarks or the multinormality of the model describing landmarks. But, as is well known, the
assumption of equal covariance matrices may be unreasonable in certain applications, the multi-
normal model in the tangent space may be doubted and sometimes there are fewer individuals than
landmarks, implying over-dimensioned spaces and loss of power. On the strength of these consid-
erations, an extension of NPC methodology to shape analysis is suggested. Focusing on the case
of two independent samples, through an exhaustive comparative simulation study, the behaviour
of traditional tests along with nonparametric permutation tests using multi-aspect procedures and
domain combinations is evaluated. The case of heterogeneous and dependent variation at each
landmark is also analysed, along with the effect of superimposition on the power of NPC tests.

Chapter 11 presents two interesting real case studies in ophthalmology, concerning complex
repeated measures problems. For each data set, different analyses have been proposed in order to
highlight particular aspects of the data structure itself. In this way we enable the reader to choose the
most appropriate analysis for his/her research purposes. The autofluorescence case study concerns
a clinical trial in which patients with bilateral age-related macular degeneration were evaluated.
In particular, their eyes were observed at several different and fixed positions. Hence, repeated
measures issues arise. Five outcome variables were recorded and analysed. The confocal case
study concerns a clinical trial with a five-year follow-up period, aiming to evaluate the long-term
side-effects of a drug. Fourteen variables and four domains in total were analysed.

Chapter 12 deals with case studies in the field of survival analysis and epidemiology. NPC Test
R10 software, SAS, MATLAB� and R codes have been used to perform the analyses. A comparison
between logistic regression and NPC methodology in exploratory studies is then provided.

One of the main features of this book is the provision of several different software programs for
performing permutation analysis. Various programs have been specifically developed. In particular:

• NPC Lib MATLAB library has been developed by Livio Finos, with consulting team Rosa
Arboretti, Francesco Bertoluzzo, Stefano Bonnini, Chiara Brombin, Livio Corain, Fortunato
Pesarin, Luigi Salmaso and Aldo Solari. For updates on the NPC Lib MATLAB library we
refer to http://homes.stat.unipd.it/livio.

• NPC Test Release 10 (R10) standalone software (which is an extended version of the former
NPC Test 2.0 produced by Methodologica S.r.l. and designed by Luigi Salmaso) has been
updated by Luigi Salmaso, Andrey Pepelyshev, Livio Finos and Livio Corain, with consulting
team Rosa Arboretti, Stefano Bonnini, Federico Campigotto and Fortunato Pesarin. For further
updates to the NPC Test software we refer to http://www.gest.unipd.it/∼salmaso.

• R code developed by Dario Basso, with consulting team Stefano Bonnini, Chiara Brombin,
Fortunato Pesarin and Luigi Salmaso.

• SAS macros developed by Rosa Arboretti and Luigi Salmaso, with consulting team Stefano
Bonnini, Federico Campigotto, Livio Corain and Fortunato Pesarin.

The above software is available from the book’s website, http://www.wiley.com/go/npc. Raw
data for all examples presented in the book, along with corresponding software routines, are also
available from the website. Any errata, corrigenda or updates related to theory and software will
be posted at http://www.gest.unipd.it/∼salmaso.

We would like to express our thanks to the members of the Nonparametric Research Group at
the University of Padua for their research collaboration on different topics included in this book:
Rosa Arboretti, Dario Basso, Stefano Bonnini, Francesco Bertoluzzo, Chiara Brombin, Federico
Campigotto, Livio Corain, Francesco Dalla Valle, Livio Finos, Patrizia Furlan, Susanna Ragazzi,
Monjed Samuh, Aldo Solari and Francesca Solmi. We also wish to thank Susan Barclay, Richard
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Davies, Beth Dufour, Heather Kay, Prachi Sinha-Sahay and the John Wiley & Sons Group in
Chichester for their valuable publishing suggestions. Moreover, we owe a debt of thanks to our
colleagues in different scientific fields: Ermanno Ancona, PierFrancesco Bassi, Fabio Bellotto,
Patrizio Bianchi, Mario Bolzan, Carlo Castoro, Bruno Cozzi, Giovanni Fava, Roberto Filippini,
Annarosa Floreani, Alessandro Frigiola, Luca Guarda-Nardini, Franco Grego, Lorenzo Menicanti,
Edoardo Midena, Bruno Mozzanega, Virginia Moser, Andrea Peserico, Stefano Piaserico, Alberto
Ruol, Luigi Sedea, Luca Spadoni, Tiziano Tempesta, Catherine Tveit, Carla Villanova, and several
others with whom we have had stimulating discussions related to complex case studies; some of
them are included on the book’s website.

We wish to acknowledge Chiara Brombin for her valuable help through all stages of the produc-
tion of this book and Professors N. Balakrishnan, O. Cucconi, P. Good, S. Kounias, V. Seshadri
and J. Stoyanov as well as several colleagues for stimulating us in various ways to do research on
multivariate permutation topics and to write the book. We also thank Stefania Galimberti, Ludwig
Hothorn and Maria Grazia Valsecchi for revising some chapters.

In addition, we would like to acknowledge the University of Padua (CPDA088513/08) and the
Italian Ministry of University and Research (PRIN 2008_2008WKHJPK_002) for providing the
financial support for the necessary research and the development of part of the software.

Both authors share full responsibility for any errors or ambiguities, as well as for the ideas
expressed throughout the book. A large part of the material presented in the book has been compiled
from several publications and real case studies have been fully developed with the proposed different
software codes. Although we have tried to detect and correct errors and eliminate ambiguities, there
may well be others that have escaped our scrutiny. We take responsibility for and would warmly
welcome notification of any that remain.

Finally, the second author (LS) wishes to acknowledge the first author (FP) as an inspiration for
his open-mindedness and deep passion for innovative research in permutation methods during the
course of our long-lasting collaboration and throughout the writing of this book.

We welcome any suggestions to the improvement of the book and would be very pleased if the
book provides users with new insights into the analysis of their data.

Fortunato Pesarin Luigi Salmaso
Department of Statistical Sciences Department of Management and Engineering
University of Padua University of Padua

Padova, January 2010



Notation and Abbreviations

A: an event belonging to the collection A of events

A: a collection (algebra) of events

A/A = A
⋂

A: a collection of events conditional on A

ANCOVA: analysis of covariance

ANOVA: analysis of variance

AUC: area under the curve

B : the number of conditional Monte Carlo iterations

Bn(n, θ): binomial distribution with n trials and probability θ of success in one trial

CDF: cumulative distribution function

CLT: central limit theorem

CMC: conditional Monte Carlo

Cov(X, Y ) = E(X · Y )− E(X) · E(Y ): the covariance operator on (X, Y )

CSP: constrained synchronized permutations

Cy(η, σ ): Cauchy distribution with location η and scale σ

d.f.: degrees of freedom

δ = ∫X δ(x) · dFX(x): the fixed treatment effect (same as δ-functional or pseudo-parameter), δ ∈ �

�: stochastic treatment effect

EDF: empirical distribution function: F̂X(t) = F̂ (t |X/X) =
∑

i I(Xi ≤ t)/n, t ∈ R1

EPM: empirical probability measure: P̂X(A) = P̂ (A|X/X) =
∑

i I(Xi ∈ A)/n, A ∈ A
ESF: empirical survival function (same as significance level): L̂X(t) = L̂(t |X/X) =

∑
i I(Xi ≥

t)/n, t ∈ R1

E(X) = ∫X x · dFX(x): the expectation operator (mean value) of X

EA[X)] = E[X|A] = ∫
A
x · dFX(x|A): the conditional expectation of X given A

d=: equality in distribution: X
d= Y ↔ FX(z) = FY (z), ∀z ∈ R1

d
>: stochastic dominance: X

d
>Y ↔ FX(z) ≤ FY (z), ∀z and ∃A : FX(z) < FY (z), z ∈ A, with

Pr(A)> 0

< 	= >: means ‘<’, or ‘	=’, or ‘>’

∼: distributed as: e.g. X ∼ N0, 1) means X follows ths standard normal distribution

≈: permutationally equivalent to

FDR: false discovery rate

FWER: family-wise error rate

fP (z) = f (z): the density of a variable X, with respect to a dominating measure ξ and related to
the probability P
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FX(z) = F(z) = Pr {X ≤ z}: the CDF of X

FX|A(z) = Pr{X ≤ z|A}: the conditional CDF of (X|X ∈ A)

F ∗T (z) = F ∗(z) = Pr{T ∗ ≤ z|X/X}: the permutation CDF of T given X
HG(N, θ, n): hypergeometric distribution with N the number of units, θ ·N the number of units

of interest, n the sample size

i.i.d.: independent and identically distributed

I(A): the indicator function, i.e. I(A) = 1 if A is true, and 0 otherwise

ITT: intention-to-treat principle

λ = Pr
{
T ≥ T o|X/X

}
: the attained p-value of test T on data set X

LX(t) = L(t) = Pr {X ≥ t}: the significance level function (same as the survival function)

µ = E(X): the mean value of vector X
MAD: median of absolute deviations from the median

MANOVA: multivariate analysis of variance

MC: number of Monte Carlo iterations

MCP: multiple comparison procedure

MCAR: missing completely at random

Md(X) = µ̃: the median operator on variable X such that Pr{X < µ̃} = Pr{X>µ̃}
#(X ∈ A) =∑i I(Xi ∈ A): number of points Xi belonging to A

n: the (finite) sample size

MNAR: missing not at random

MTP: multiple testing problem

N(µ, σ 2): Gaussian or normal variable with mean µ and variance σ 2

NV (µ,�): V -dimensional normal variable (V ≥ 1) with mean vector µ and covariance matrix �

O(dn) = cn: given two sequences {cn} and {dn}, O(dn) = cn if cn/dn is bounded as n→∞
o(dn) = cn: given two sequences {cn} and {dn}, o(dn) = cn if cn/dn → 0 as n→∞
�: the set of possible values for δ

π(δ): the prior distribution of δ ∈ �

PCLT: permutation central limit theorem

P : a probability distribution on (X,A)

P: a family of probability distributions

P(A) = ∫
A
dP (z): the probability of event A ∈ A with respect to P

p-FWE: adjusted p-value from a closed testing procedure

Pr {A}: a probability statement relative to A ∈ A
Rn: the set of n-dimensional real numbers

R : the rank operator

Ri = R(Xi) =
∑

1≤j≤n I(Xj ≤ Xi): the rank of Xi within {X1, . . . , Xn}
SLF: sgnificance level function

UMP: uniformly most powerful

UMPS: uniformly most powerful similar

UMPU: uniformly most powerful unbiased

USP: unconstrained synchronized permutations

V(X) = E(X−µ)2 = σ 2: the variance operator on variable X

WORE: without replacement random experiment
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WRE: with replacement random experiment

X: a univariate or multivariate random variable

X: a sample of n units, X = {Xi, i = 1, . . . , n}
X∗: a permutation of X
|X| = {|Xi |, i = 1, . . . , n}: a vector of absolute values

XOR: exclusive or relationship: (A XOR B) means one but not both

X: the sample space (or support) of variable X

(X,A): a measurable space

(X,A,P): a probability space

X/X: the orbit or permutation sample space given X
(X/X, A/X): a permutation measurable space

T÷X→ R1: a statistic

T o = T (X): the observed value of test statistic T evaluated on X
U∗�: the transpose of U∗

U(a, b): uniform distribution in the interval (a, b)
�X�: the integer part of X⊎

: the operator for pooling (concatenation) of two data sets: X = X1
⊎

X2

Z: the unobservable random deviates or errors: X = µ+ Z





1
Introduction

1.1 On Permutation Analysis
This book deals with the permutation approach to a variety of univariate and multivariate problems
of hypothesis testing in a typical nonparametric framework. A large number of univariate problems
may be usefully and effectively solved using traditional parametric or rank-based nonparamet-
ric methods as well, although under relatively mild conditions their permutation counterparts are
generally asymptotically as good as the best parametric ones (Lehmann, 2009). It should also be
noted that permutation methods are essentially of a nonparametric exact nature in a conditional
context (see Proposition 2, 3.1.1 and Remarks 1, 2.2.4 and 1, 2.7). In addition, there are a number
of parametric tests the distributional behaviour of which is only known asymptotically. Thus, for
most sample sizes of practical interest, the relative lack of efficiency of permutation solutions may
sometimes be compensated by the lack of approximation of parametric asymptotic counterparts.
Even when responses follow the multivariate normal distribution and there are too many nuisance
parameters to estimate and remove, due to the fact that each estimate implies a reduction of the
degrees of freedom in the overall analysis, it is possible for the permutation solution to be more
efficient than its parametric counterpart (note that ‘responses’, ‘variables’, ‘outcomes’, and ‘end
points’ are often used as synonyms). In addition, assumptions regarding the validity of most para-
metric methods (such as homoscedasticity, normality, regular exponential family, random sampling,
etc.) rarely occur in real contexts; so that consequent inferences, when not improper, are necessarily
approximated and their approximations are often difficult to assess.

In practice parametric methods reflect a modelling approach and generally require the introduction
of a set of stringent assumptions, which are often quite unrealistic, unclear, and difficult to justify.
Sometimes these assumptions are merely set on an ad hoc basis for specific inferential analyses.
Thus they appear to be mostly related to the availability of the methods one wishes to apply rather
than to well-discussed necessities obtained from a rational analysis of reality, in accordance with the
idea of modifying a problem so that a known method is applicable rather than that of modifying
methods in order to properly deal with the problem. For instance, too often and without any
justification researchers assume multivariate normality, random sampling from a given population,
homoscedasticity of responses also in the alternative, etc., so that it becomes possible to write down
a likelihood function and to estimate a variance–covariance matrix and so consequent inferences
are without real credibility. In contrast, nonparametric approaches try to keep assumptions at a
lower workable level, avoiding those that are difficult to justify or interpret, and possibly without
excessive loss of inferential efficiency. Thus, they are based on more realistic foundations for
statistical inference. And so they are intrinsically robust and resulting inferences are credible.

Permutation Tests for Complex Data: Theory, Applications and Software Fortunato Pesarin, Luigi Salmaso
 2010, John Wiley & Sons, Ltd
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However, there are many complex multivariate problems (commonly in areas such as agricul-
ture, biology, business statistics, clinical trials, engineering, the environment, experimental data,
finance data, genetics, industrial statistics, marketing, pharmacology, psychology, quality control,
social sciences, zoology, etc.) that are difficult to solve outside the conditional framework and, in
particular, outside the method of nonparametric combination (NPC) of dependent permutation tests
(solutions to several complex problems are discussed in Chapter 4 and beyond).

Moreover, within parametric approaches it is sometimes difficult, if not impossible, to obtain
proper solutions even under the assumption of normal errors. Some examples are:

1. problems with paired observations when scale coefficients depend on units;
2. two-sample designs when treatment is effective only on some of the treated subjects, as may

occur with drugs having genetic interaction;
3. two-way ANOVA;
4. separate testing in cross-over designs;
5. multivariate tests when the number of observed variables is larger than the sample size;
6. jointly testing for location and scale coefficients in some two-sample experimental problems

with positive responses;
7. exact testing for multivariate paired observations when some data are missing, even when not

at random;
8. unconditional testing procedures when subjects are randomly assigned to treatments but are

obtained by selection-bias sampling from the target population;
9. exact inference in some post-stratification designs;

10. two-sample testing when data are curves or surfaces, i.e. testing with countably many variables.

As regards problem 1, within a parametric framework it is impossible to obtain standard devi-
ation estimates for observed differences on each unit with more than zero degrees of freedom,
whereas exact and effective permutation solutions do exist (see Sections 1.9 and 2.6). A similar
impossibility also occurs with Wilcoxon’s signed rank test. In problem 2, since effects, either ran-
dom or fixed, behave as if they depend on some unobserved attitudes of the subjects, traditional
parametric approaches are not appropriate. Hints as to proper permutation solutions will be provided
in Chapters 2, 3 and 4. In problem 3 it is impossible to obtain independent or even uncorrelated
separate inferences for main factors and interactions because all related statistics are compared
to the same estimate of the error variance (see Remark 8, 2.7). In addition, it is impossible to
obtain general parametric solutions in unbalanced designs. We shall see in Example 8, 2.7 and
Chapter 11 that, within the permutation approach, it is at least possible to obtain exact, unbiased
and uncorrelated separate inferences in both balanced and unbalanced cases. Regarding problem
4, we will see in Remark 5, 2.1.2 that in a typical cross-over problem with paired data ([A,B]
in the first group and [B,A] in the second group) two separate hypotheses on treatment effect
(XB

d= XA) and on interaction due to treatment administration (XAB
d= XBA) are tested separately

and independently. In problem 5 it is impossible to find estimates of the covariance matrix with
more than zero degrees of freedom, whereas the NPC method discussed in Chapter 4 allows for
proper solutions which, in addition, are often asymptotically efficient. In problem 6, due to its close
analogy with the Behrens–Fisher problem, exact parametric solutions do not exist, whereas, based
on concurrent multi-aspect testing, an exact permutation solution does exist, provided that positive
data are assumed to be exchangeable in the null hypothesis and the two cumulative distribution
functions (CDFs) do not cross in the alternative (see Example 8, 4.6). In problem 7 general exact
parametric solutions are impossible unless missing data are missing completely at random and data
vectors with at least one missing datum are deleted. In Section 7.10, within the NPC methodology,
we will see a general approximate solution and one exact solution even when some of the data are
missing not completely at random. In problem 8 any selection-biased mechanism usually produces
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quite severe modifications to the target population distribution, hence unless the selection mech-
anism is well defined and the consequent modified distribution is known, no proper parametric
inference to the target population is possible; instead, within the permutation approach we may
properly extend conditional inferences to unconditional counterparts. Moreover, in cases where
the minimal sufficient statistic in the null hypothesis is the whole set of observed data, although
the likelihood model would depend on a finite set of parameters, univariate statistics capable of
summarizing the necessary information do not exist, so that no parametric method can be claimed
to be uniformly better than others; indeed, conditioning on the pooled data set, i.e. considering the
permutation counterpart, improves the power behaviour of any test statistics (see Cox and Hinkley,
1974; Lehmann, 1986). However, in order to attenuate the loss of information associated with using
one overall statistic, we will find solutions within the so-called multi-aspect methodology based on
the NPC of several dependent permutation test statistics, each capable of summarizing information
on a specific aspect, so that it takes account of several complementary viewpoints (see Example
3, 4.6) and improves interpretability of results. In problem 9, as far as we know, the exact para-
metric inference for post-stratification analysis is based on the combination for independent partial
tests (one test per stratum), provided that their null continuous distributions are known exactly. In
problem 10, as far as can be seen from the literature (see Ramsay and Silverman, 2002; Ferraty
and Vieu, 2006), only some regression estimate and predictive problems are solved when data are
curves; instead, within the NPC strategy, several testing problems with countably many variables
(the coefficients of suitable curve representations) can be efficiently solved.

Although authoritative, we agree only partially with opinions such as that expressed by
Kempthorne (1955): ‘When one considers the whole problem of experimental inference, that
is of tests of significance, estimation of treatment differences and estimation of the errors of
estimated differences, there seems little point in the present state of knowledge in using a method
of inference other than randomization analysis.’

We agree with the part that stresses the importance for statisticians of referring to conditional
procedures of inference and, in particular, to randomization (i.e. permutation) methods. Indeed,
there is a wide range of inferential problems which are correctly and effectively solved within
a permutation framework; however, there are others which are difficult or perhaps impossible to
solve outside it.

We partially disagree, however, because there are very important families of inferential problems,
especially connected to unconditional parametric estimation and testing, or to nonparametric pre-
diction, classification, kernel estimation, or more generally within the statistical decision approach,
which cannot be dealt with and/or solved in a permutation framework. These are often connected to
violations of the so-called exchangeability condition (see Chapter 2) or are related to analysis of too
few observed subjects. Moreover, all procedures of exploratory data analysis and all testing meth-
ods for which we cannot assume exchangeability of the data with respect to groups (i.e. samples)
in the null hypothesis, generally lie outside the permutation approach. In addition, the traditional
Bayesian inference (see Remark 4, 3.4, for suggestions on a permutation Bayesian approach) also
lies outside the permutation approach.

Thus, although we think that permutation methods should be in the tool-kit of every statistician
interested in applications, methodology or theory, we disagree because we do not believe that all
inferential problems of interest for analysis of real problems fall within the permutation approach.
In order to apply permutation methods properly, a set of initial conditions must be assumed, and
if these conditions are not satisfied, their use may become erroneous.

However, and following remarks made by Berger (2000), these arguments support our decision to
develop methods in the area of permutation testing, especially for multivariate complex problems.
In this sense, this book attempts to go deeper into the main aspects of conditional methods of
inference based on the permutation approach and to systematically study proper solutions to a set
of important problems of practical interest. Section 1.4 lists a brief set of circumstances in which
conditional testing procedures may be effective or even unavoidable.



4 Permutation Tests for Complex Data

1.2 The Permutation Testing Principle
For most problems of hypothesis testing, the observed data set x = {x1, . . . , xn} is usually obtained
by a symbolic experiment performed n times on a population variable X, and taking values in the
sample space X. We sometimes add the word ‘symbolic’ to names such as experiments, treatments,
treatment effects, etc., in order to refer to experimental, pseudo-experimental and observational
contexts. For the purposes of analysis, the data set x is generally partitioned into groups or sam-
ples , according to the so-called treatment levels of the symbolic experiment. In the context of the
discussion up to and including Section 1.6, we use capital letters for random variables and lower-
case for the observed data set. From Section 1.7 onwards, we shall dispense with this distinction,
in that only capital letters will be used because the context is always sufficiently clear. Of course,
when a data set is observed at its x value, it is presumed that a sampling experiment on a given
underlying population has been performed, so that the resulting sample distribution is related to
that of the parent population P . This is, of course, common to any statistical problem, and not
peculiar to the permutation framework.

For any general testing problem in the null hypothesis, denoted by H0, which typically assumes
that data come from only one (with respect to groups) unknown population distribution P , H0 :
{X ∼ P ∈ P}, say, the whole set of observed data x is considered to be a random sample, taking
values in the sample space Xn, where x is one observation of the n-dimensional sample variable X(n)

and where this random sample does not necessarily possess independent and identically distributed
(i.i.d.) components (see Chapters 2 and 3 for more details).

We note that the observed data set x is always a set of sufficient statistics in H0 for whatever
underlying distribution. In order to see this in a simple way, let us assume that H0 is true and all
members of a nonparametric family P of non-degenerate and distinct distributions are dominated
by one dominating measure ξP; moreover, let fP denote the density of P with respect to ξP, and
f

(n)
P (x) denote the density of the sample variable X(n). As the identity f

(n)
P (x) = f

(n)
P (x) · 1 is true

for all x ∈ Xn, except for points such that f (n)
P (x) = 0, due to the well-known factorization theorem,

any data set x is therefore a sufficient set of statistics for whatever member P of the nonparametric
family P.

1.2.1 Nonparametric Family of Distributions

Let us consider the following definition.

Definition 1. A family of distributions P is said to behave nonparametrically when it is not possible
to find a finite-dimensional space 
 such that there is a one-to-one relationship between 
 and P,
in the sense that each member P of P cannot be identified by only one member θ of 
, and vice
versa .

If of course such a one-to-one relationship exists, θ is called a parameter, 
 is the parame-
ter space, and P the corresponding parametric family. Families of distributions which are either
unspecified or specified except for an infinite number of unknown parameters do satisfy the defini-
tion and so are nonparametric. Definition 1 also includes all those situations where the sample size
n is smaller than the number of parameters, even though this is finite. All nonparametric families P
which are of interest in permutation analysis are assumed to be sufficiently rich in such a way that
if x and x′ are any two distinct points of X, then x 	= x ′ implies fP (x) 	= fP (x

′) for at least one
P ∈ P, except for points with null density for P . Also note that the characterization of a family
P as being nonparametric essentially depends on the knowledge we assume about it. When we
assume that the underlying family P contains all continuous distributions, then the data set x is
complete minimal sufficient .
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Permutation tests are known to be conditional procedures of inference, where conditioning is
done with respect to a set of sufficient statistics in the null hypothesis. Thus consequent inferences
at least concern the sample data x actually observed and the related observed subjects. The act
of conditioning on a set of sufficient statistics in H0, and the assumption of exchangeability with
respect to groups (samples) for observed data, make permutation tests independent of the underlying
likelihood model related to P (see Section 2.1.3). As a consequence, P may be unknown or
unspecified, either in some or all of its parameters, or even in its analytic form. We specify this
concept in the permutation testing principle.

1.2.2 The Permutation Testing Principle

Let us consider the following definition.

Definition 2. If two experiments, taking values on the same sample space X and respectively with
underlying distributions P1 and P2, both members of P, give the same data set x, then the two
inferences conditional on x and obtained using the same test statistic must be the same, provided that
the exchangeability of data with respect to groups is satisfied in the null hypothesis. Consequently,
if two experiments, with underlying distributions P1 and P2, give respectively x1 and x2, and
x1 	= x2, then the two conditional inferences may be different.

One of the most important features of the permutation testing principle is that in theory and under
a set of mild conditions conditional inferences can be extended unconditionally to all distributions
P of P for which the density with respect to a suitable dominating measure ξ is positive, i.e.
dP (x)/dξn > 0 (see Section 3.5). It should be emphasized, however, that this feature derives from
the sufficiency and conditionality principles of inference (see Cox and Hinkley, 1974; Lehmann,
1986; Berger and Wolpert, 1988), by which inferences are related to all populations sharing the
same value of conditioning statistics, particularly those which are sufficient for underlying nuisance
entities. For instance, Student’s t extends inference to all normal populations which assign positive
density to the variance estimate σ̂ 2 and so its inference is for a family of distributions. Therefore,
such unconditional extensions should be carried out carefully. Another important feature occurs in
multivariate problems, when solved through NPC methods. For these kinds of problems, especially
when they are complex and in very mild and easy-to-check conditions (see Chapter 4), it is not
necessary to specify or to model the structure of dependence relations for the variables in the
underlying population distribution. In this way analysis becomes feasible and results are easy to
interpret. For instance, it is known that, for multivariate categorical variables, it is extremely difficult
to properly model dependence relations among variables (see Joe, 1997). In practice, therefore,
except for very particular cases, only univariate (or component variable by component variable)
problems are considered in the literature. From Chapter 4 onwards we will see that, within the
permutation testing principle and the NPC of dependent partial tests, a number of rather difficult
problems can be effectively and easily solved, provided that partial tests are marginally unbiased
and consistent (see Section 4.2.1). Also of interest is an application of this principle in the context
of the Bayesian permutation approach (see Remark 4, 3.4).

However, the conditioning on sufficient statistics provides permutation tests with good general
properties. Among the most important of these, when exchangeability is satisfied in the null hypoth-
esis, is that permutation tests are always exact procedures (see Remark 1, 2.2.4 and Proposition
2, 3.1.1). Another property is that their conditional rejection regions are similar, as intended by
Scheffé (1943a, 1943b). The former means that, at least in principle, the null rejection probability
can be calculated exactly in all circumstances. The latter means that, if data comes from continuous
distributions (where the probability of finding ties in the data set is zero), the null rejection prob-
ability is invariant with respect to observed data set x, for almost all x ∈ Xn, and with respect to
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the underlying population distribution P (see Chapter 2). As a consequence, conditional rejection
regions are similar to the unconditional region. When data comes from non-continuous distributions,
unless referring to randomized tests (see Section 2.2), the similarity property is only asymptotically
valid. Moreover, if the stochastic dominance condition is satisfied in H1, permutation tests based on
divergence of suitable statistics are conditionally unbiased procedures, since the rejection probability
of any test T , for all data sets x ∈ Xn, satisfies the relation Pr{λ(x(δ)) ≤ α|x} = W(δ, α, T |x) ≥ α,
where λ(x(δ)) indicates the p-value and W(δ, α, T |x) indicates the conditional power of T given
x with fixed treatment effect δ and significance level α (see Section 3.2).

It is worth noting that when exchangeability may be assumed in H0, the similarity and unbi-
asedness properties allow for a kind of weak extension of conditional to unconditional inferences,
irrespective of the underlying population distribution and the way sample data are collected. There-
fore, this weak extension may be made for any sample data, even if they are not collected by
well-designed sampling procedures, in which each unit is truly selected at random from a given
population and subject to an experiment. Conversely, parametric solutions permit proper exten-
sions only when data comes from well-designed sampling procedures on well-specified parent
populations. Specifically, a general situation for unconditional extensions in parametric contexts
occurs when likelihood functions are known except for nuisance parameters, and these are removed
by invariant statistics or by conditioning on boundedly complete estimates (see Section 3.5 and
Remark 2 therein).

For this reason, permutation inferences are proper with most observational data (sometimes
called non-experimental), with experimental data, with selection-biased sampling procedures, and
with well-designed sampling procedures. However, we must note that well-designed sampling
procedures are quite rare even in most experimental problems (see Ludbrook and Dudley, 1998).
For instance, if we want to investigate the effects of a drug on rats, the units to be treated are
usually not randomly chosen from the population of all rats, but are selected in some way among
those available in a laboratory and are randomly assigned to the established treatment levels. The
same occurs in most clinical trials, where some patients, present in a hospital and that comply with
the experiment, are randomly assigned to one of the pre-established treatment levels.

In one sense, the concept of random sampling is rarely achieved in real applications because, for
various reasons, real samples are quite often obtained by selection-bias procedures. This implies
that most of the forms of unconditional inferences usually associated with parametric tests, being
based on the concept of random sampling, are rarely applicable in real situations. In addition, due to
the similarity and unbiasedness properties, permutation solutions allow for relaxation of most of the
common assumptions needed by parametric counterparts, such as the existence of mean values and
variances, and the homoscedasticity of responses in the alternative hypothesis (see also Section 1.4).
This is why permutation inferences are so important for both theoretical and application purposes,
not only for their potential exactness.

Many authors have emphasized these aspects. A review of the relevant arguments is given in
Edgington (1995), Edgington and Onghena (2007), and in Good (2000, 2005). One of these relates
to the fact that reference null distributions of ordinary parametric tests are explicitly based on
the concept of infinitely repeated and well-designed random sampling from a given well-specified
population, the existence of which is often merely virtual. Another argument relates to the fact that,
as occurs in many experimental problems, it is often too unrealistic to assume that treatment does
not also influence scale coefficients or other distributional aspects, so that traditional parametric
solutions may become improper.

Conversely, when exchangeability may be assumed in H0, reference null distributions of per-
mutation tests always exist because, at least in principle, they are obtained by enumerating all
permutations of available data (see Chapter 2). In addition, permutation comparisons of means or
of other functionals do not require homoscedasticity in the alternative, provided that underlying
CDFs are ordered so that they do not cross each other (see Section 2.1.1). For these reasons, on the
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one hand permutation inferences generally have a natural interpretation and, on the other, ordinary
parametric tests are considered to be rarely applicable to real problems.

1.3 Permutation Approaches
In the literature, three leading approaches to constructing permutation tests are considered: one
essentially heuristic, the other two more formal. The heuristic approach, based on intuitive rea-
soning, is the most commonly adopted, especially for simple problems where common sense may
often suffice (see Edgington and Onghena, 2007; Good, 2006; Lunneborg, 1999). But when prob-
lems are not simple, this approach can be inadequate. The two formal approaches are much more
elegant, effective and precise. One of these is based on the concept of invariance of the reference
null distribution under the action of a finite group of transformations (see, for instance, Scheffé,
1943a, 1943b; Lehmann and Stein, 1949; Hoeffding, 1952; Romano, 1990; Nogales et al., 2000).
The other, which is as elegant and precise as the invariance approach, is formally based on the
concept of conditioning on a set of sufficient statistics in H0 for the underlying unknown distribu-
tion P (Fisher, 1925; Watson, 1957; Lehmann, 1986; Pesarin, 2001). The two formal approaches
are substantially equivalent (see Odén and Wedel, 1975).

For very simple problems we often use the heuristic approach, especially if related solutions are
essentially clear and no ambiguities arise. We use it in this introductory chapter. From Chapter 2
onwards the concept of conditioning on a set of sufficient statistics is preferred to the invariance
approach. The reason for this preference is that the conditioning approach seems to be slightly more
natural, easier to work with, and easier to understand than the invariance approach. Moreover, as
it can formally characterize the related conditional reference space, it allows for construction of
proper solutions to several rather difficult problems, and so it seems apparently more effective. In
addition, it allows us to easily establish when and why solutions are exact or approximate (see
Remarks 1, 2.2.4 and 1, 2.7 and Proposition 2, 3.1.1, for sufficient conditions leading to exact
tests; Chapter 11 for the two-way ANOVA; and Chapter 7 for analysis of some problems with
missing data and for problems connected with repeated measurements). It is worth noting, for
instance, that the nonparametric analysis of the two-way ANOVA is a very difficult problem when
studied using the invariance approach. Hence, with the exception of Pesarin (2001) and Basso
et al. (2009a), only heuristic and unsatisfactory solutions have been proposed in the literature and
their most important related inferential properties are justified only asymptotically. We shall see,
however, that the conditioning approach may be applied for full derivation of exact permutation
tests separately for two main factors and their interaction (see Example 8, 2.7). In addition, it is
easy to find proper exact solutions for testing with multi-aspect problems (see Example 3, 4.6),
cross-over designs (see Remark 5, 2.1.2), multivariate ordered categorical variables (Chapter 6),
post-stratification designs (see Remark 4, 2.1.2), etc. The latter are of particular importance in
observational study contexts.

1.4 When and Why Conditioning is Appropriate
We know that unconditional parametric testing methods may be available, appropriate and effective
when:

1. data sets are obtained by well-defined random sampling designs on well-specified parent popu-
lations;

2. population distributions for responses, i.e. the likelihood models, are well defined and treatment
effect is just one (and only one) parameter for such a likelihood;
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3. with respect to all nuisance entities, well-defined likelihood models are provided with either
boundedly complete estimates in H0 or at least with invariant statistics;

4. at least asymptotically, null sample distributions of suitable test statistics do not depend on any
unknown entity.

Therefore, just as there are circumstances in which unconditional parametric testing procedures
may be proper from the point of view of interpretation of related inferential results as well as
for their efficiency, so there are others in which they may be improper or even impossible to
carry out. Conversely, there are circumstances in which conditional testing procedures may become
appropriate and at times unavoidable. A brief, incomplete list of these circumstances is as follows:

• Distributional models for responses are nonparametric.
• Distributional models are not well specified.
• Distributional models, although well specified, depend on too many nuisance parameters.
• Treatment effect, even on well-specified models, depends on more than one parameter.
• Even on well-specified models, treatment may have influence on more than one parameter.
• With respect to some nuisance entities, well-specified distributional models do not possess invari-

ant statistics or boundedly complete estimates in H0.
• Ancillary statistics in well-specified distributional models have a strong influence on inferential

results leading to post-stratification analyses.
• Ancillary statistics in well-specified models are confounded with other nuisance entities.
• Asymptotic null sample distributions depend on unknown entities.
• Problems in which the number of nuisance parameters increases with sample size.
• The number of response variables to be analysed is larger than the sample size.
• Sample data come from finite populations or sample sizes are smaller than the number of nuisance

parameters.
• In multivariate problems, some variables are categorical and others quantitative.
• Multivariate alternatives are subject to order restrictions.
• In multivariate problems and in view of particular inferences, component variables have different

degrees of importance for the analysis (see (f) in Section 4.2.4).
• Data sets contain non-ignorable missing values (see Section 7.10).
• Data sets are obtained by ill-specified selection-bias procedures (see Section 3.5).
• Treatment effects are presumed to act possibly on more than one aspect (a functional or pseudo-

parameter, that is, a function of many parameters), so that multi-aspect testing methods are of
interest for inferential problems (see Example 3, 4.6).

• Treatment effects may depend on unknown entities, for instance some nuisance parameters.

In addition, we may decide to adopt conditional testing inferences, not only when unconditional
counterparts are not possible, but also when we want to lay more importance on the observed data
set and related set of observed units than on the population model.

Conditional inferences are also of interest when, for whatever reason, we wish to limit ourselves
to conditional methods by explicitly restricting to the actual data set x (see Greenberg, 1951;
Kempthorne, 1966, 1977, 1979, 1982; Basu, 1978, 1980; Thornett, 1982; Greenland, 1991; Celant
and Pesarin, 2000, 2001; Pesarin, 2001, 2002). For instance, the latter situation agrees with the
idea that, when assessing the reliability of cars, the owner may be mostly interested in his own
car, or fleet of cars if he has more than one, because he is responsible for all related reliability
maintenance costs, thus giving rise to a conditional assessment . Of course, the point of view of
the car manufacturer, whose reputation and warranty costs are related to the whole set of similar
cars, may be mostly centred on a sort of average behaviour , giving rise to a form of unconditional
assessment related to the car population.
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Thus, both conditional and unconditional points of view are important and useful in real prob-
lems because there are situations, such as that of the owner, in which we may be interested in
conditional inferences, and others, such as that of the manufacturer, in which we may be interested
in unconditional inferences. Hence, as both points of view are of research interest, both types of
inference are of methodological importance and may often be analysed using the same data set.
However, within conditional testing procedures, provided that exchangeability of data with respect
to groups is satisfied in the null hypothesis, it should be emphasized that permutation methods play
a central role. This is because they allow for reasonably efficient solutions, are useful when dealing
with many difficult problems, provide clear interpretations of inferential results, and allow for weak
extensions of conditional to unconditional inferences.

1.5 Randomization and Permutation
In most experimental cases units are randomly assigned to treatment levels, i.e. to groups or samples,
so that in the null hypothesis observed data appear to have been randomly assigned to these levels.
Based on this notion of randomization, many authors prefer the term randomization tests (Pitman,
1937a, 1937b; Kempthorne, 1977; Edgington, 1995; Good, 2005) or even re-randomization tests
(Gabriel and Hall, 1983; Lunneborg, 1999) in place of permutation tests . In Section 3.2, related
to the so-called conditional and post-hoc power functions, a rather more precise notion of re-
randomization is used. Although of no great importance, being a mere matter of words, we prefer
the term ‘permutation’ because it is closer to the true state of things and because to some extent it
has wider meaning, encompassing the others. Indeed, a sufficient condition for properly applying
permutation tests is that the null hypothesis implies that observed data are exchangeable with respect
to groups. In Proposition 3, 3.1.1, we shall see an extension to this assumption, leading to testing for
composite hypotheses. For instance, in a symbolic experiment where a variable is observed in male
and female groups of a given kind of animal, the notion of randomization is difficult to apply exactly
because in no way can gender be randomly assigned to units. Instead, the permutation idea is rather
more natural because in the null hypothesis, of no distributional difference due to gender, we are
led to assume that observed data may be indifferently assigned to either males or females – a notion
which justifies exchangeability of data and the permutation of unit labels, but not the randomization
of units. The greater emphasis on the notion of randomization by random assignment of units to
treatments is because, in the null hypothesis, it is generally easier and more natural to justify the
assumption of exchangeability for experimental data than for observational data.

However, when the exchangeability property of data is not satisfied or cannot be assumed in
the null hypothesis, both parametric and permutation inferences are generally not exact (for some
hints on approximated permutation solutions see Example 8, 4.6). In these cases, especially when
even approximate solutions are difficult to obtain, it may be useful to employ bootstrap techniques,
which are less demanding in terms of assumptions and may be effective asymptotically or even for
exploratory purposes, in spite of the fact that for finite sample sizes related inferences are neither
conditional nor unconditional (see Remark 4, 3.8.2).

The conditioning property of permutation tests leads to rather different concepts of related infer-
ences and of power functions. The first two concepts are restricted to the actually observed data
set and are called the conditional inference and the conditional or post-hoc power function , respec-
tively. The second two concepts are related to the parent population and are the unconditional
inference and the unconditional power function . Their definition and determination for some sim-
ple problems are discussed in Section 3.2 (an algorithm for evaluating the post-hoc power function
is presented in Section 3.2.1). In any case, it should be stressed that, except for two very spe-
cific problems (Fisher’s exact probability test and McNemar’s test) and some cases of asymptotic
or approximate calculations, both power functions are generally not expressed in closed form.
Of course, being nonparametric, the post-hoc power does not require knowledge of the population
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distribution P and is the most important for conditional inferences. Instead, the unconditional power
implies knowledge of P . Since it measures the probability of a test rejecting the null hypothesis
when it is false, it is thus useful for performance comparisons with respect to parametric and non-
parametric competitors or in establishing sample sizes so that related unconditional inferences do
satisfy assigned requirements. One important feature of both conditional and unconditional powers
of permutation tests based on divergence of suitable statistics is that they are monotonically related
to the non-centrality functional, that is, the so-called treatment effect or even pseudo-parameter,
and that this is true independently of the underlying population distribution P .

1.6 Computational Aspects
One of the major problems associated with permutation tests is that their null distributions, especially
for multivariate situations and except for very particular cases (Fisher’s exact probability and
McNemar tests), are generally impossible to express in closed form and to calculate exactly because
they depend to a great extent on the specific data set x, and thus they vary as data vary in the
sample space Xn. Furthermore, when sample sizes are not small, direct calculations are practically
impossible because of the very large cardinality of the associated permutation sample spaces Xn

/x.
Moreover, the approximation of such distributions by means of asymptotic arguments is not always
appropriate, unless sample sizes are very large, because their dependence on x makes it difficult
to express and to check the conditions needed to evaluate the degree of approximation in practical
cases (see Section 3.7).

Some exact algorithms, not based on the complete enumeration of all possible permutations,
have been developed for univariate situations allowing for exact calculation of the permutation
distribution in polynomial time (see Pagano and Tritchler, 1983; Zimmerman, 1985a, 1985b; Mehta
and Patel, 1980, 1983, 1999; Barabesi, 1998, 2000, 2001). It is also worth noting that there are

computer packages (a well-known one is StatXact


) which provide exact calculations in many
univariate problems. Approximate calculations in the univariate context are provided, for instance,
by Berry and Mielke (1985) (see also Mielke and Berry, 2007), where a suitable distribution sharing
the same few moments as the exact one is considered.

For practical reasons, especially for multivariate purposes, in order to obtain appropriate and reli-
able evaluations of the permutation distributions involved, in this book we suggest using conditional
Monte Carlo (CMC) procedures.

Although in principle it is always possible to carry out exact calculations by means of specific
computing routines based on complete enumeration, in practice the use of conditional simulation
algorithms is often required by the excessively large cardinality of permutation spaces Xn

/x or by the
method of NPC of dependent permutation tests, especially for the solution of complex problems.
This is because on the one hand complex problems are often multivariate or at least multi-aspect,
and on the other the algorithms for exact calculations are generally based on direct calculus of upper
tail probabilities, a strategy which may become highly impractical, if not impossible, in multivariate
problems because there are no general computing routines useful to identify the critical regions.

We wish to underline the fact that conditional simulations are carried out by means of without-
replacement resampling algorithms on the given data set, therefore in place of resampling procedures
we prefer to speak of CMC methods. However, it must be emphasized that these procedures are
substantially different from the well-known bootstrap techniques (see Remarks 3 and 4, 3.8.2). In
CMC, in order to obtain random permutations, resampling replicates are done without replacement
on the given data set, considered as playing the role of a finite population, provided that sample
sizes are finite. Hence, they correspond to a random sampling from the space of data permutations
associated with the given data set. In this sense, the name CMC has to some extent the same
meaning as without-replacement resampling .
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Of course, CMC procedures provide good and reliable statistical estimates of desired permutation
distributions, the accuracy of which depends on the number of iterations. When referring to CMC,
some authors use terms such as approximate permutation tests or even modified permutation tests
(see van den Brink and van den Brink, 1990; Dwass, 1957; Vadiveloo, 1983). In this book, the
former term is used when they are not exact (see Remark 1, 2.2.4 and Proposition 2, 3.1.1), in
the sense that at least one assumption for their exactness, such as the exchangeability of data with
respect to groups in the null hypothesis, is violated (some important examples of approximate
permutation tests are discussed in Chapters 2–7).

The increasing availability of relatively inexpensive and fast computers has made permutation
tests more and more accessible and competitive with respect to their parametric or nonparametric
counterparts. In fact, their null distributions can be effectively approximated by easy CMC tech-
niques which, more than numeric evaluations, provide statistical estimations without compromising
their desirable statistical properties.

Most well-known statistical packages include specific routines for CMC simulation of permu-
tation distributions, such as MATLAB�, R, SAS, SC, S-PLUS, SPSS, Statistica, StatXact,
etc. Some of these also include routines for exact computations. Most of the examples included
in the book are developed in MATLAB� and R codes. Some of them are also developed in SAS.
Furthermore, all examples can be analysed using NPC Test R10 standalone software. Data sets,
developments in MATLAB�, R, SAS or NPC Test R10 are available from the book’s website.

1.7 Basic Notation
Throughout this book, consequences of the main arguments, informal definitions of certain
important elements, some relatively important concepts and relevant aspects of analysis are
emphasized as ‘remarks’. Such remarks are numbered by subsection and, when reference to one of
them is necessary, they are cited by number and subsection; for example, Remark 3, 3.8.2 refers
to the third remark of subsection 2 in Section 8 of Chapter 3. Examples are numbered by section;
for example, Example 2, 2.6 stands for the second example in Section 6 of Chapter 2. Definitions,
theorems, lemmas, propositions, etc. are numbered by chapter; for example, Theorem 6, 4.4.2 is the
sixth theorem in Chapter 4 and will be found in Section 4.4.2. Figures and tables are numbered by
chapter; for example, Table 2.1 means Table 1 in Chapter 2. As a rule, formulae are not numbered.

Generally, theorems from the literature are reported without proof, whereas the most important
properties of permutation tests, regarding their conditional and unconditional exactness, unbiased-
ness, consistency, power function, etc., are explicitly established and proved. Simple proofs of more
specific properties as well as extensions of some results are often set as exercises for the reader.
Several exercises and problems are given at the end of many sections. A list of references may be
found at the end of the volume.

From this point on, unless it is necessary to make reference to specific countable sequences, we
suppress the superscript (n) when referring to Xn, X(n), Xn

/x, etc., and shall simply write X, X,
X/x, etc. Therefore, we do not distinguish, for instance, between the dimensionalities of response
variables, sample spaces of responses, and sample spaces of the experiment, the context generally
being sufficient to avoid misunderstandings.

The observed data are assumed to be related to a response variable. Response variables are
usually indicated by italic capitals, such as X, Y , if they are univariate and by bold capitals, such
as X, Y, if multivariate. Responses are assumed to be observed on statistical units (i.e. individuals
or subjects) where units play the role of members of a given population of interest. These units are
generally obtained by symbolic sampling experiments carried out on the given population. Similarly
to multivariate responses, sample data are also indicated by bold capitals X, Y, etc. The context is
generally sufficient to avoid ambiguities. Lower-case letters are generally used to indicate integer
numbers, real variables or constants: i, j , h, k, n, t , x, z, etc. The most important exceptions are: A,
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which represents an event or an experimental factor; B, an experimental factor or the number of
iterations of a CMC procedure; MC, the number of ordinary Monte Carlo iterations in simulation
studies; and Ni , the cumulative frequencies in contingency tables.

Unless obvious from the context, we usually do not use the notational conventions of linear
algebra, so that in general we do not distinguish between column and row vectors, etc. This is
because on the one hand the context is always sufficiently clear; on the other it is impractical
in linear algebra notation to represent responses that are partly quantitative and partly categorical
and which are therefore difficult to work with, especially in unbalanced situations. The only nota-
tional convention adopted is that, when necessary, the transpose of a matrix U is denoted by U�.
Sometimes |X| is used to denote the vector of absolute values, as in |X| = {|Xi |, i = 1, . . . , n}.

To indicate sample data sets we often need to use the so-called unit-by-unit representation . For
instance, in a two-sample univariate design with respectively n1 and n2 data, and n = n1 + n2, we
denote the whole data set by X = {X(i), i = 1, . . . , n; n1, n2}, where X(i) = Xi is the response
related to the ith unit in the list. This notation means that the first n1 elements in the list belong to
the first sample, and the other n2 elements to the second. This representation is useful in expressing
permutation sample points for both categorical and quantitative responses, especially in multivariate
situations. The symbol

⊎
is used for pooling (i.e. concatenating) a finite number of data sets into

the pooled set, for example X = X1
⊎

X2 for pooling two data sets.
In general, we implicitly refer to the population and to the experiment of interest by means

of a statistical model such as (X, X, A, P ∈ P), where X represents the response variable, X is
the related sample space, A is a suitable collection (a σ -algebra) of subsets of X, and P is the
underlying parent distribution belonging to the nonparametric family P. Thus, we assume that the
response variables take their values on the measurable space (X, A). Unless necessary, we do not
distinguish between random variables and their concrete observations in real sampling experiments.

We often refer to a subsample space such as X/A, the orbit or coset associated with A, that is, the
set of points X∗ ∈ X sharing condition A, where A is some event of interest belonging to A. The
main conditioning set referred to in the context of permutation testing is the pooled set of observed
data X (see Section 1.2). Thus, X∗ ∈ X/X represents a permutation of observed data X and X/X

represents the related permutation sample space. Moreover, we assume that all statistics of interest
are measurable with respect to (X,A) and, of course, with respect to the conditional or restricted
algebra A/X = A

⋂
X/X, so that conditional probability distributions associated with any P ∈ P are

well defined on the measurable permutation space (X/X,A/X) induced by conditioning on observed
data set X. Note that the measurability assumption with respect to the conditional algebra A/X of
test statistics T is generally self-evident because all statistics of interest are transformations of the
data X which are required to induce a probability distribution over (X/X,A/X), so that associated
conditional inferences have a clear interpretation. In general, unless necessary, we do not indicate
the dimensionalities of variables or the cardinalities of sets and spaces, since these are clear from
the context. The conditional expectation of X given A is denoted by EA[X] or by E[X|A].

We sometimes need to partition permutation sample spaces X/X into sub-orbits (e.g. see Section
7.10.1 and Remarks 4 and 5, 2.1.2) in order to take into consideration restrictions of invariance
properties induced by post-stratification arrangements or by some statistics of interest when related
to specific problems, so that solutions may become easier to construct.

A test statistic, T : X→ T ∈ R1, is a real function of observed data which takes values on a
suitable space T = T (X) ⊆ R1 and is usually represented by symbols such as T = T (X) or T ∗ =
T (X∗), where the second form emphasizes the role of X∗ ∈ X/X as a permutation of the observed
data set X. The set T is also called the support of T , and so the set T(X) = {T (X∗),X∗ ∈ X/X}
indicates the permutation or conditional support of T associated with the given data set X. In
order to emphasize the role of observed data, we use the notation T o = T (X) to indicate the
observed value of T on the given data set X. In general the superscript ∗, as in X∗, F ∗, T ∗, is
used to indicate a variable, a distribution or a statistic related to permutation entities. We also



Introduction 13

use a hat, as in F̂ , λ̂, σ̂ , λ̂, to indicate an estimate, when referring either to sample estimation or
Monte Carlo estimation.

It should be noted that, due to conditioning on the observed data set X, permutations appear to
be without-replacement random samples from X, which is then considered to play the role of a
finite population, so that estimation of permutation indicators of functionals (or pseudo-parameters)
has a close analogy with the sample estimation from finite populations.

1.8 A Problem with Paired Observations
As an initial example, let us consider a testing problem on the effectiveness of training in the
reduction of anxiety in a sample of n = 20 subjects (Pesarin, 2001). At first glance, the subjects of
the experiment are presumed to be ‘homogeneous’ with respect to the most important experimental
conditions, the so-called covariates, such as sex, age and health.

Suppose that anxiety, the variable Y , is measured by means of an Institute for Personality and
Ability Testing (IPAT) psychological test, responses to which are quantitative scores corresponding
to the sum of sub-responses to a set of different items. Each unit is observed before treatment (occa-
sion 1), also called the baseline observation , and one week after a fixed number of training sessions
(occasion 2), which are administered with the aim of stochastically reducing baseline values.

Of course, bivariate responses within each specific unit are dependent because they are measured
on the same unit on different occasions, whereas the n pairs are assumed to be independent because
related to different units. Moreover, due to the assumed homogeneity of all individuals with respect
to most common experimental conditions, the set of data pairs {(Y1i , Y2i ), i = 1, . . . , n} may be
viewed as a random sample of n i.i.d. pairs from the bivariate random variable Y = (Y1, Y2).
Formally, data are represented by a matrix of n pairs (Y1,Y2) ∈ X, where X is the sample space
of the experiment.

Observed data are listed in Table 1.1, where the fourth column contains individual differences
Xi = Y1i − Y2i , i = 1, . . . , 20. The data set and the corresponding software codes are available
from the examples_chapters_1-4 folder on the book’s website.

1.8.1 Modelling Responses

The expected treatment effect is that training produces a stochastic reduction of anxiety. Therefore,
we can write the hypotheses as

H0 : {Y1
d= Y2} = {P1(t) = P2(t), ∀t ∈ R1}

against H1 : {Y1
d
>Y2}, where P1 and P2 are the marginal distributions of Y1 and Y2.

Note that H0 asserts the distributional (i.e. stochastic) equality of responses and that this is
coherent with the hypothesis that training is completely ineffective. Moreover, it should be noted
that the stochastic dominance of Y1 with respect to Y2, stated by H1 and denoted by the symbol
d
>, may be specified in several ways according to a proper set of side-assumptions. Most common
specifications are listed in the following set of additive response models:

• (M.i) With fixed additive effects . Y1i = µ+ Z1i , Y2i = µ− δ + Z2i , i = 1, . . . , n, where: µ is a
population constant; δ is the treatment effect, assumed to be finite and strictly positive in H1; Z1i

and Z2i are identically distributed centred random deviates , the so-called error components or
error terms, which are assumed to be not necessarily independent within units but are independent
between units.
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Table 1.1 IPAT data on anxiety in 20 individuals

i Y1 Y2 X

1 19 14 5
2 22 23 −1
3 18 13 5
4 18 17 1
5 24 20 4
6 30 22 8
7 26 30 −4
8 28 21 7
9 15 11 4

10 30 29 1
11 16 17 −1
12 25 20 5
13 22 18 4
14 19 17 2
15 27 22 5
16 23 21 2
17 24 21 3
18 18 15 3
19 28 24 4
20 27 22 5

• (M.ii) With fixed additive effects but with non-homogeneous units . Y1i = µ+ ηi + Z1i , Y2i = µ+
ηi − δ + Z2i , i = 1, . . . , n, where ηi are unknown components specific to the i th unit assumed
not dependent on treatment levels; all other components have the same meaning as in (M.i).

• (M.iii) With individually varying additive effects , i.e. fixed effects specific to each unit. Y1i =
µ+ ηi + σiZ1i , Y2i = µ+ ηi − δi + σiZ2i , i = 1, . . . , n, where σi are the scale coefficients and
δi the treatment effects both specific to the ith unit; in H1, the δi are fixed non-negative finite
quantities at least one of which is positive.

• (M.iv) With generalized stochastic effects . Y1i = µ+ ηi + σiZ1i , Y2i = µ+ ηi + σiZ2i −�2i ,
i = 1, . . . , n, where, in H1, random effects �2i , which may depend in some way on
(µ, ηi, σi , Z1i , Z2i ), are non-negative stochastic quantities, at least one of which is strictly
positive in the alternative.

Model (M.i) is the standard model for homogeneous homoscedastic observations; the other mod-
els extend standard conditions. In particular, model (M.ii) assumes homoscedasticity of responses
but non-homogeneous units. (M.iii) is consistent with situations in which relevant covariates are
not observed, as for instance when some individuals are male and others female with possibly
different associated effects and with possibly different scale coefficients. (M.iv) is consistent with
any form of stochastic dominance for quantitative responses, in particular with those with fixed
or stochastic multiplicative forms. In this chapter we refer mainly to the fixed additive model as
in (M.i). We leave the extension of the main results to other models to Chapters 2–4 and some
suggested exercises therein.

The null hypothesis may also be written as H0 : {Pr(Y1 − Y2 ≤ −t) = Pr(Y1 − Y2 ≥ t), ∀t ∈
R1}, where it is assumed that these probability statements are well defined and are related to
distribution P of (Y1, Y2). Thus, H0 is true if and only if the difference X = Y1 − Y2 = δ + Z1 − Z2
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is symmetrically distributed around 0, whereas in the alternative, where in particular we have
Pr{X> 0|H1}> 1/2, X is symmetrically distributed around the location, that is, the treatment effect
δ > 0. Of course δ corresponds to a suitable indicator, that is, a functional or pseudo-parameter, for
the effect, usually the mean, or the trimmed mean, or the median, etc.

Remark 1. When using differences X, models (M.i) and (M.ii) become equivalent. Indeed,
both become {Xi = Y1i − Y2i = δ + Z1i − Z2i , i = 1, . . . , n}. This means that when covariates are
assumed to influence only individual specific components ηi , differences X become covariate-free.
A nice consequence of this is that when adopting model (M.ii), we do not need units which are
necessarily homogeneous with respect to experimental conditions.

1.8.2 Symmetry Induced by Exchangeability

A formal proof of the symmetry property, in H0, of X = Z1 − Z2 around 0 may easily be achieved
by observing that the two variables Z1 and Z2 are exchangeable within units. Exchangeability
within units implies both F1(t) = F2(t),∀t ∈ R1, and

F1|t (z|Z2 = t) = F2|t (z|Z1 = t), ∀(t, z) ∈ R2,

where F1, F2, F1|t , and F2|t represent respectively the CDFs of variables Z1, Z2, (Z1|Z2 = t) and
(Z2|Z1 = t). Of course, all these CDFs are associated with P , the existence of which is assumed.
Hence,

Pr{(Z1 − Z2) ≤ z} =
∫ +∞

−∞
F1|t (z+ t |Z2 = t) · dF2(t)

and

Pr{(Z2 − Z1) ≤ z} =
∫ +∞

−∞
F2|t (z+ t |Z1 = t) · dF1(t),

thus Pr{X>z} = Pr{X < −z}, ∀z ∈ R1, which is the condition for symmetry of X around 0.
One consequence of this property is that, in H0, Pr{X < 0} = Pr{X> 0}; thus, assuming E(Z) is

finite, X has a null mean value; moreover, assuming the median Md(Z) has only one value, X has a
null median. Instead, in H1, Pr{X < 0}>(<) Pr{X> 0}, according to whether the response variables

are such that Y1
d
< (

d
>)Y2. One more consequence is that, in H0, the vectors of signs (Xi/|Xi |, i =

1, . . . , n) and of differences (Xi = Y1i − Y2i , i = 1, . . . , n) are stochastically independent, where
when Xi = 0, the difference Xi and related sign Xi/|Xi | are excluded from analysis (for proof of
this, see Randles and Wolfe, 1979, p. 50).

1.8.3 Further Aspects

Here the probability distribution P of X is assumed to be unknown in some of its parts; that is,
in some of its parameters, in its analytic form, or in P as a whole, provided that it belongs to
a nonparametric family of non-degenerate distributions P (see Section 1.2). Moreover, assuming
that the mean value E(Z) is finite, so that we may consider the sample mean X̄ =∑i Xi/n as a
proper indicator of training effect δ, the hypotheses can equally be written as H0 : {δ = 0} against
H1 : {δ > 0}.

In this framework, the vector of pairs {(Y1i , Y2i ), i = 1, . . . , n} may be viewed as a random
sample of n pairs of observations, where exchangeability is intended within each individual pair
(see Remark 3, 2.1.1).
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Note that the existence of the mean value E(X) is necessary only for parametric solutions;
for nonparametric permutation solutions we need the existence of a suitable and possibly robust
indicator of δ, such as the median Md(X) or the trimmed mean. Also note that if it were convenient
for analysis, we might consider non-degenerate data transformations ϕ, such as ϕ(X), ϕ(Y1)− ϕ(Y2)

or more generally ϕ(Y1, Y2) = −ϕ(Y2, Y1), so that the sample mean of the transformed data is a
proper indicator of training effect. These transformations generally modify the distributions of the
variables in question and may better fit one of the additive models (M.i)–(M.iv) of Section 1.8.1,
so that it is possible to obtain better power behaviour of the resulting test statistics, and even to
improve interpretation of the results (see Remarks 1, 2.6, and 2 below).

Remark 1. The one-sample matched pairs problems, where independent units are paired accord-
ing to some known covariates, are formally equivalent to that of paired observations. The only
inessential difference is that error components Z1i and Z2i are now independent, instead of simply
exchangeable (see Problem 11, 1.9.5).

Remark 2. The testing problem with paired observations may be solved in several parametric
and nonparametric ways, according to explicit assumptions concerning the distribution P of the
response variables (Y1, Y2). Moreover, in a nonparametric context, the problem of determining the
best data transformation ϕ in order to obtain a best test of the form

∑
i ϕi for finite sample sizes

is still an open problem (see Runger and Eaton, 1992; see also Section 2.5).

1.8.4 The Student’s t-Paired Solution

A first well-known unconditional solution in a parametric framework may be found if the response
variable X is assumed to be normally distributed with unknown variance. Accordingly, the response
model with fixed additive effects can now be written as {Y1i = µ+ σ · Z1i , Y2i = µ− δ + σ · Z2i ,
i = 1, . . . , n}, where: µ is a population constant; δ is the treatment effect; σ ∈ R+ is the unknown
standard deviation assumed to be independent of units and treatment levels; random errors Zji ∼
N(0, 1), j = 1, 2, are assumed to be normally distributed, with null means and unit variances, and
independent with respect to units but not necessarily independent within units.

In this setting, the alternative being one-sided, an optimal unconditional solution (UMP sim-
ilar) is based on the well-known Student’s t test for paired observations, T = X̄ · √n/σ̂ , where
σ̂ 2 =∑i (Xi − X̄)2/(n− 1) and X̄ =∑i Xi/n, because differences are normally distributed: Xi ∼
N(δ, σ 2

X).
In H0, the unconditional distribution of T is central Student’s t with n− 1 degrees of freedom

(d.f.). In H1, T is distributed as a non-central Student’s t with a positive non-central parameter√
nδ/σX, so that large values are significant. Note that the unknown standard deviation σX is the

only nuisance entity for the problem and T is an invariant statistic with respect to both σ and σX.
Note also that σ̂ is a minimal (complete) sufficient statistic for σX, either under H0 or H1. Using
the data of the example we have T o = 4.84 with 19 d.f., which leads to the rejection of H0 at
α = 0.001.

One somewhat more efficient parametric solution may be found via covariance analysis, if the
pairs (Y1i , Y2i ), i = 1, . . . , n, were independent and identically distributed according to a bivariate
normal variable and if baseline Y1 were considered as a covariate for the problem. However, it is
worth noting that, although the bivariate normality of (Y1, Y2) implies normality of X, the converse
is not true. Actually, normality of X is more frequently valid than the bivariate normality of (Y1, Y2).
In the case of our specific example, the normality of X is an assumption which is difficult to justify
because IPAT data are aggregates of a finite number of discrete scores, each related to a specific
aspect of anxiety. Of course, the assumption of bivariate normality for the pair (Y1, Y2) is even
more questionable.
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Remark 1. When responses follow model (M.ii) in Section 1.8.1, that is, Y1i = µ+ ηi + σ · Z1i ,
Y2i = µ+ ηi − δ + σ · Z2i , i = 1, . . . , n, then the covariance analysis method becomes much more
difficult or even impossible. Moreover, when Y1i = µ+ ηi + σi · Z1i , Y2i = µ+ ηi − δ + σi · Z2i ,
i = 1, . . . , n (i.e. when unknown standard deviations are dependent on units), then no parametric
solution can be obtained unless the σi and the within-unit correlation coefficients ρi , i = 1, . . . , n,
are all known.

Remark 2. Student’s t can also be applied to response models such as Y1i = µ+ ηi + σ1 · Z1i ,
Y2i = µ+ ηi − δ + σ2 · Z2i , i = 1, . . . , n, where the two scale coefficients σ1 and σ2 may not be
equal with respect to measurement occasions but pairs (σ1, σ2) are invariant with respect to units,
provided that underlying errors are normal and independently distributed. This solution has been
used by Scheffé (1943c) in a randomized test for the Behrens–Fisher problem.

1.8.5 The Signed Rank Test Solution

Let us assume that P is completely unknown and X is a continuous variable, so that ties in the
observations are assumed to occur with probability zero. In this situation, P as a whole must be
considered as a nuisance entity for the testing problem, and a solution must be found either by
using invariance arguments or by conditioning on a set of sufficient statistics for P .

Applying invariance arguments and assuming homoscedasticity with respect to units (i.e. the Xi

are i.i.d. in P ), a suitable solution based on ranks evaluated on absolute values of differences is
provided by Wilcoxon’s well-known signed rank test (see Randles and Wolfe, 1979; Hollander and
Wolfe, 1999; Lehmann, 2006). It is useful to recall that, in this context, we need not assume that
E(X) is finite.

Wilcoxon’s test is based on the statistic W =∑i Ri · wi , where Ri = R(|Xi |) =∑
1≤j≤n I(|Xj | ≤ |Xi |), in which I(·) = 1 if relation (·) is satisfied and 0 elsewhere, are

the ordinary ranks of the absolute values of differences |Xi |, wi = 1 if Xi > 0 and wi = 0 if Xi

< 0, i = 1, . . . , n, and R is the rank operator. If there are no ties, we have E(W |H0) = n(n+ 1)/4
and V(W |H0) = n(n+ 1)(2n+ 1)/24 whereas, in H1, the mean value is larger than n(n+ 1)/4.
Moreover, if n is not too small, in H0 the distribution of {W − E(W |H0)}/

√
V(W |H0) is well

approximated by that of a standard normal variable.
A test statistic which is permutationally equivalent to W is T =∑i Ri · Sg(Xi), where Sg(Xi) =

1 if Xi > 0 and −1 if Xi < 0, which in H0 has mean value E(T ) = 0 and variance V(T ) =∑i R
2
i =

n(n+ 1)(2n+ 1)/6 (see Randles and Wolfe, 1979, p. 429).
Unfortunately, the data of the example do not allow direct use of this test because of the excessive

number of ties due to the absence of continuity for X. In this case, the permutation distribution
of Wilcoxon’s signed rank test cannot be approximated by its asymptotic counterpart, and it must
be directly evaluated through specific calculations. However, it is worth noting that, assuming
continuity for X, the test is distribution-free, and so it is also P -invariant.

Generalized Scores

If, in place of ordinary ranks, a version of the so-called generalized scores is used, ϕi = ϕ(Ri), i =
1, . . . , n, we can obtain other nonparametric solutions. Among the many generalized scores, each
used for specific problems, those related to the standard normal distribution are the most popular.
They consist of replacing ordinary ranks Ri with the related normal scores, ζi = �−1(Ri/(n+ 1))
or ςi = E(Z(Ri )), i = 1, . . . , n, respectively for the well-known van der Waerden and Fisher–Yates
solutions, where � is the standard normal CDF and Z(Ri) is the Ri th order statistic of n i.i.d.
random elements drawn from a standard normal variable.
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1.8.6 The McNemar Solution

If no assumption regarding the continuity of X can be made, we must still consider P as a nuisance
entity. With these relaxed assumptions, an invariant solution can be found via the binomial test.

Let U = #(Xi > 0) =∑i I(Xi > 0) and ν = #(Xi 	= 0) be respectively the numbers of positive
differences and non-null differences. Thus, in H0, the statistic U is binomially distributed with
parameters ν and 1/2, U ∼ Bn(ν, 1/2), say. In H1, U is still binomially distributed, but with
parameters ν and ϑ = Pr{X> 0}> 1/2, so that large values of U are significant. This kind of
solution essentially corresponds to the one-sided McNemar test, also called the sign test.

With the data from our problem we have ν = 20, U = 17 and Pr(U ≥ 17|X) =∑i≥17

(20
i

)
2−20 =

0.0013, which is significant at α = 0.005. Note that, when response variables are binary, this test
is UMP conditional for one-sided alternatives and UMPU conditional for two-sided alternatives.

It is worth observing that McNemar’s solution depends essentially on the number ν of non-null
differences, in the sense that removing all units and relative responses presenting null differences
from the analysis leads to the same result. One problem, which immediately arises, is concerned
with how it is possible to obtain solutions by also including the n− ν null differences (for sugges-
tions regarding auxiliary randomization procedures, see Lehmann, 1986; Randles, 2001; see also
Problems 8, 1.9.5 and 1, 3.4.1 and Remark 2, 3.2.1 for further suggestions).

These two testing solutions do look slightly different in that, in the latter, null differences are
assumed to be informative of a substantially null treatment effect, whereas in the former they appear
to be totally non-informative. However, it should be noted that this argument is not completely
acceptable. On the one hand, if we determine the permutation confidence interval for the treatment
effect we see that all null differences play their part in the analysis as well as all other differences
(see Remark 2, 3.2.1). On the other, in the multivariate case, all observed unit vectors must be
processed in order to maintain underlying dependence relations among the variables (see Sections
4.3.5 and 7.12).

Of course, McNemar’s solution can also be used in an obvious way to test for a median in one-
sample problems. Indeed, suppose for instance that variable X is continuous, X = {Xi, i = 1, . . . , n}
is the data set, and H0 : {Md(X) = µ̃}. Let ν =∑i≤n I(Xi ≤ µ̃). Thus, in H0, ν ∼ Bn(n, 1/2) and
so the solution is clear. Further extensions are presented in Section 2.6.

Remark 1. McNemar’s test may be applied in the case of non-homogeneity in distribution of
experimental units: Pi 	= Pj , i 	= j , that is when the components of X are independent but not
identically distributed. In terms of the response models of Section 1.8.1, this means that the dis-
tributions of random errors (Z1i , Z2i ) may vary with respect to units and that, in particular, they
may have non-constant scale coefficients σi , i = 1, . . . , n. This fact allows this test to be used even
in some cases where there is a lack of homogeneity of experimental conditions. Therefore, it can
be applied when there are censored paired observations (see Good, 1991). Of course, non-constant
scale coefficients may have influence on power behaviour. McNemar’s solution may also be used
when responses are ordered categorical and differences correspond to either positive or negative
variations (see Problems 7 and 8, 1.9.5; see also Examples 6–9, 2.6 and Section 6.2).

1.9 The Permutation Solution

1.9.1 General Aspects

Roughly speaking, permutation solutions are conditional on the whole set of observed data which,
in H0, is always a set of sufficient statistics for any kind of underlying non-degenerate distribution
P . Let us now examine one solution to our problem under the assumption that P is unknown and
that the nonparametric family P of distributions, to which P belongs, contains only non-degenerate
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distributions, including discrete, continuous and mixed. Note that because of conditioning and
assumed independence of the n units, the multivariate distribution P is

∏
i Pi , where Pi is the

distribution specific to the ith unit. In terms of the response models of Section 1.8.1, this is
consistent with the fact that the distributions of errors (Z1i , Z2i ) might be non-invariant with
respect to units (see Section 1.8.3). Thus, the conditioning on a set of sufficient statistics allows
relaxation of the condition of identical distribution for all units. Moreover, we note that within
associative test statistics we need to assume that E(X) and E(Z) are finite (see Section 4.5).

1.9.2 The Permutation Sample Space

To proceed with the analysis, let us first observe that the null hypothesis H0 : {Y1
d= Y2} implies that

the two variables Y1 and Y2 are exchangeable within each unit with respect to the two occasions 1
and 2. This means that, in H0, the two observed values of each unit are considered as if they were
randomly assigned to two occasions. In other words, the sign of each difference Xi , i = 1, . . . , n, is
considered as if it were randomly assigned with probability 1/2. Thus, one way to solve the testing
problem is to refer to a test statistic of the form T =∑i Xi . Its conditional distribution FT (t |X),
when the observed points X = {Xi, i = 1, . . . , n} are held fixed, is obtained under assumption
that H0 is true by considering the random attribution in all possible ways of the plus or minus
sign to each difference with equal probability (a formal derivation of this statement within the
conditional approach is given in Remark 3, 2.1.2). This may be done by referring to the distribution
of T ∗ =∑i X

∗
i , where X∗i is obtained by attributing the sign + or − to Xi , i = 1, . . . , n, with

probability 1/2. Observe that the probability distribution of X∗ = {X∗i , i = 1, . . . , n}, conditional
on X, is uniform within the permutation sample space X/X. That is, all points of X/X are equally
likely (see Proposition 1, 2.1.3).

The permutation sample space X/X of our example then contains M(n) = 2ν points because the
permutation of signs is ineffective on the n− ν null differences. Apparently, this solution uses
only non-null differences. We shall see in Remark 2, 3.2.1 and Section 3.4 that when determining
a conditional power function or a conditional confidence interval for treatment effect δ, null dif-
ferences enter the process as well as non-null differences, and so they cannot be discarded from
the analysis.

Let us denote by F(t |X) = Pr{T ∗ ≤ t |X}, t ∈ R1, the permutation conditional CDF induced
by T , given X. Observe that this permutation CDF always exists because, by assumption, X is
a measurable entity with respect to measurable space (X,A), which is assumed to exist and be
well defined.

Remark 1. In H1, the permutation CDF of T is stochastically larger than that of T in H0, so that
large values of T are significant and the test is unbiased (formal proofs of these ordering properties
of F(t |X;δ) with respect to δ are reported in Sections 3.1–3.5). In practice, by using T o = T (X)

to indicate the observed value of T , if the p-value λ = Pr{T ∗ ≥ T o|X} is larger than α, for any
fixed value of α, then H0 is accepted, according to traditional testing rules (see Section 2.2.4 for a
formal justification of the use of p-values).

Remark 2. When the underlying model is Y1i = µ+ ηi + σi · Z1i , Y2i = µ+ ηi − δ + σi(δ) · Z2i ,
i = 1, . . . , n, so that location and scale coefficients are both not invariant on units and treatment
levels, the permutation solution remains effective (see Problem 11, 3.6.1). On the other hand,
when the underlying response model is Y1i = µ+ ηi + σ1 · Z1i , Y2i = µ+ ηi − δ + σ2 · Z2i , i =
1, . . . , n, where the two scale coefficients σ1 and σ2 are not equal, due to the lack of exchangeability
within units, the permutation solution based on T ∗ =∑i X

∗
i is not generally exact. Under this

model, when in particular the error terms Z1i and Z2i are both symmetrically distributed around
zero, exact permutation solutions do exist. One of these is provided by the sign or McNemar test.
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1.9.3 The Conditional Monte Carlo Method

An Algorithm for Inspecting Permutation Sample Spaces

In the case of our example, as well as for all cases where sample sizes are not small, the cardinality
M(n) = #[X∗ ∈ X/X] of the permutation sample space X/X (which is finite if n is finite) is too large
to enumerate all its points. According to many authors since Dwass (1957), we can inspect this
permutation sample space by means of a random sample from it; the idea of random sampling from
X/X goes back to Eden and Yates (1933). This idea is realized by a simulation of the testing problem
conditional on the observed data set X, that is by a without replacement experiment (WORE) (see
Pesarin, 1992, 2001; see also Chapter 2).

Note that the term conditional Monte Carlo (CMC) is used to point out that it is merely an
ordinary Monte Carlo simulation carried out on the permutation sample space X/X, where the set
of observed points X is held fixed. The term conditional resampling procedure emphasizes without
replacement resampling from the observed data set, considered as a finite population. Of course, in
the context of permutation inferences, conditional resampling and CMC have the same meaning.

Essentially, the CMC procedure consists of the following steps:

• (S.a) Calculate, on the given data set X, the observed value T o of the test statistic T : T o = T (X).

• (S.b) For each of the n differences in X, consider a random attribution of signs, obtaining a
permuted data set X∗.

• (S.c) Calculate T ∗ = T (X∗).
• (S.d) Independently, repeat steps (S.b) and (S.c) B times.
• (S.e) The B permutation sets X∗ are a random sample from permutation sample space X/X.

Thus, the B corresponding values of T ∗ simulate the null permutation distribution of T . Therefore,
they permit the statistical estimation of the permutation CDF F(t |X) and of the significance level
(i.e. survival) function L(t |X) = Pr{T ∗ ≥ t |X} respectively by their empirical versions: the empir-
ical distribution function (EDF) F̂ ∗B(t) =

∑
1≤b≤B I(T ∗b ≤ t)/B = #(T ∗ ≤ t)/B and the empirical

survival function (ESF) L̂∗B(t) =
∑

1≤b≤B I(T ∗b ≥ t)/B, ∀t ∈ R1.

A Routine for Random Permutations

The algorithm of step (S.b) for random attribution of signs to differences X may be based on the
rule X∗i = Xi · S∗i , i = 1, . . . , n, where the random variables S∗i are i.i.d. and each takes the value
−1 or +1 with equal probability, according to the function:

S∗ = 2 · �2 · Rnd� − 1,

where Rnd is a pseudo-random number in the open interval (0, 1) and �(·)� the integer part of (·),
that is, S∗ = 2Bn(1, 1/2)− 1.

Estimates of step (S.e) are such that the higher the number B of CMC iterations, the more
closely in probability F̂ ∗B(·) and L̂∗B(·) estimate F(·|X) and L(·|X) respectively. In any case, F̂ ∗B(·)
or L̂∗B(·) may conveniently be used in place of F(·|X) or L(·|X) for evaluating the agreement of
the observed data with H0. In practice the estimated p-value, which in turn corresponds to the ESF
evaluated at the observed value T o, is given by

λ̂(X) = λ̂ = L̂∗B(T
o) =

∑
b

I(T ∗b ≥ T o)/B.

If λ̂ ≤ α, we may conclude that the empirical evidence disagrees with H0, which should be rejected
in accordance with traditional rules.
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Table 1.2 Conditional Monte Carlo method

X

To

X*
1

T*
1

X*
b

T*
b

X*
B

l(X) = ∑B
b = 1 II(T* ≥ To) / B.

T*
B

→

Table 1.2 summarizes the CMC procedure: the first line contains the data set X and the B

permutations X∗ randomly chosen from X/X; the second contains the corresponding values of T .

Remark 1. If, in place of B random permutations, all possible permutations are considered, then
the functions F(t |X), L(t |X) and p-value λ are exactly determined. However, due to the well-
known Glivenko–Cantelli theorem, the estimated p-value λ̂, as B tends to infinity, tends almost
surely to the true value λ (see Section 2.2.5). Of course, the greater the number B of CMC
iterations, the closer in probability the estimate λ̂ is to its true value λ; and B can be stated in an
obvious way so that Pr{|L̂∗B(t)− L(t |X)| < ε}>η, for any t and any suitable choice of ε > 0 and
0 < η < 1. When H0 is not true, so that δ > 0, the rejection probability, say Pr{λ(X(δ)) ≤ α} ≥ α,
monotonically increases in δ (for a formal proof see Sections 3.1.1 and 3.2), so that T is unbiased.

Analysis of IPAT Data Using R

Let us again refer to the IPAT data set and solve the problem using R code. The variable anxiety (Y )
is measured before and after a set of training sessions. Let Y1 be the sample data before treatment
(data$YA) and Y2 be the sample data after treatment (data$YB).

First of all specify your working directory (say "C:/path"), then read the data (type “data” to
view). Compute the vector of observed differences X between the sample data before and after the
treatment. Let B = 10 000 be the number of desired permutations. In this example we also set the
random number generator seed (by typing set.seed(101)(we do this in order to allow readers to
obtain the same result. In further examples the generator seed will not be set, so the results might
be different).

setwd("C:/path")

data<-read.csv("IPAT.csv",header=TRUE)

set.seed(101)

d = data$YA-data$YB

n = dim(data)[1]

B=1000

T<-array(0,dim=c((B+1),1))

T[1] = sum(d)

for(bb in 2:(B+1)){

T[bb] = t(d)%*%(1-2*rbinom(n,1,.5))

}

The array T has dimension (B + 1)× 1 and contains the observed value T o and the simulated null
distribution of the test statistic T ∗ =∑i[y

∗
Ai − y∗Bi]S

∗
i , where S∗i = 1− 2Bn(1, 1/2), i = 1, . . . , n.

In order to obtain a p-value we need to load the function t2p that returns an array of L̂∗B(t) from
an array of permutation values of the test statistic.

t2p<-function(T){

if(is.null(dim(T))){T<-array(T,dim=c(length(T),1))}
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oth<-seq(1:length(dim(T)))[-1]

B<-dim(T)[1]-1

p<-dim(T)[2]

if(length(dim(T))==3){C<-dim(T)[3]}

rango<-function(x){

r=1-rank(x[-1],ties.method="min")/B+1/B

return(c(mean(x[-1]>=x[1]),r))

}

P=apply(T,oth,rango)

return(P)

}

The first element of P is the p-value of this analysis:

t2p(T)[1]

0.001

In the specific example, we obtain λ̂ = 0.0003, which leads to rejection of H0 at α = 0.001.
Note that the number of CMC iterations might be smaller than 10 000, for instance 2000 or 1000,
without appreciable changes in the conclusions.

The corresponding MATLAB code is given below:

D=textimport(’IPAT.csv’,’,’,1);

[P T] = NP_1s(D(1).vals-D(1).vals,1000,1);

1.9.4 Approximating the Permutation Distribution

If the sample size n is large, a permutation central limit theorem (PCLT; see Section 3.8) may be
applied in order to approximate the permutation distribution F(t |X) of T . To this end, according
to our experience, we observe the following:

• (a) If n is smaller than about 25, it is possible, by using appropriate computation tools which are
easy to implement on desktop computers, to exactly calculate T ∗ at all points of the permutation
sample space and then to calculate F [t |X] and L[t |X].

• (b) If n is greater than about 200, σX is assumed to be finite and the ratio (
∑

i X
4
i )/(

∑
i X

2
i )

2

is small, then F [t |X] can be approximated by the PCLT. To this end, let us observe that the
conditional expectation and variance of S∗ are respectively E(S∗) = 0 and V(S∗) = 1. Hence,
E
{(∑

i Xi · S∗i /n
) |X} = 0 and V

{(∑
i Xi · S∗i /n

) |X} =∑i X
2
i /n

2, because, conditionally on
X, quantities Xi in T ∗ play the role of fixed quantities. Therefore, the permutation standardized
version

K∗ =
(∑

i
Xi · S∗i

)/(∑
i
X2

i

)1/2
,

being the standardized sum of n independent variables, is approximately standard normally
distributed (see Chapter 3 for more details on the asymptotic permutation behaviour of test
statistics).

• (c) In all other cases, F [t |X] and L[t |X] may be approximated, to the desired degree of accuracy,
by means of a CMC, performed B times.
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Although in this example the sample size n is not sufficiently large for normal approximation,
the standardized observed value is Ko = 3.324, implying a p-value λ = 0.000 44, a value which
is very close to the CMC estimate λ̂.

Remark 1. Observe that test K∗ is approximately normally distributed independently of the
underlying population distribution P , whereas Student’s t , in order to be approximated by the
standard normal distribution, requires normality of P .

1.9.5 Problems and Exercises
1) Compare the standardized permutation test statistic K , introduced in Section 1.9.4, to the Stu-
dent’s t appropriate for the same problem and find the main differences. In particular, show that
the two tests are asymptotically equivalent.

2) Prove that the two test statistics, K as above and Student’s t , are asymptotically equivalent under
both H0 and H1.

3) Extend the test solution for paired observations to the one-sample problem of testing for sym-
metry. Note that: (i) X is symmetric with respect to δ if X − δ is symmetric with respect to 0; (ii)
X is symmetric with respect to 0 if and only if Pr{X < −z} = Pr{X>z}, ∀z ∈ R1; (iii) if X is
symmetric with respect to 0, then Pr{X < 0} = Pr{X> 0} (see Section 2.6).

4) Extend the test solution for paired observations when the model for responses is of multiplicative
form, Y2i = ρ · Y1i + εi , i = 1, . . . , n, so that H0 = {ρ = 1}, whereas H1 = {ρ > 1}.
5) Discuss the permutation solution for paired observations in the case where σ1 	= σ2.

6) Draw a block diagram for a test of symmetry in a one-sample problem, according to Problem 4.

7) Show that, when there are ties in data in Section 1.9, i.e. the number of zero variations in the
categorical responses is positive, a solution not conditional on non-null differences should imply
auxiliary randomization (Lehmann, 1986).

8) With reference to Section 1.9 and taking account of Problem 7 above, show that one way to
take into consideration the n− ν null differences is by using auxiliary randomization, according to
Lehmann (1986).

9) Prove that the CMC method for testing with paired quantitative observations, illustrated in
Section 1.9, may also be used in the case of paired binary ordered categorical observations.

10) Prove that, with reference to the same testing problem for paired observations, the permutation
test T ∗S =

∑
i

(
Xi · S∗i /|Xi |

)
, which corresponds to the sum of standardized summands because

V{(Xi · S∗i /|Xi |)|X} = 1, i = 1, . . . , n, and where Xi · S∗i /|Xi | = 0 if Xi = 0, coincides with the
binomial or McNemar test (note that this solution may be taken into consideration when individual
distributions Pi are considerably different from each other).

11) Prove that the matched pairs problem is equivalent to that with paired observations (see Remark
1, 1.8.3).

12) Show that the McNemar test is no more than a test on paired binary observations, either ordered
categorical or quantitative.

1.10 A Two-Sample Problem
Let us now discuss, as a second example, a problem (Pesarin, 2001) concerning the comparison of
locations of two populations. In a psychological experiment to assess the degree of job satisfaction
of two groups of workers, 20 units, assumed to be homogeneous in respect of most important
covariates, such as sex, age, general health and social status, were examined in terms of the response
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variable X, corresponding to the perceived degree of job satisfaction. X was measured by a proper
psychological index consisting of a sum of a finite number of items each related to a specific sub-
aspect. Before the experiment was carried out, 12 units (group 1) were classified as ‘extroverted’,
X1, and the remaining 8 units (group 2) were classified as ‘introverted’, X2, so that the sample data
were X1 = {X1i , i = 1, . . . , 12} and X2 = {X2i , i = 1, . . . , 8} respectively. The testing problem was
to show whether the data conform better to the null hypothesis of no difference in distribution, or
to the one-sided (i.e. restricted or dominance) alternative of a difference in favour of ‘extroverted’.
It is worth noting that since subjects are assigned to symbolic treatment levels (extroverted and
introverted) after they were observed, so that subjects were not randomized to treatments, this is
a typical observational study where the treatment is merely a post-hoc classification (see Remark
4, 2.1.1 for some related problems). However, since the null hypothesis assumes that there is no
distributional difference between two treatment levels, instead of permuting subjects we are allowed
to permute observed data (see Section 1.5).

1.10.1 Modelling Responses

The data are given in Table 1.3. Formally, the hypotheses being tested are H0 : {X1
d= X2} against

H1 : {X1
d
>X2}. Note that H1 asserts the stochastic dominance of X1 with respect to X2. This

stochastic dominance may be specified according to several response models, two of which are
as follows.

• (M.i) A model with fixed additive effects: X1i = µ+ δ + σ · Z1i , X2i = µ+ σ · Z2i ,
i = 1, . . . , nj , j = 1, 2, where δ is the treatment effect (note homoscedasticity).

• (M.ii) A model with generalized stochastic effects: X1i = µ+�1i + σ · Z1i , X2i = µ+ σ · Z2i ,
i = 1, . . . , nj , j = 1, 2, where µ is a population constant, Zji are exchangeable random errors
with null location and unit scale parameter, σ is a scale coefficient not dependent on units
or treatment levels, and �1i ≥ 0 are non-negative random quantities representing individually
specific treatment effects, which may depend on (µ, Z1i) but are independent with respect to
units, even though not identically distributed.

Model (M.ii) is consistent with any kind of stochastic dominance. In particular, it is consistent
with: (a) model (M.i) when, with probability one, �1i = δ; (b) a multiplicative effect model for
positive responses, where X1i = δ · (µ+ σ · Z1i ), with δ ≥ 1; (c) an individually varying fixed
effect model, where X1i = µ+ σ · Z1i + δ1i , when �1i = δ1i with probability one; (d) a model
where the treatment effect may influence both location and scale coefficients, X1i = µ+ δ + σ(δ) ·
Z1i , where σ(δ) is any monotonic function of δ or of |δ|, provided that the associated CDFs satisfy
the stochastic dominance condition F1(x) ≤ F2(x), x ∈ R1 (see Sections 2.1 and 3.1, for further
details).

Within this introductory chapter we refer to the fixed effect model (M.i).

Remark 1. The generalized effect model (M.ii) does not imply homoscedasticity of responses in
the alternative. We recall that homoscedasticity implies F1(x + δ) = F2(x), ∀x ∈ R1, where δ is the

Table 1.3 Job satisfaction of extroverted and introverted groups

X1 : 66 57 81 62 61 60 73 59 80 55 67 70
X2 : 64 58 45 43 37 56 44 42
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so-called location functional (same as size effect or shift pseudo-parameter ). The terms functional,
size-effect or pseudo-parameter for the treatment effect δ are generally used in place of parameter
because in the nonparametric context δ is usually a functional expressed in terms of all underlying
parameters of the unknown distribution P which, assuming the existence of the mean value E(Z),
in its simplest form is δ = ∫X δ(x) dP (x).

It is also worth noting that model (M.ii) is consistent with the so-called placebo effect . When
the placebo, the treatment typically assigned to units in the second group, is supposed to produce
an effect, δP say, we may model responses (with obvious notation) as Xji = (µ+ δP )+ (WPi +
Zji)+�ji , i = 1, . . . , nj , j = 1, 2. From this representation we see that µ becomes µ+ δP and
Z changes to Z +WP , so that the placebo effect is included in the population constant and errors.

Furthermore, when the response model becomes X1i = µ+ δ + σ1 · Z1i , X2i = µ+ σ2 · Z2i ,
i = 1, . . . , nj , j = 1, 2, where it is not assumed that σ1 = σ2, even in H0, then we refer to the
generalized Behrens–Fisher problem in which, of course, the exchangeability condition in H0 is
violated and so we have to look for approximate solutions (see Example 8, 4.6).

Remark 2. It is common in testing problems to refer to two-sided alternatives, which are usually

written as H1 : {X1

d

	= X2}. This notation is quite ambiguous. What is usually intended is that
it is either F1(x) ≤ F2(x) or F1(x) ≥ F2(x), with strict inequality in a set of points of positive
probability, and not F1(x) 	= F2(x), where two distributions are not equal in a set of points of
positive probability. In the former notation it is presumed that the effect, fixed or random, is either
positive or negative, but not both. In the latter, instead, it is presumed that the effect can be positive
on some subjects and negative on others. Such testing problems are much more intriguing than
others and are discussed in Example 5, 4.6, after the introduction of NPC and multi-aspect testing.

1.10.2 The Student t Solution

If we assume that the responses of the two populations are homoscedastic and normally distributed
with σ unknown, this problem may be efficiently solved (UMP similar) by a one-sided Student’s
t for comparing two means. That is,

t = X̄1 − X̄2

[
∑

ji(Xji − X̄j )2]1/2

√
n1n2(n− 2)

n
,

where X̄j =
∑

i≤nj Xji/nj , j = 1, 2, are the sample means, n = n1 + n2 is the pooled sample size,
and the Student’s t has n− 2 d.f.

It is worth noting that in the present case the assumption of normality seems rather unnatural
because integer numbers are observed and empirical distributions are slightly asymmetric. Thus, we
can say that Student’s t only provides for an approximate solution and that it is difficult to assess
the degree of such approximation. If an underlying continuous model for responses is assumed, then
the observed integer values can be considered as if they were truncated, the estimate of population
variance obtained is biased downwards, and the resulting inference is anticonservative. However,
the results are t = 4.237 with 18 d.f. which is significant at α = 0.001.

1.10.3 The Permutation Solution

Maintaining the assumption of homoscedasticity in the null hypothesis, with reference to the additive
fixed effect model (M.i) we can relax the normality assumption and suppose that the data are
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distributed according to non-degenerate continuous distributions P1 and P2, both from the same
nonparametric family P. Accordingly, assuming population means are finite, we can write the

hypotheses as H0 : {X1
d= X2} = {δ = 0} against H1 : {X1

d
>X2} = {δ > 0}.

Remark 1. In the permutation context, in order to apply a test statistic based on comparison
of sample means we need only assume that means of involved responses are finite. If by chance
we cannot assume population means are finite, we must use a test statistic based, for instance,
on comparison of sample medians or trimmed means or EDFs. What is essential is that there is
pseudo-parameter (the location functional) δ playing the role of treatment effect and that a proper
sampling indicator is available for it (see Section 2.5). Note also that H0 implies exchangeability
of observed data with respect to treatment levels.

The underlying non-degenerate common distribution P is unknown, so we may proceed by
conditioning on a set of sufficient statistics for it in H0. Such a well-known set is X = X1

⊎
X2 =

{X(i), i = 1, . . . , n; n1, n2}, with
⊎

denoting vector concatenation, so that the two vectors are
pooled into one; n1, n2 and n = n1 + n2 are the sample sizes of the two groups and pooled sample,
respectively. The proof of the sufficiency of the pooled data set X in H0 is left as an exercise (see
Sections 1.2, 2.1.2 and 2.1.3). The pooled array {X(i), i = 1, . . . , n; n1, n2} is called the unit-by-
unit representation of the data set X. This assumes that X(i) belongs to group 1 if i satisfies the
condition 1 ≤ i ≤ n1, otherwise it belongs to group 2. Remember that we use the same symbol X
to indicate both the set of sample data, regarded as a multivariate random variable, and the pooled
vector of observed data, the distinction being clear from the context.

Remark 2. Observe that if in the null hypothesis σ1 	= σ2, then a set of sufficient statistics is the
vector of sample data (X1;X2). Here, it should be emphasized that the data set is partitioned into
two subsets X1 and X2, so that in this case we are not allowed to exchange data between groups
(see Example 8, 4.6, for a discussion in the permutation context).

Conditioning on the whole data set is equivalent to conditioning with respect to the EDF for P ,
which is also sufficient (note that in H0, P1 = P2; see Definition 2, 2.1.3). Hence, in H0, observed
data may be viewed as if they were randomly assigned to two treatment levels. Thus, for this kind
of problem, the permutation sample space X/X is exactly the set of all permutations of data X, the
cardinality of which is M(n) = n! (in the example n = 12+ 8 = 20, thus M(n) = 2.4329 · 1018).
Of course, if we use test statistics such as T =∑i X1i/n1 −

∑
i X2i/n2 or the like, which in turn

are differences of two symmetric functions, being invariant with respect to rearrangements of data
entry, then this cardinality becomes M(n) = C n,n1 =

(
n
n1

)
, leading to C20,8 = 125 970, since in X/X

there are n1! · n2! points sharing the same value of T ∗ (see Remark 2, 2.3).
If we assume that sample means are proper indicators for the treatment effect δ, a suitable per-

mutation test statistic is T ∗1,2 = X̄∗1 − X̄∗2 , where X̄∗j =
∑

i X
∗
ji/nj , j = 1, 2, are the permutation

sample means related to the permuted data set X∗. However, T ∗1,2 is permutationally equiva-
lent to T ∗ =∑i X

∗
1i , because there is an increasing one-to-one relationship between the two

statistics since the data set X is held fixed (see Section 2.4). Indeed,
∑

ji X
∗
ji and

∑
ji Xji ,

being equal, are permutation invariant quantities. Thus, T ∗ and T ∗1,2 are related by a one-to-one
increasing relationship.

In the framework of this problem, it may be seen that T ∗ is unbiased and consistent (see Section
3.3 and Theorems 5, 3.7.2 and 12, 4.5 for a discussion of these concepts).

Remark 3. In a permutation framework we need not consider standardized forms for the test
statistics in question, because standardization is simply an increasing one-to-one relationship. Hence,
standardized and non-standardized forms are always permutationally equivalent, provided that the
observed data are non-degenerate. Moreover, in order to get unbiasedness of a permutation test,
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we must assume that two CDFs, F1 and F2, do not cross each other (see Sections 2.4 and 3.1 for
further reflections).

One way of inspecting X/X for a two-sample problem is by modifying step (S.b) of Section 1.9.3
(see also Section 2.2.5) as follows:

• (S.b′) (i) Consider a random permutation (u∗1, . . . , u
∗
n) of unit labels (1, . . . , n). (ii) According to

unit-by-unit representation, assign the first n1 corresponding data to group 1 and the other n2 to
group 2, thus obtaining the data permutation X∗ = {X(u∗i ), i = 1, . . . , n; n1, n2}. (iii) Calculate
the test statistic T ∗ = T (X∗).

Analysis of Job Data Using R

In the job data set there are two variables: X denoting the degree of job satisfaction and Y denoting
the extroverted (1) or introverted (2) group. We can obtain the test statistic T ∗ = X̄∗1 − X̄∗2 by
multiplying the vector of permuted data X∗ for a vector of contrasts contr:

setwd("C:/path")

data<-read.csv("Job.csv",header=TRUE)

attach(data)

n = table(Y) ; C = length(n);

contr = rep(1/n,n); contr[-c(1:n[1])] = -contr[-c(1:n[1])]

round(contr,digits=3)

[1] 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083

[10] 0.083 0.083 0.083 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125

[19] -0.125 -0.125

B=1000

T<-array(0,dim=c((B+1),1))

T[1] = X%*%contr

for(bb in 2:(B+1)){

X.star = sample(X)

T[bb] = X.star%*%contr

}

P=t2p(T); P[1]

[1] 2e-04

For the data in the above example, we obtain λ̂ = 0.0002, which is significant at α = 0.001.

The corresponding MATLAB code is given below:

D=textimport(’Job.csv’,’,’,1);

reminD(D)

[P T] = NP_2s(’X’,’Y’,1000,-1);

The data set and the corresponding software codes are available from the examples_chapters_
1-4 folder on the book’s website.

Remark 4. As permutations may be considered similar to without replacement random samples
from X, when sample sizes are sufficiently large, the permutation CDF FT (t |X) of T ∗ may be
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approximated (see Section 3.8 for conditions allowing this) by that of a normal distribution with
mean value E(T ∗|X) = n1 ·

∑
ji Xji/n and variance V(T ∗|X) = n1 · n2 · σ 2

X/(n− 1), where σ 2
X =∑

ji X
2
ji/n−

(∑
ji Xji/n

)2
is the variance and

∑
ji Xji/n the mean of the pooled data set X

regarded as a finite population.

1.10.4 Rank Solutions

If we assume that P1 and P2 are continuous and homoscedastic, the same problem may be solved
by the well-known Wilcoxon–Mann–Whitney rank test. This is actually a permutation test based
on ranks, MW =∑i R1i , where Rji = R(Xji) =

∑
gh I(Xgh ≤ Xji) are the ranks of Xji , i =

1, . . . , nj , j = 1, 2, in the pooled data set X. Alternatively, one of its permutationally equivalent
forms may be used. Since the mean value and variance of

∑
i R1i in the null hypothesis are

E(
∑

i R1i ) = n1(n+ 1)/2 and V(
∑

i R1i) = n1n2(n+ 1)/12 respectively, the standardized version
of MW is TMW = [

∑
i R1i − n1(n+ 1)/2]/[n1n2(n+ 1)/12]1/2. If sample sizes are not too small,

the null distribution of TMW is standard normal. With the data from the example, as
∑

i R1i = 164,
we have TMW = 4.146, which is significant at α = 0.001 (this can be compared with the standard
normal distribution because sample sizes (n1 = 12, and n2 = 8) are not too small).

Note that, in general, rank transformations are not one-to-one with respect to data X, so they
lose the sufficiency property with respect to P , although, under continuity of P , MW is a maximal
invariant test . This often, but not always, implies some power decay (with regard to the problem
of an optimal choice of a test statistic for finite sample sizes, see the discussion in Sections 2.5 and
3.6). Of course, other nonparametric solutions are available, depending on assumptions regarding P .

Furthermore, if assumptions suggest that medians or any other robust statistic are to be preferred
in place of mean values as proper indicators for treatment effects, one solution is to use a permutation
test statistic of the form T̃ = X̃1 − X̃2, where X̃j , j = 1, 2, is the median or a robust statistic
calculated on the j th data group. Alternatively, but not equivalently, another solution is to use
the so-called Mood median test. Also, if no assumption regarding the equality of scale parameters
with respect to treatment levels or more generally if no assumption of stochastic dominance can be
made, another solution is to use a permutation Behrens–Fisher type test (for a discussion within
the permutation context, see Example 8, 4.6).

1.10.5 Problems and Exercises
1) Discuss the permutation median test T ∗Md = X̃∗1 − X̃∗2 for the two-sample problem, where X̃∗j =
Md(X∗j ) = X∗((nj+1)/2) if nj is odd and (X∗(nj /2) +X∗(1+nj /2))/2 if nj is even, where X∗(1) ≤ X∗(2) ≤
. . . ≤ X∗(nj ) are the order statistics of X∗j , j = 1, 2.

2) Prove that in the Behrens–Fisher problem, where the response model is Xji = µ+ δj + σj · Zji ,
i = 1, . . . , nj , j = 1, 2, with σ1 	= σ2, and where Zji are exchangeable random deviates with null
mean value, in which the hypotheses are H0 : {E(X1) = E(X2)} and H1 : {E(X1)>E(X2)}, the

dominance of means, i.e. µ1 >µ2, does not imply dominance of responses, X1
d
>X2.

3) Show that, if the response variable is binary, then the test statistic for testing H0 : {X1
d=

X2} against H1 : {X1
d
>X2} corresponds to Fisher’s exact probability test, which rejects H0 if

Pr{∑i X
∗
1i ≥

∑
i X1i |X} ≤ α.

4) With reference to the two-sample testing problem for H0 : {X1
d= X2}, in which the two data

sets are Xj = {Xji, i = 1, . . . , nj }, j = 1, 2, prove that the pooled set X = X1
⊎

X2 is a set of
sufficient statistics in the null hypothesis for whatever underlying distribution P (see Sections 1.2
and 2.1.2).
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1.11 One-Way ANOVA
As a third introductory example, let us consider a one-way ANOVA design. It is a well known
that this corresponds to testing for the equality in distribution of C ≥ 2 groups of data, where C

represents the number of treatment levels in a symbolic experiment.
In this framework, units belonging to the j th group, j = 1, . . . , C, are presumed to receive

treatment at the j th level. When side-assumptions, specific to the problem, ensure that responses
have finite means and are homoscedastic, that is, E(|Xj |) <∞ and V(Xj ) = σ 2, j = 1, . . . , C,
then the equality of C distributions may be reduced to that of C means.

In order to introduce this problem and justify a permutation solution for it, let us consider the
data set in Table 1.4 (from Pollard, 1977, p. 169). The related problem is concerned with the length
of worms in three different groups, where the purpose is to test whether the mean length of the
worms is the same in all three groups. We may write this formally as H0 : {µ1 = µ2 = µ3} against
the alternative H1 : {at least one equality is false}.

1.11.1 Modelling Responses

Here we consider a fixed effects additive response model, X = {Xji = µ+ δj + σ · Zji ,
i = 1, . . . , nj , j = 1, . . . , C}, where µ is a population constant, δj are the fixed treatment effects
which satisfy the contrast condition

∑
j δj = 0, Zji are exchangeable random errors with zero

mean value and unit scale parameter, σ is a scale coefficient which is assumed to be invariant with
respect to groups, and C is the number of groups into which the data are partitioned. Note that,
in this model, responses are assumed to be homoscedastic and that scale coefficients are assumed
not to be affected by the treatment levels, in particular in the alternative. If data are normally
distributed, this problem is solved by Snedecor’s well-known F test for the one-way ANOVA
layout for H0 : {δ1 = . . . = δC = 0} against H1 : {H0 is not true}. That is, with the meaning of the
symbols clear,

F =
∑C

j=1(X̄j − X̄·)2nj∑
ji(Xji − X̄j )2

· n− C

C − 1
,

the null distribution of which is Fisher’s F with C − 1 and n− C degrees of freedom for numerator
and denominator, respectively.

Observe that, within the homoscedasticity condition, the null hypothesis is equivalent to equality
of three distributions: H0 : {X1

d= X2
d= X3}. Also observe that this equality implies that the data

Table 1.4 Lengths of worms in three groups

Group

1 2 3

10.2 12.2 9.2
8.2 10.6 10.5
8.9 9.9 9.2
8.0 13.0 8.7
8.3 8.1 9.0
8.0 10.8

11.5
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X are exchangeable; in particular, they may be viewed as if they were randomly attributed to
three groups.

Let us then assume that we can maintain homoscedasticity and the null hypothesis in the form
H0 : {X1

d= X2
d= X3}, but that we cannot maintain normality. Assuming the existence, in H0, of a

common non-degenerate, continuous, unknown distribution P , the problem may be solved by a rank
test such as Kruskal–Wallis, or by any analogous test statistic based on generalized ranks, or by
conditioning on a set of sufficient statistics (i.e. using a permutation procedure). Note that because
of conditioning, the latter procedure allows for relaxation of continuity for P and for relaxation of
finite scale coefficients for responses. It only requires the existence of location coefficients and of
proper sampling indicators for them.

The permutation solution also allows for relaxation of some forms of homoscedasticity for
responses in H1 (see Section 2.7 for more details). In fact, the generalized one-way ANOVA model
allowing for unbiased permutation solutions assumes that the hypotheses are H0 : {X1

d= X2
d=

X3} against H1 : {X1

d

	= X2

d

	= X3}, with the restriction that, for every pair h 	= j , h, j = 1, 2, 3,
the corresponding response variables are stochastically ordered (pairwise dominance relationship)

according to either Xh

d
>Xj or Xh

d
< Xj , in such a way that, ∀t ∈ R1, the associated CDFs are

related according to either Fh(t) ≤ Fj (t) or Fh(t) ≥ Fj (t).

Remark 1. This dominance assumption may correspond to a model in which treatment may affect
both location and scale coefficients, as for instance in {Xji = µ+ δj + σ(δj ) · Zji , i = 1, . . . , nj ,
j = 1, . . . , C}, where σ(δj ) are monotonic functions of treatment effects δj or of their absolute
values |δj |, provided that σ(0) = σ and pairwise stochastic ordering on CDFs is preserved. The
latter model is consistent with the notion of randomization (see Section 1.5). Indeed: (i) in the
randomization context, units are assumed to be randomly assigned to treatment levels, so that H0

implies exchangeability of responses; (ii) in the alternative, treatment may jointly affect location and
scale coefficients, so that resulting permutation distributions become either stochastically larger or
smaller than the null distributions. Also note that the pairwise dominance assumption is consistent
with a generalized model with random effects of the form {Xji = µ+ σ · Zji +�ji , i = 1, . . . , nj ,
j = 1, . . . , C}, where �ji are the stochastic treatment effects which satisfy the (pairwise) ordering

condition that for every pair h 	= j , h, j = 1, . . . , C, we have either �h

d
>�j or �h

d
< �j .

1.11.2 Permutation Solutions

Formalizing the testing problem for a C-sample one-way ANOVA layout, we assume that X =
{X1, . . . ,XC} represents the data set partitioned into C groups, where Xj = {Xji , i = 1, . . . , nj },
j = 1, . . . , C, are i.i.d. observations from non-degenerate distributions Pj , respectively. It is helpful
to use the unit-by-unit representation X = {X(i), i = 1, . . . , n; n1, . . . , nC}, where it is assumed
that X(i) ∈ X1 if subscript i satisfies the condition 1 ≤ i ≤ N1, X(i) ∈ X2 if N1 + 1 ≤ i ≤ N2,
and so on, where Nj =

∑
r≤j nr , j = 1, . . . , C, are cumulative sample sizes. We also assume that

the sample means are proper indicators of treatment effects.
Under the homoscedastic model the hypotheses are

H0 : {X1
d= . . .

d= XC} = {δ1 = . . . = δC = 0}

against H1 : {H0 is not true}.
If it is suitable for analysis, we may consider a data transformation ϕ, so that related sample

means become proper indicators for treatment effects. According to the CMC procedure, iterations
are now done from the pooled data set X = X1

⊎
. . .
⊎

XC , which is still a set of sufficient statistics
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for the problem in H0. If symmetric test statistics are used, the related permutation sample space
X/X contains n!/(n1! · . . . · nC!) distinct points, where n =∑j nj is the total sample size.

According to the above assumptions and Remark 3, 1.10.3, a suitable test statistic based on
deviance among sample means is

T ∗C =
C∑

j=1

(
_
Y
∗
j −

_
Y ·)2 · nj ,

where
_
Y
∗
j =

∑
i ϕ(X

∗
ji)/nj and

_
Y · =

∑
j

_
Y j · nj/n. Note that

_
Y · is a permutationally invariant

quantity, being based on the sum of all observed data. Hence, statistic T ∗C is permutationally
equivalent to T ∗ =∑C

j=1 nj · (
_
Y
∗
j )

2 (see Example 2, 2.4).

Analysis of Worm Data Using R

Let us define the group variable as Y , and the data are the lengths X of the worms belonging to
each group.

data<-read.csv("Worms.csv",header=TRUE)

attach(data)

n = table(Y) ; C = length(n); n

Y

1 2 3

6 7 5

We can obtain the distribution of the test statistic by computing, at each permutation, the values
of X̄∗2

j , j = 1, 2, 3. This is done with the auxiliary dummy variables:

I = array(0,dim=c(sum(n),C))

for(i in 1:C){

I[,i]<-ifelse(Y==names(n)[i],1/n[i],0)

}

The ith element of the j th column of matrix I is equal to 1/nj if the ith observation belongs
to group j and zero otherwise, i = 1, . . . , n, n =∑j nj , j = 1, 2, 3. Thus the vector of means by
group X̄ = [X̄1, X̄2, X̄3] can easily be derived by multiplying t(X) (with dimension 1× n) and I
(with dimension n× 3), and the test statistic can be derived by multiplying the square of X̄ and
the vector n. The permutation values of T ∗ =∑3

j=1 nj X̄
∗2
j can be obtained similarly by replacing

X with X∗:

B=10000

T = array(0,dim=c((B+1),1))

T[1] = ( t(X)%*%I )^2%*%n

for(bb in 2:(B+1)){

X.star=sample(X)

T[bb] = ( t(X.star)%*%I )^2%*%n

}

t2p(T)[1]

[1] 0.0106
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The corresponding MATLAB code is given below:

D=textimport(’Worms.csv’,’,’,1);

reminD(D)

[P T] = NP_Cs(’X’,’Y’,1000);

The data set and the corresponding software codes are available from the examples_chapters_
1-4 folder on the book’s website.

The test’s p-value is again obtained by applying the t2p function to the vector T, and by focusing
on the first element of the vector of results. In this case we can conclude that there is a strong
evidence against the null hypothesis µ1 = µ2 = µ3.

We obtain λ̂ = 0.0106, which leads to the rejection of H0 at α = 0.025. This result fits those
obtained by Pollard (1977) by means of the parametric Snedecor F test (F = 6.30, with 2 and 15
degrees of freedom) and the Kruskal–Wallis KW rank test (KW = 7.76, the null distribution of
which is approximated by a central χ2 with 2 d.f.) both significant at α = 0.025. We recall that the
Kruskal–Wallis permutation rank test is based on the statistic

KW =
 12

n(n+ 1)
·

C∑
j=1

nj ·
[

_
Rj − n+ 1

2

]2
 ,

where Rji is the rank of Xji , j = 1, . . . , C, i = 1, . . . , nj , within the pooled data set X, and_
Rj =

∑
i Rji/nj , j = 1, . . . , C, is the j th sample mean rank. For large sample sizes nj , the null

distribution of KW is approximated by that of a central χ2 with C − 1 d.f.

1.11.3 Problems and Exercises
1) Discuss a solution to the one-way ANOVA when, in place of sample means X̄j , sample medians
X̃j are assumed to be proper indicators for treatment effects.

2) Discuss Mood’s median test for the one-way ANOVA and prove that it is a permutation test.

3) Express the rational and heuristic motivations for the choice of the test statistic T in the one-way
ANOVA.

4) Compare the permutation solution T above with Snedecor’s F based on homoscedastic normal
responses, the Kruskal–Wallis KW based on rank transformations, and Mood’s test based on
frequencies above and below the pooled median. Discuss conditions in which one is better than the
others.

5) Prove that the Kruskal–Wallis rank test is permutationally equivalent to
∑

j nj · R̄2
j .

6) Prove that for the one-way ANOVA problem, the permutation sample space X/X associated with
X contains n!/(n1! · . . . · nC!) distinct permutations of X.



2
Theory of One-Dimensional
Permutation Tests

2.1 Introduction

2.1.1 Notation and Basic Assumptions

In this chapter we introduce the main terminology, definitions and general theory of permutation
tests for some one-dimensional problems. Particular emphasis is given to the two-sample design
taken as a guide. Extensions to one-sample and multi-sample designs are generally straightforward.
A list of typical one-dimensional testing problems will also be discussed. The analyses for multi-
variate designs and multi-aspect problems are obtained by the NPC of dependent permutation tests.
This is done from Chapter 4 onwards.

The approach used in the previous chapter was essentially heuristic because all test statistics and
related results were intuitively justified. In this chapter we use a more formal approach based on
conditionality and sufficiency principles (see Cox and Hinkley, 1974; Berger and Wolpert, 1988).
Indeed, permutation tests are known to be conditional methods of inference, where the conditioning
is done with respect to a set of sufficient statistics in H0 for the underlying population distribution
P (Randles and Wolfe, 1979; Lehmann, 1986; Lehmann and Romano 2005; Pesarin, 2001) and
the related conditional reference space is denoted by Xn

/X. Permutation tests can also be derived
within the notion that the null distribution of any statistic of interest is invariant with respect to
a finite group of transformations (Hoeffding, 1952; Romano, 1990). Two formal approaches, the
conditional on sufficient statistics and the group invariant transformations, are essentially equivalent
(see Watson, 1957; Odén and Wedel, 1975; Nogales et al., 2000) in that they provide the same
solutions. However, we prefer the conditional approach because it is easier to understand, more
constructive, more natural to use, test statistics are generally simpler to justify, and inferential
conclusions are easier to interpret and explain.

Let us assume that a one-dimensional non-degenerate variable X takes values on the sample space
X, and that associated with (X,X) are parent distributions P belonging to a nonparametric family
P (see Definition 1, 1.2). Of course P may belong to any parametric family. In such cases there
are parametric counterparts to take into consideration which may often, but not always, perform
optimally (see Sections 1.1–1.5). Each P gives the probability measure to events A belonging to
a suitable collection (a σ -algebra) A of events. The family P may consist of distributions of either
quantitative (continuous, discrete and mixed) or categorical (nominal and ordered) kinds of vari-
ables. Firstly, we refer to quantitative variables. Specific sections will be devoted to some problems
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with nominal and ordered categorical variables. It is assumed that each family P admits the exis-
tence of a common dominating measure ξP in respect to which the density (i.e. the Radon–Nikodym
derivative), fP (X) = dP (X)/dξP, is well defined. The density fP (X), as a function of P , may
sometimes be regarded as the likelihood of P given by X, the existence of which is admitted
by assumption. It is well known that without such an assumption, no statistical problem can be
tackled. The density on every observed sample point X ∈ X is assumed to satisfy the condition
dP (X)/dξP > 0 (in what follows we do not distinguish between a variable X and its observed
sample points; the distinction will be clear from the context). For quantitative variables defined on
the real line the probability measure P is equivalent to the CDF FP (x) =

∫
t≤x dP (t), x ∈ R1. The

notation (X,X,A, P ∈ P) summarizes the statistical model associated with the problem at hand.
Let Xj = {Xji, i = 1, . . . , nj } ∈ Xnj be the i.i.d. sample data of size nj from the model

(X,X,A, Pj ∈ P), j = 1, 2, respectively. For data sets with two independent samples we may write
X = {X11, . . . , X1n1, X21, . . . , X2n2} ∈ Xn, whose related model is (X,Xn,A(n), P (n) ∈ P(n)),
where n = n1 + n2 and P (n) = P

n1
1 · Pn2

2 (and where the meaning of the symbols is oth-
erwise clear). To denote data sets in the permutation context it may be convenient to use
the unit-by-unit representation X = X(n) = (X1,X2) = {X(i), i = 1, . . . , n; n1, n2}, where
it is intended that the first n1 data in the list belong to the first sample and the rest
to the second. In practice, with u∗ = (u∗1, . . . , u

∗
n) denoting a permutation of unit labels

u = (1, . . . , n), X∗ = {X∗(i) = X(u∗i ), i = 1, . . . , n; n1, n2} is the related permutation of X. And
so, X∗1 = {X∗1i = X(u∗i ), i = 1, . . . , n1} and X∗2 = {X∗2i = X(u∗i ), i = n1 + 1, . . . , n} are the two
permuted samples respectively. We normally also use the same symbol X to denote the pooled
data set as obtained by X = X1

⊎
X2, where

⊎
is the symbol for concatenating two data files. It

is worth noting that, more than with respect to units, permutations operate with respect to data
associated with unit labels i and u∗i , 1 ≤ i ≤ n, and not with respect to individuals (see Section
1.5). This is of particular importance for multivariate problems where data vectors are permuted,
as well as for observational studies where individuals cannot generally be permuted.

Here we discuss testing problems for stochastic dominance (i.e. one-sided) alternatives as gener-
ated by symbolic treatments with non-negative random shift effects �. In particular, the alternative

assumes that treatments produce effects �1 and �2 respectively, and that �1
d
>�2, where

d
> stands

for distributional (i.e. stochastic) dominance. Thus, the hypotheses are H0 : {X1
d= X2

d= X} ≡
{P1 = P2}, and H1 : {(X1 +�1)

d
>(X2 +�2)}, respectively. Specifying this for quantitative vari-

ables, we can write H0 : {F1(t) = F2(t), ∀t ∈ R1} and H1 : {F1(·) ≤ F2(·)}, where the inequality
is strict in a set of positive probability with respect to both distributions. Note that data of two
samples are exchangeable in H0, in accordance with the notion that responses behave as they
were randomized to treatments; also note that two CDFs do not cross in H1. Without loss of gen-

erality, we assume that effects in H1 are such that �1 = �
d
>0 and Pr{�2 = 0} = 1. The latter

condition agrees with the notion that an ‘active treatment’ is only assigned to subjects of the first

sample and a ‘placebo’ to those of the second. The condition �
d
>0 can be specified as {�i ≥ 0,

i = 1, . . . , n1}, with strict inequality for ν ≥ 1 subjects, where 0 < ν/n1 ≤ 1 and ν →∞ almost
surely as n1 →∞. Moreover, we may let � depend on subjects and on related null responses, so

that pairs (X1i , �i), i = 1, . . . , n1, satisfy the relation (X1i +�i)
d≥ X1i with ν strict inequalities

(see Example 3, 4.6). In this situation, since effects � may depend on null responses X1, stochastic

dominance (X1 +�)
d
>X2 = X is compatible with non-homoscedastic situations in the alternative.

This gives a considerable, useful advantage to the permutation approach over the traditional paramet-
ric methodology. Thus, the null hypothesis can also be written as H0 : {� = 0} and the alternative
as H1 : {�> 0}. Other than measurability, no further distributional assumption on random effects �

is required. In particular, existence of moments of any positive order is not required. To emphasize
the roles of sample sizes and effects, we sometimes use X(n)(�) = {X11 +�1, . . . , X1n1 +�n1 ,
X21, . . . , X2n2} to denote data sets; and so X(n)(0) denotes data in H0. Extensions to non-positive
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and two-sided alternatives are straightforward. Also of importance is the extension to composite
null hypotheses such as H0 : {� ≤ 0}; this extension is made in Proposition 3, 3.1.1.

Remark 1. In what follows we suppress the superscript (n) from X(n) and Z(n) unless it is
necessary to avoid misunderstandings as when considering sequences of samples. By the additive
model (M.ii) in Section 1.10.1, we may write that Xji = µ+�ji + Zji , and so the data set is
X(�) = {µ+�1i + Z1i , i = 1, . . . , n1; µ+ Z2i , i = 1, . . . , n2}. Note that the additive model for
the data set can equivalently be written as X(�) = (Z1 +�,Z2). In fact, without loss of generality
we can put µ = 0 because it is a nuisance quantity common to all units and thus is not essential
for comparing X1 to X2, in that the test statistic T (Z+ µ) is permutationally equivalent to T (Z)

since they lead to exactly the same inference (see Problem 16, 2.4).
It is also worth noting that the alternative H1 : Pr{�> 0}> 0 may imply that Pr{� = 0}> 0.

The latter can be useful for interpreting experiments in which the treatment is not active on all
treated individuals, as may occur for some drugs with genetic efficacy where only those individ-
uals with a specific genetic configuration are really affected. The case of Pr{� < 0}> 0 AND
Pr{�> 0}> 0, called the multi-sided alternative, which may interpret situations where treatment
can produce negative effects on some individuals, can be ineffective on others, and can produce
positive effects on the rest, will be discussed in Example 5, 4.6, in connection with the so-called
multi-aspect testing.

2.1.2 The Conditional Reference Space

It was shown in Section 1.2 that the data set X is always and trivially a set of sufficient statistics
for the underlying distribution P in the null hypothesis and that inferences we wish to obtain are
conditional on such a set of sufficient statistics. However, as for any given testing problem we may
condition on different sets of sufficient statistics, it seems reasonable to condition on a minimal
sufficient set. In this way we make the best use of the available information. This requirement is met
in general by referring to the set X itself because in the nonparametric setting it is only known that
the underlying distribution P belongs to the nonparametric family P, and so no further reduction
of dimensionality is possible without loss of information. Besides, in cases where it is known that
P belongs to a parametric family for which the minimal sufficient statistic is the whole data set X
and there are nuisance entities to remove, then there is no possibility of avoiding the conditioning
with respect to X, that is, acting outside the permutation approach. However, since all test statistics
are functions T mapping Xn into R1, which implies a maximal reduction of dimensionality, there
is a weakness with the nonparametric paradigm because in general a test statistic T cannot be
selected among all possible statistics according to unconditionally optimal criteria (see Sections 2.5
and 3.6 for a discussion). However, it is worth noting that the same weakness also occurs for all
other parametric and nonparametric methods when X is minimal sufficient because in no way it
is possible to use all the information carried by X by considering only one statistic T . In order
to attenuate the loss of information associated with using one overall statistic expressed in closed
form, we will find solutions within the multi-aspect methodology by combining a set of tests for
specific complementary viewpoints (e.g. Examples 3–8, 4.6).

Let X be the actual data set according to the model (X,Xn,A(n), P (n) ∈ P(n)). To deal with the
conditional approach, let us define the conditional reference space Xn

/X associated with X under the
assumption that H0 is true. We have the following:

Definition 1. (The conditional reference space). Essentially, the conditional reference space is the
set of points of the sample space Xn which are equivalent to X in terms of information carried by
the associated underlying likelihood. It is indicated by the symbol Xn

/X.
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Thus, Xn
/X contains all points X∗ such that the likelihood ratio dP (n)(X)/dP (n)(X∗) is

independent of P , and so corresponds to the orbit (or coset ) of equivalent points associated
with X. Given that in H0 the density dP (n)(X)/dξ

(n)
P =∏ji dP (Xji)/dξP is by assumption

exchangeable in its arguments because dP (n)(X) = dP (n)(X∗) for every permutation X∗ of X, then
Xn

/X, or simply X/X if no ambiguity arises by suppressing superscript n, contains all permutations
of X. That is, X/X = {

⋃
u∗ [X(u∗i ), i = 1, . . . , n]}, in which u∗ is any permutation of unit labels

(1, . . . , n). Therefore, every element X∗ ∈ X/X is a set of sufficient statistics for P in H0. One
consequence of this is that sample space Xn is partitioned into orbits X/X, in that any point X ∈ Xn

such that dP (n)(X)/dξ
(n)
P > 0 belongs to one and only one of such orbits, and so X†∈ X/X implies

that X/X†= X/X, a condition which emphasizes the invariance of conditional reference spaces
with respect to data permutations. Indeed, using X\X/X to denote such a partition, if X1 and X2

are two distinct points of X\X/X, then no point of X/X1 can also be a point of X/X2 , because the
intersection of two orbits is empty: X/X1

⋂
X/X2 = ∅, say. Therefore, we can write X =⋃X\X/X

X/X. Conditional reference spaces X/X are also called permutation sample spaces . Characterizations
of X/X for one-sample paired data, stratified and cross-over designs are given in Remarks 3, 4
and 5, respectively.

Remark 1. Suppose that the statistical model (X,X,A, P ∈ P) is V -dimensional, and so the vari-
able X = (X1, . . . , XV ) is defined over a V -dimensional sample space X, where Xh, h = 1, . . . , V ,
is the hth component of X. In this way the observed data set is X = {Xhji, i = 1, . . . , nj , j =
1, 2, h = 1, . . . , V } = {X(i), i = 1, . . . , n; n1, n2}. In such a case, permutations of V -dimensional
vectors are to be taken into consideration since dP (n)(X)/dξ

(n)
P =∏ji dP (X1ji, . . . , XVji)/dξP,

where P and ξP are the V -dimensional family of parent distributions and the V -dimensional
dominating measure, respectively. Thus, X∗ = {X(u∗i ), i = 1, . . . , n; n1, n2}, in which X(u∗i ) =
(X1u∗i , . . . , XVu∗i ) is the V -dimensional vector associated with the u∗i th unit label in the list.

Remark 2. What is really required in defining the permutation sample space X/X is that
dP (n)(X)/dξ

(n)
P is invariant over rearrangements of data vectors, so that data are exchangeable.

There are several ways to obtain exchangeable but not independent data. Five are as follows:

(i) A very typical situation occurs when rank transformations are used. Actually, the rank or also
the generalized rank of any datum, say R(Xji) =

∑2
r=1

∑nr
s=1 I(Xrs ≤ Xji), is always a permu-

tation invariant quantity although ranks, due to the linear relation
∑

ji R(Xji) = constant , are
not independent variables. Indeed, all rank tests are nothing other than permutation tests based
on ranks. This is also true for randomized ranks, according to proposals made by Bell and
Doksum (1967) and Fassò and Pesarin (1986), provided that they are assigned to data prior to
permutation analysis.

(ii) Suppose that in the one-dimensional situation with quantitative data we consider the empirical
deviates, that is, the transformations Yji = Xji − X̄, where X̄ =∑ji Xji/n is the pooled sample
mean. As a consequence the Yji , due to the linear relation

∑
ji Yji = 0, are not independent

but are exchangeable since X̄ is a permutation invariant quantity. The same result occurs when
deviates from any pooled statistics are used, for example Yji = Xji − X̃, where X̃ = Md(X) is
the pooled median and Md(·) the median operator, since X̃ is a permutation invariant quantity.
Of course, transformations such as Yji = Xji − X̄j , where X̄j =

∑
i≤nj Xji/nj , do not satisfy

exchangeability other than within samples, since the pair (X̄1, X̄2) is not permutation invariant.
Indeed the conditional probability for a random permutation (X̄∗1 , X̄

∗
2) to be different from (X̄1, X̄2),

given the observed data set X, is greater than zero. This fact implies at least that related inferences,
provided that they are asymptotically exact, are at most approximate (see Example 8, 4.6).
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(iii) Suppose that empirical data standardization (studentization) is considered: Ŷj i = (Xji − X̄)/σ̂ ,
where σ̂ = {∑ji(Xji − X̄)2/n}1/2 is a permutation invariant quantity which ‘estimates’ the pop-
ulation standard deviation σ in the null hypothesis. Of course the Yji are exchangeable in the
null hypothesis without being independent. A similar result occurs when any scale coefficient is
evaluated from the pooled data, for example, the median of absolute deviations from the median,
MAD(X) = Md[|X− X̃|]. It is, however, to be emphasized that the standardized data Ŷj i , the
empirical residuals Yji = Xji − X̄, and the untransformed data Xji always lead to the same con-
clusion and so they are permutationally equivalent (see Section 2.4). Thus, in one-dimensional
problems data standardization is generally not required. It may be required in some multivariate
analyses when component variables have different marginal distributions.

Particular attention will be devoted to the so-called scale-invariant transformations. Suppose that
Xj have locations µj and scale coefficients σj , j = 1, 2, respectively, with σ1 not necessarily equal
to σ2, and that the null hypothesis is H0 : {µ1 = µ2}. In such a case, the group-dependent rescaled
deviates Ŷj i = (Xji − X̄)/σ̂j are exchangeable only within groups but not between groups. Known
as the Behrens–Fisher permutation problem, this leads to approximate solutions (see Example
8, 4.6 and Pesarin, 2001). This lack of exchangeability comes out when group-dependent data
transformations are used before analysis. However, if under H0 it is possible to assume that σ1 = σ2

and so data are exchangeable, then based on Yji = (Xji − X̄), which are exchangeable deviates, we
have exact solutions as in (ii). It is worth observing that the fact that σ1 = σ2 in H0 by assumption
can be justified by design when subjects are randomly assigned to treatments.

(iv) As a further example let us consider a bivariate model {(Xji, Yji), i = 1, . . . , nj ; j = 1, 2},
where the Xji are taken with the role of covariates for responses Yji . First, let us observe that the
residuals (empirical deviates), such as Ŷj i = [Yji − β̂(Xji)], where β̂ is any suitable estimate of
the regression function β evaluated on the pooled set of pairs (Y,X), are exchangeable in the null
hypothesis as β̂ is a permutation invariant quantity. Thus the permutation strategy can be applied
to the residuals Ŷj i . This strategy can be useful in some observational problems where covariates
X cannot be assumed exchangeable in H0 and it is required to eliminate their contribution to
responses Y (see Example 11, 2.7). Of course, it is assumed that β is estimable (for linear regression
functions within the least squares approach it is required that the dimensionality of covariates
X is smaller than sample size n and that the associated variance–covariance estimated matrix
has full rank).

(v) Suppose that in the bivariate model {(Xji , Yji), i = 1, . . . , nj ; j = 1, 2} as in (iv), the covariate
X is nominal categorical with K > 1 distinct categories A1, . . . , AK . We can then stratify (or par-
tition) the given problem into K sub-problems: {(Ykji |X = Ak), k = 1, . . . , K, i = 1, . . . , nj ; j =
1, 2}. Data within each stratum are independent, and so exchangeable in H0, and strata are also inde-
pendent, so that analyses can be carried out separately within each stratum and then, to obtain one
overall inference, partial results can be suitably combined. This strategy will be used in Chapter 4
as a particular case of NPC of a set of partial permutation tests; it is also used in several application
problems discussed from Chapter 5 onwards (see also Remark 4 below).

Remark 3. It is worth noting that in the univariate paired data design (see Section 1.8), since the
differences of any two individual observations in the null hypothesis are symmetrically distributed
around 0, the set of absolute values of differences |X| = {|Xi |, i = 1, . . . , n} is a set of sufficient
statistics for P . For a simple proof of this, let us make the following assumptions:

(i) Let fP (t) = dP (t)/dξ indicate the density corresponding to P with respect to the dominating
measure ξ .

(ii) In H0, fP is symmetric with respect to 0 (see Section 1.8.2), so that fP (t) = fP (−t), ∀t ∈ R1.
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Let t and t′ be any two points from sample space Xn. The two points t = (t1, . . . , tn) and
t′ = (t ′1, . . . , t

′
n) lie in the same orbit of a sufficient statistic for any density fP symmetric around

0 if and only if the likelihood ratio

fP (t1) · . . . · fP (tn)
fP (t

′
1) · . . . · fP (t ′n)

= ρf (t, t′)

does not depend on fP . Now, due to the assumed symmetry of fP , the ratio ρf (t, t′) is fP -
independent if fP (ti) = fP (t

′
i ), i = 1, . . . , n; that is, if ti = ±t ′i . This implies that the set of points

X/X ∈ Rn which contains the same amount of information with respect to P as that contained in
X is obtained by giving signs in all possible ways to the elements of X (see also the intuitive
reasoning of Section 1.9.1): X/X = {XiS

∗
i , i = 1, . . . , n, S∗i = 1− 2Bn(1, 1/2)}. And so the set of

absolute values |X|, as well as any of its permutations (including X itself) is sufficient for P in
H0. Of course, in the alternative when differences are symmetric around δ, |X− δ| and X− δ are
both sufficient. Note that the intuitive permutation solution in Section 1.9 properly is a conditional
solution. Of course, the non-null permutation distribution of any statistic is not independent of the
underlying population distribution P (see Problem 13, 2.6.2, for an extension to the situation in
which units have different distributions).

Observe that the set of pairs {(Y1i , Y2i ), i = 1, . . . , n} is also sufficient. The latter allows for
easier intuitive interpretation of how the permutation principle operates. In fact, random assignment
of signs to differences Xi = Y1i − Y2i in the null hypothesis is equivalent to the assumption of
exchangeability of paired observations (Y1i , Y2i ) within each unit and independently with respect
to units.

If, instead of only two, we are concerned with R observations for each unit, that is, the data
set is X = {Xir , r = 1, . . . , R, i = 1, . . . , n}, and the null hypothesis is that there is no effect due
to the rth observation, that is, H0 : {Xi1

d= . . .
d= XiR , i = 1, . . . , n}, then the permutation sample

space becomes X/X =
∏

i X/Xi
, where Xi = (Xi1, . . . , XiR). X/X is therefore the cartesian product

of individual permutation spaces X/Xi
; its cardinality is then M(n) = [R!]n (see Example 9, 2.7).

Remark 4. Suppose we are given a stratified two-sample design in which data are X = {Xsji, i =
1, . . . , nsj , j = 1, 2, s = 1, . . . S}, where S ≥ 2 is the number of strata. Suppose also that the

hypotheses are H0 : {X1
d= X2} = {Xs1

d= Xs2, s = 1, . . . , S} = {⋂s≤S(Xs1
d= Xs2)} against some

alternative H1. In such a situation, again the pooled data set X is a set of sufficient statistics for
the underlying distribution P in H0. However, supposing that strata influence responses, in the
sense that Ps is not equal to Ps′ for some s 	= s ′, the set of points for which the likelihood ratio is
not dependent on P is now characterized by dP (n)(X)/dP (n)(X∗) =∏s≤S dP

(n)
s (Xs )/dP

(n)
s (X∗s ),

where it is emphasized that permutations are admitted only within strata. Thus, the resulting per-
mutation sample space becomes the cartesian product of stratified permutation sample spaces
X/Xs , that is, X/X =

∏
s≤S X/Xs . On the one hand this implies that, since strata are generally

required not to be designed prior to data collection, this model is also valid for post-stratification
designs, which are so useful in observational studies; on the other hand separate inferences on
H0s : {Xs1

d= Xs2}, s = 1, . . . S, each against an appropriate alternative H1s , are independent con-
ditionally, and so related statistics are independent with respect to strata. It is worth noting here
that the latter result is much more difficult to obtain within the invariance under a finite group of
transformations approach.

Remark 5. Consider a simple cross-over design in which n units are randomly partitioned in two
groups of size n1 and n2, with n = n1 + n2. Units of group j = 1 have assigned treatment A before
treatment B, those in group 2 have assigned B before A. In this kind of cross-over experiment,
where typically B is an active treatment and A a placebo, two rather different testing problems are
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of interest: (i) whether or not treatment is effective, that is, response YA is equal to YB ; (ii) whether
or not the two methods of treatment administration are equivalent (looking for a kind of interaction
of group j and treatment k), that is, response YAB is equal to YBA.

Assume that the response data behave according to the model Yjki = µ+ γji + δjk + Zjki , i =
1, . . . , nj , k = 1, 2, j = 1, 2, where: µ is an unknown population constant; γji are the so-called
individual or block effects, which are generally considered as nuisance entities, and so are not
of interest for analysis; and satisfy the side condition

∑
ji γji = 0; δjk are effects due to treat-

ment k on the j th group, and Zjki are random errors assumed to be independent with respect to
units and exchangeable within units. Within-unit differences of paired observations behave accord-
ing to Xj ·i = Yj1i − Yj2i = δj1 − δj2 + Zj1i − Zj2i = δj + σ(δj ) · Zji , where: individual nuisance
effects γ as well as population constant µ are compensated; the δj represent incremental effects
specific to the j th group; Zji are the error components symmetrically distributed around 0 (see
Section 1.8.2); and σ(δj ) are scale coefficients, which may depend on main effects but are assumed
homoscedastic with respect to units, that is, i-independent. The two separate sets of hypotheses of
interest are H ′

0 : {δ1 = δ2 = 0} against H ′
1 : {(δ1 	= 0)

⋃
(δ2 	= 0)}, that in at least one group there

is a non-null effect, and H ′′
0 : {X1

d= X2} ≡ {δ1 = δ2} against H ′′
1 : {δ1 	= δ2}, that the two effects

are different. Hence, we must act separately and jointly for both sub-problems.
Due to the within-units exchangeability, the underlying density of each pair of responses in

H ′
0 is such that fji(Yj1i , Yj2i ) = fji(Yj2i , Yj1i ), i = 1, . . . , nj , j = 1, 2, where f depends on the

unknown population distribution P . In order to characterize the reference sample space, let us
consider the likelihood ratio

dP (n)(Y)/dP (n)(Y′) =
∏

ji
fji (Yj1i , Yj2i )/

∏
ji
fji (Y

′
j1i , Y

′
j2i ).

This does not depend on f if Y ′j1i is Yj1i or Yj2i with probability 1/2 each and if n pairs (Yj1i , Yj2i )

are permuted with respect to groups. Thus X/X = {
⋃

S∗ [XiS
∗
i , i = 1, . . . , n]} × {⋃u∗ [X(u∗i ), i =

1, . . . , n]}, in which S∗ = {S∗i = 1− 2 · Bn(1, 1/2), i = 1, . . . , n} are n i.i.d. elementary binomials,
and u∗ are permutations of unit labels (1, . . . , n). Thus the reference space is the cartesian product
of within-unit exchanges times between-group exchanges of paired observations and so contains
2n · n! points. Therefore two null hypotheses can be tested separately and independently, in the
sense that truth of H ′′

0 does not depend on truth of H ′
0, and vice versa. This implies that the two

statistics for H ′
0 and H ′′

0 are conditionally independent. It is also worth noting that the cardinality
of X/X is smaller than that of the corresponding full randomized design with 2n subjects; actually
2nn! < (2n)! � (2n)2ne−2n

√
4πn.

2.1.3 Conditioning on a Set of Sufficient Statistics

Sufficiency in H0 of X/X for P implies that the null conditional probability of every event A(n) ∈
A(n), given X/X, is independent of P ; that is, Pr{X∗ ∈ A(n);P |X/X} = Pr{X∗ ∈ A(n)|X/X}, where
the meaning of the symbols is clear. Thus, the permutation distribution induced by any statistic
T : Xn → R1, namely FT (t |X/X) = F ∗T (t) = Pr{T ∗ ≤ t |X/X}, is P -invariant. For this reason, T ∗
is also said to be a P -invariant statistic. Hence, any related conditional inference is distribution-
free and nonparametric. Moreover, since for finite sample sizes the number M(n) of points in X/X
is finite, where M(n) =∑X/X

I(X∗ ∈ X/X) <∞, a relevant consequence of both independence on

P and finiteness of M(n) is that the permutation (conditional) probability of every A(n) ∈ A(n) is
defined and calculated as

Pr{X∗ ∈ A(n)|X/X} =
∑

X∗∈A(n) dP (n)(X∗)∑
X∗∈X/X

dP (n)(X∗)
=
∑

X/X
I(X∗ ∈ A(n))

M(n)
,
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because by definition dP (n)(X) = dP (n)(X∗) for every permutation X∗ ∈ X/X. Therefore, the
restriction (i.e. projection) of the collection of events A over the permutation sample space
X/X, that is, A

⋂
X/X = A/X consisting of conditional events given X, defines the permutation

measurable space (X/X,A/X) on which the permutation probability Pr{A|X/X} is defined.
As a consequence, we clearly have the following proposition.

Proposition 1. In H0 : {X1
d= X2} ≡ {P1 = P2 = P }, provided that in X/X there are no multiple

points, that is, when
∑

X/X
I(X∗ = x) = 1 if x ∈ X/X, and 0 elsewhere, permutations X∗ are equally

likely:

Pr{X = x|X/X} = Pr{X∗ = x|X/X} =
{

1/M(n) if x ∈ X/X,

0 if x /∈ X/X,

and so the observed data set X as well as any of its permutations X∗ are uniformly distributed over
X/X conditionally.

This property, which can be extended in a straightforward way to one-sample, multi-sample,
and multidimensional contexts, shows that the null permutation distribution Pr{X∗ = x|X/X} only
depends on the observed data set X. From this point of view, the data set X can be viewed as
the n-dimensional parameter for the related permutation CDF F ∗T (t |X/X). Of course, in stratified
designs (see Remark 4, 2.1.2) permutations are equally likely within strata.

In H1, where it is assumed that there exists A ∈ A such that 0 < P1(A) 	= P2(A)> 0, a set
of sufficient statistics is the pair (X1,X2). Consequently, the data are exchangeable within but not
between samples, and so the observed data set X is not uniformly distributed over X/X conditionally.
Hence, if we are able to find statistics sensitive to such a non-uniform distribution, we are then
able to construct permutation tests. However, the problem of establishing the best test when P is
unknown remains open (Lehmann, 1986; Lehmann and Romano, 2005; Braun and Feng, 2001; see
also Section 2.5).

Definition 2. For each permutation X∗ ∈ X/X the empirical probability measure (EPM) of any
event A ∈ A is defined as

P̂X∗(A) =
∑

i≤n I(X∗i ∈ A)/n =
∑

i≤n I(Xi ∈ A)/n = P̂X(A),

which then is a permutation invariant function given X. Similarly, for quantitative variables the
empirical distribution function (EDF) is such that for every t ∈ R1 and every X∗ ∈ X/X,

F̂X∗(t) =
∑

i≤n I(X∗i ≤ t)/n =
∑

i≤n I(Xi ≤ t)/n = F̂X(t),

which also is a permutation invariant function given X.

Accordingly, we may state the following proposition.

Proposition 2. For any given data set X ∈ Xn, the EPM P̂X and, when defined, the EDF F̂X are
permutation invariant functions which characterize X/X, and so X/X can equivalently be defined as
the set of points of Xn sharing the same EPM P̂X, or the same EDF F̂X. Accordingly we may also
write P̂X(A) = P̂ (A|X/X), etc.

One consequence of Proposition 2 is that the EPM P̂X (or the EDF F̂X, when defined) is a
sufficient statistical function for P in H0. Hence, conditioning on X/X is equivalent to conditioning
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on P̂X, or on F̂X. One more consequence is that, for any statistic T : Xn → R1 and all t ∈ R1,
Pr{T (X∗) ≤ t |X/X} = Pr{T (X∗) ≤ t |P̂X} = Pr{T (X∗) ≤ t |P̂X†}, X† ∈ X/X. From now on, we pre-
fer to use symbols such as Pr{T (X∗) ≤ t |X/X} to emphasize the conditional status of permutation
distributions. A further consequence is that the permutation null distribution of T can be inter-
preted as if it were generated by a without replacement random experiment (WORE) with constant
probability on a finite population whose distribution is P̂X, or F̂X. Indeed, any random permutation
X∗ can be seen as a simple random sample from X, which in turn plays the role of a finite pop-
ulation with equally likely elements (see Section 1.9.3). We recall that with replacement random
experiments (WREs) by i.i.d. resamplings from P̂X, or F̂X, give rise to bootstrap methods. The
latter, however, are not proper conditional procedures and so, at least for finite sample sizes, their
inferential interpretations may not be entirely clear (see Remark 4, 3.8.2).

Remark 1. Quite a general result, in very mild conditions, is obtained for large sample sizes
(Hoeffding, 1952; Romano, 1989, 1990; Janssen and Pauls, 2003). This essentially states that for
sufficiently large n1 and n2, the null permutation distribution Pr{T (X(n)) ≤ t |P̂X(n)} of any regular
(continuous non-degenerate) statistic T approximates its population (or unconditional) counterpart
Pr{T (X(n)) ≤ t;P }. Indeed, based on the Glivenko–Cantelli theorem, which states that the EPM
P̂X(n) strongly converges to P , and on the theorem for continuous functions of empirical processes
(Shorack and Wellner, 1986), as sample sizes diverge it can be proved that Pr{T (X(n)) ≤ t |P̂X(n)}
converges in probability to Pr{T (X(n)) ≤ t;P } for all real t .

Remark 2. In stratified problems (see Remark 4, 2.1.2), since the EPM (or the EDF) is a mixture
of partial EPMs, it is difficult to express it in simple way. Henceforth we use only notational
conventions such as {·|X/X} to denote relations conditional on sets of sufficient statistics. Also note
that this convention is somewhat more precise than {·|X} used in Chapter 1.

Remark 3. Note that the null permutation distribution F ∗T (t |X/X), induced by the test statistic T

given the data set X, essentially depends only on exchangeable errors Z which define the observed
responses X because all nuisance quantities, such as µ and σ , are irrelevant (see Problem 1, 3.6.1).
Moreover, if sample size goes to infinity and the CDF F ∗T (t |X/X) becomes continuous, the integral
transformation U∗ = F ∗T (T

∗|X/X) becomes uniformly distributed on the unit interval.

2.2 Definition of Permutation Tests

2.2.1 General Aspects

A test statistic is a non-degenerate measurable function T , mapping Xn into R1, which satisfies
properties suitable for inference. Suppose then that T : Xn → R1 is such an appropriate test statistic
(see Section 2.5) for which, without loss of generality, we assume that large values are evidence
against H0. We define the permutation support induced by the pair (T ,X) as the set TX = {T ∗ =
T (X∗) : X∗ ∈ X/X} containing all possible values assumed by T as X∗ varies in X/X. Of course,
when more than one aspect is of interest for the analysis, a test can be associated with a vector
of statistics, T = (T1, . . . , TK) : Xn → RK , where 1 ≤ K is the finite (or at most countable, as in
Section 4.5) number of aspects under consideration. The theory of multidimensional permutation
tests, including the NPC of several dependent tests, is developed in Chapter 4. Several applications
to complex problems are discussed in subsequent chapters.

Let us suppose that H0 is true so that, according to Proposition 1, 2.1.3, X∗ is uniformly
distributed over X/X, and let us put the M(n) members of TX in non-decreasing order, T ∗(1) ≤ T ∗(2) ≤
. . . ≤ T ∗

(M(n))
. In this way for each value of α ∈ (0, 1), Tα(X) = Tα = T ∗

(M
(n)
α )

defines the permutation
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critical value associated with the pair (T ,X), where M(n)
α =∑X/X

I[T (X∗) < Tα] is the number of
permutation values T ∗ that are strictly less than Tα . Note that when X is a continuous variable and
T is a regular function, the elements of TX are distinct with probability one because multiple points
have a probability of zero. Therefore, they can be set in increasing order: T ∗(1) < T ∗(2) < . . . < T ∗

(M(n))
.

Also note that permutation critical values Tα depend on X/X and not merely on X. Indeed, the
relation Tα = Tα(X) = Tα(X†) is satisfied by all X†∈ X/X because two associated orbits X/X and
X/X† coincide, that is, X/X = X/X† . This implies that, for each fixed α ∈ (0, 1), Tα is a fixed value
in the permutation support TX which in turn may vary as X varies in Xn. The latter gives rise to
obvious difficulties in expressing the critical value Tα and the conditional and unconditional power
functions of T in closed forms.

2.2.2 Randomized Permutation Tests

The randomized version of the permutation test φR associated with the pair (T ,X) is defined as

φR =
 1 if T o >Tα,

γ if T o = Tα,

0 if T o < Tα,

where T o = T (X) is the value of T calculated on observed data X and the probability γ , when
T o = Tα , is given by

γ = [α − Pr
{
T o >Tα |X/X

}] /
Pr
{
T o = Tα|X/X

}
.

It is worth observing that to apply φR it is usual to make use of a result of an auxiliary random
experiment independent of the data set X. For instance, this can be realized by rejecting H0 if
U ≥ γ , for T o = Tα , where U is a random value from the uniform variable U(0, 1).

It can be immediately proven that, for all data sets X ∈ Xn, the conditional expectation in H0 of
φR , for any α ∈ (0, 1), satisfies

E{φR(X)|X/X} = Pr
{
T o(X)> Tα(X)|X/X

}+ γ · Pr
{
T o(X) = Tα(X)|X/X

} = α,

where the role of the data set X is well emphasized.
Consequently, randomized permutation tests are of exact size α. Moreover, they are provided

with the so-called uniform (or strong) similarity property, as stated in the following proposition.

Proposition 3. (Uniform similarity of randomized permutation tests). Assume that the exchange-
ability condition on data X is satisfied. Then for all underlying distributions P and uniformly for
all data sets X ∈ Xn, the conditional rejection probability of φR is X-P -invariant in H0. (Scheffé,
1943b; Lehmann and Scheffé, 1950, 1955; Watson, 1957; Lehmann, 1986; Lehmann and Romano,
2005; Pesarin, 2001).

Note that the uniform similarity is formally valid also for degenerate distributions, when all
values in any data set X are coincident with probability one. In such a case, the permutation
support T(X) associated with (T ,X), containing only one point, is also degenerate, and so the
uniform similarity property is essentially ineffective because tests φR become purely randomized,
since the rejection of H0 only depends on the result of an auxiliary random experiment. For
this reason we generally do not consider degenerate distributions, which in any case are of no
practical interest.
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2.2.3 Non-randomized Permutation Tests

In application contexts the so-called simple or non-randomized version is generally preferred. This
is defined as

φ =
{

1 if T o ≥ Tα,

0 if T o < Tα,

in which the associated type I error rate, in H0, is E{φ(X)|X/X} = Pr
{
T o ≥ Tα|X/X

} =∑
X/X

I[T (X∗) ≥ Tα]/M(n) = αa ≥ α, where αa are the so-called attainable α-values associated
with (T ,X).

For any given pair (T ,X), the associated attainable α-values belong to the set �(n)
X = {LX(t) :

dLX(t)> 0} of step points of the significance level function LX(t) = Pr[T ∗ ≥ t |X/X]. �(n)
X is always

a discrete set, the elements of which depend on the pair (T ,X), and so on n. Therefore, for non-
randomized permutation tests not all values of type I error rates are possible in practice. It is
worth noting that, especially when the response variable X is discrete or when there are ties in X,
the attainable α-values depend on the observed data set X, hence the set �(n)

X is not X-invariant.
Because of this, sometimes the power function of non-randomized tests may apparently decrease for
increasing sample sizes (see Remark 1 below). However, when there are no multiple points in TX,
that is, for continuous variables X and regular test statistics T , or when these points have constant
multiplicity, that is, ∃c : ∀t ∈ TX,

∑
X/X

I(T ∗ = t) = c ≥ 1, �
(n)
X becomes X-invariant, although

dependent on n. In this case �
(n)
X = �(n) = {mc/M(n), m = 1, . . . ,M(n)/c}, and so αa-values have

constant jumps of c/M(n). For instance, in the two-sample problem with quantitative variables,
associated with a statistic such as the comparison of sample means X̄∗1 − X̄∗2 , we get c = n1!n2!.
Naturally, when n is not too small and if there are constant multiple points in TX, in practice
there is no substantial difference between randomized φR and non-randomized φ. For instance,
in a two-sample problem with (n1, n2) = (10, 10) the minimum attainable α-value is minαa =
1/184 756, with (n1, n2) = (20, 20) it is minαa = 1.179714 · 10−12, and with (n1, n2) = (50, 50)
it is minαa = 9.911 630 · 10−30.

It is worth noting that, if we wish to test at a desired type I error rate of αd and choose
αd ≥ αa ∈ �

(n)
X , then non-randomized permutation tests become conservative. Of course, if the

desired α-value αd ∈ �
(n)
X , then αd = αa . Henceforth we refer to the non-randomized version φ

and the attainable type I error rates are indicated with the usual symbol α.

Remark 1. To show that power at nominal α = 0.05 may apparently decrease by increasing
sample sizes, let us consider two situations related to two-sample designs for one-sided alternatives
where sample sizes are: (a) 3 and 3; (b) 4 and 3. In situation (a) the attainable α is exactly 0.05,
whereas in situation (b) the closest value not exceeding 0.05 is 0.02857 (the next is 0.05714). So
if the effect δ is not large it is naturally possible for the apparent power in the first situation to be
larger than that in the second. It is not so, for instance, with sample sizes (a′) 8 and 8 and (b′) 9
and 8. In (a′) the closest attainable α is 0.04996, whereas in (b′) it is 0.04998. In such a case the
power in (b′) may increase with respect to (a′) because sample size and attainable α both increase
(for a discussion on power behaviour, see Section 3.2).

2.2.4 The p-Value

It is known that determining the critical values Tα of a test statistic T , given the observed data
set X, in practice presents obvious difficulties. Therefore, it is common to make reference to
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the so-called p-value associated with (T ,X). This is defined as λ = λT (X) = LX(T
o) = Pr{T ∗ ≥

T o|X/X}, which can be determined exactly by complete enumeration of TX or estimated, to the
desired degree of accuracy, by a conditional Monte Carlo algorithm based on a random sampling
from X/X (see the algorithm in Section 2.2.5). For quite simple problems it can be evaluated
exactly by efficient computing routines such as those described in Pagano and Tritchler (1983)
and Mehta and Patel (1980, 1983); moreover, according to Berry and Mielke (1985) and Mielke
and Berry (2007) it can be evaluated approximately by using a suitable approximating distribution,
for example within Pearson’s system of distributions, sharing the same few moments of the exact
permutation distribution, when these are known in closed form in terms of actual data X.

Note that the p-value λ is a non-increasing function of T o and that it has a one-to-one relationship
with the attainable α-value of φ, in the sense that λT (X)>α implies T o < Tα , and vice versa.
Hence, the non-randomized version can be equivalently stated as

φ =
{

1 if λT (X) ≤ α,

0 if λT (X) >α.

It is to be emphasized that attainable α-values play the role of critical values, in the sense that
α is the exact critical value for λT (X). In this sense, the p-value λT (X) itself can be used as
a test statistic. Moreover, in H0 we have that E{φ(X)|X/X} = Pr{λT (X) ≤ α|X/X} = α for every
α ∈ �

(n)
X . It is worth noting that for the practical determination of λ we need not know whether

H0 is true or not when working with the data set X. This because, by imposed exchangeability,
permutations X∗ are constructed so as to be equally likely on X/X, and so the alternative may be
considered to be active only for the observed value T o (see the CMC algorithm).

If X is continuous and non-degenerate and T is a regular function so that attainable α-values
belong to �(n) for almost all data sets X ∈ Xn, then non-randomized permutation tests φ are
provided with the similarity property in the almost sure form. This is essentially due to the fact
that for continuous variables the probability of finding ties in the data sets is zero and so with
probability one �

(n)
X = �(n). This property is stated in the following proposition.

Proposition 4. (Almost sure similarity of φ in the continuous case). If X is a continuous variable
and T is a regular continuous non-degenerate function, then the attainable α-values of φ are X-P -
invariant for almost all X ∈ Xn and with probability one with respect to the underlying population
distribution P .

It is worth noting that, since for discrete or mixed variables, in which ties have positive probabil-
ity, the attainable α-values belong to �

(n)
X , which depends on the observed data X, non-randomized

permutation tests lose the similarity property for finite sample sizes. However, this property is
always asymptotically satisfied, so we can say that it is satisfied at least approximately.

Proposition 5. (Uniform null distribution of p-values). Based on Proposition 1, 2.1.3, if X is a
continuous variable and T is a regular continuous non-degenerate function, then p-values λT (X)

are uniformly distributed in its support �(X).

Remark 1. In accordance with Propositions 5 above and 1, 2.1.3, in the null hypothesis the
elements of the permutation support TX are equally likely provided that they are distinct. This
essentially represents a characterization of exactness of a permutation test, that is, a test T is exact
if the null distribution of λT (X) over �(X) is uniform .

2.2.5 A CMC Algorithm for Estimating the p-Value

A CMC algorithm for evaluating the p-value λ of a test statistic T on a data set X(�) =
{X(i;�), i = 1, . . . , n; n1, n2} includes the following steps:
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Table 2.1 The CMC algorithm for the p-value λ

X

To

X*
1

T*
1

X*
b

T*
b

X*
B

l= ∑B
b = 1 II(T*

b ≥ To) / B.
T*

B

→

1. Calculate, on the given data set X(�), the observed value T o of the test statistic T , i.e. T o(�) =
T [X(�)].

2. Take a random permutation X∗(�) of X(�). This is obtained by considering a random
permutation u∗ = (u∗1, . . . , u

∗
n) of unit labels u = (1, . . . , n) and so X∗(�) = {X(u∗i ;�), i =

1, . . . , n; n1, n2}.
3. Calculate T ∗(�) = T (X∗(�)).
4. Independently repeat steps 2 and 3 B times.
5. The set {X∗b(�), b = 1, . . . , B} of B permutations is a random sample from the permutation sam-

ple space X/X, and so the corresponding values {T ∗b (�), b = 1 . . . , B} simulate the null permu-
tation distribution of T . Therefore, the p-value is estimated as λ̂ (X(�)) =∑1≤b≤B I[T ∗b (�) ≥
T o(�)]/B, that is, the proportion of permutation values not smaller than the observed one.

The CMC algorithm is summarized in Table 2.1.
It is worth noting that if algorithms for obtaining all possible permutations were available,

as for instance with the StatXact


software, instead of steps 2 and 3 it is straightforward to
enumerate the whole permutation sample space and the corresponding true distribution. In such
a case we would have λ (X(�)) =∑X/X(�)

I[T ∗(�) ≥ T o(�)]/M(n). We also observe that the

CMC values {T ∗b (�), b = 1 . . . , B} allow us to calculate, ∀t ∈ R1, the permutation EDF of T as
F̂ ∗B(t) =

∑
1≤b≤B I[T ∗b (�) ≤ t]/B and the ESF as L̂∗B(t) =

∑
1≤b≤B I[T ∗b (�) ≥ t]/B. Therefore,

λ̂ = L̂∗B [T o(�)]. Of course, if B diverges to infinity, due to the well-known Glivenko–Cantelli
theorem, the p-value λ̂, the EDF F̂ ∗B , and the ESF L̂∗B strongly converge to their respective true
values.

To estimate the p-value λ some authors (e.g. Edgington and Onghena, 2007) use expressions such
as
∑

0≤b≤B I[T ∗b ≥ T o]/(B + 1), where they set the observed value T o = T ∗0 as if it were obtained
by one of the random permutations. We think this expression is incorrect because it provides biased
estimates in both H0 and H1, although the bias vanishes as B diverges. Indeed, since for each b the
conditional mean value of I(T ∗b ≥ T o) in H0, due to Proposition 5, 2.2.4, is EX/X [I(T ∗b ≥ T o)] = λ,
we generally have that EX/X

{∑
0≤b≤B I[T ∗b ≥ T o]/(B + 1)

} = (1+ Bλ)/(B + 1), which for B =
1 gives EX/X

{
I[T ∗0 ≥ T o]/2+ I[T ∗1 ≥ T o]/2

} = (1+ λ)/2. These expressions show biasedness.
Furthermore, it is to be emphasized that in H1 the distribution of the observed value T o depends on
the effect �, whereas, due to the imposed exchangeability leading to equally likely permutations
X∗, all values T ∗b , b = 1, . . . , B, are calculated as if the null hypothesis were true. Thus, since T o

has the same distribution of T ∗b only when H0 is true, that expression has no statistical meaning.

2.3 Some Useful Test Statistics
There are a number of test statistics for two-sample designs used to deal with practical problems.
With obvious meaning of the symbols, a brief, incomplete list of those most commonly used is as
follows:

1. X̄∗1 − X̄∗2 =
∑

i X
∗
1i/n1 −

∑
i X

∗
2i/n2, for comparison of sample means.

2. Ḡ∗1 − Ḡ∗2 = exp
{∑

i log(X∗1i )/n1 −
∑

i log(X∗2i )/n2
}
, for comparison of sample geometric

means, provided that data are positive: X
p
>0.
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3. Ā∗1 − Ā∗2 =
(∑

i n1/X
∗
1i

)−1 − (∑i n2/X
∗
2i

)−1
, for comparison of sample harmonic means, pro-

vided that data are positive: X
p
>0.

4. µ∗k1 − µ∗k2 =
{[∑

i (X
∗
1i )

k/n1
]1/k − [∑i (X

∗
2i )

k
]1/k} · Sg(k), for comparison of sample kth

moments, provided that X
p
>0 and where the sign Sg(k) is +1 or −1 according to whether

k > 0 or k < 0. It is worth noting that (4) includes: (1) for k = 1, (2) for lim k → 0, and a
function of (3) for k = −1. Moreover, if Pr{X ≤ 0}> 0, i.e. when data may assume negative
values with positive probability, then we need k > 0, i.e. only positive moments can be
considered.

5. max[0, X̄∗1 − X̄∗2] or max[0, X̄∗2 − X̄∗1], the first suitable for alternatives X1
d
>X2, and the second

for X1
d
< X2, to take into account only permutations coherent with the active alternatives (this

is used in Example 5, 4.6, for dealing with a complex problem where it is supposed that a
treatment may have a positive effect with some subjects and negative with some others).

6. R̄∗1 − R̄∗2 =
∑

i R
∗
1i/n1 −

∑
i R

∗
2i/n2, for comparison of sample means of ordinary ranks,

leading to a version of the Wilcoxon–Mann–Whitney test, where R(X∗ji) = R∗ji =∑2
r=1

∑
s≤nr I(X∗rs ≤ X∗ji).

7. ψ̄∗1 − ψ̄∗2 =
∑

i ψ
∗
1i/n1 −

∑
i ψ

∗
2i/n2 for comparison of sample means of generalized ranks:

ψ∗ji = �[R∗ji/(n+ 1)], where � is the inverse CDF of any suitable distribution, such as
the standard normal; ψ∗ji = �−1[R∗ji/(n+ 1)], leading to the van der Waerden test; or the
exponential, ψ∗ji = − log[R∗ji/(n+ 1)], leading to a form of log-rank test; or the logistic,
ψ∗ji = log[R∗ji/(n+ 1− R∗ji)]; or the chi-squared with given degrees of freedom, etc. � can
also be the mean value of the ith out of n order statistics of any suitable variable W : ψ∗ji =
ψ(X∗j (i)) = I(X(i,n) ∈ X∗j )E(W(i,n)), j = 1, 2, where W(i,n) is the ith order statistic among n

random data from variable W , i.e. W(1,n) ≤ W(2,n) ≤ . . . ≤ W(n,n); when W is standard normal,
this leads to a version of the Fisher–Yates test.

8. When variable X is numeric or ordered categorical and ϕ(X) is any non-decreasing score
function, ϕ̄∗1 − ϕ̄∗2 =

∑
i ϕ(X

∗
1i )/n1 −

∑
i ϕ(X

∗
2i )/n2 is the comparison of sample means of

ϕ-scores.
9. p̂∗1 − p̂∗2 =

∑
i I(X∗1i ≤ ẍ)/n1 −

∑
i I(X∗2i ≤ ẍ)/n2, for comparison of sample percentages of

data not larger than a preset value ẍ. When ẍ is the pooled median: X̃ = Md(X) = X((n+1)/2)

if n is odd and X̃ = (X(n/2) +X(1+n/2))/2 if n is even, where X(1) ≤ X(2) ≤ . . . ≤ X(n) are the
observed order statistics. This corresponds to a version of the Brown–Mood median test.

10. If, instead of only one, K ≥ 2 preset ordered values (ẍ1 < . . . < ẍK) are consid-
ered, then T ∗P =

∑K
k=1(p̂

∗
1k − p̂∗2k) or T ∗PS =

∑K
k=1(p̂

∗
1k − p̂∗2k)

/
[p̂k(1− p̂k)]1/2 , where

p̂∗jk =
∑

i I(X∗ji ≤ ẍk)/nj and p̂k =
∑

ji I(Xji ≤ ẍk)/n are the proportion of values not larger
than ẍk in the j th sample, j = 1, 2, and in the pooled sample, respectively. T ∗P corresponds to
divergences of cumulative frequencies on the set of preset points and involves taking account
of data in fixed cumulative intervals (similar to the Cramér–von Mises test), whereas T ∗PS , pro-
vided that p̂1 > 0 and p̂K < 1, corresponds to divergence of standardized frequencies (similar
to the Anderson–Darling test). T ∗P and T ∗PS are extensions of the Brown–Mood test; moreover,
they may be seen as a way, alternative to (8), to analyse ordered categorical variables.

11. T ∗CM =∑i[F̂
∗
2 (Xi)− F̂ ∗1 (Xi)], for comparison of sample EDFs: F̂ ∗j (t) =

∑
i I(X∗ji ≤ t)/nj ,

t ∈ R1, j = 1, 2, leading to the Cramér–von Mises divergence test. This may be seen as a
generalization of T ∗P in (9) in which ẍk = X(k) and, if there are no ties, K = n.

12. T ∗AD =
∑

i[F̂
∗
2 (Xi)− F̂ ∗1 (Xi)]

/{F̄ (Xi)[1− F̄ (Xi)]}1/2 , where F̄ (t) =∑ji I(Xji ≤ t)/n, t ∈
R1, and 0 is assigned to summands of the form 0/0, which leads to the Anderson–Darling
EDF divergence test. This may be seen as a generalization of T ∗PS in (10).

13. T ∗KS = maxi

{
F̂ ∗2 (Xi)− F̂ ∗1 (Xi)

}
, leading to a version of the Kolmogorov–Smirnov EDF

divergence test.
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14. T ∗KD = maxi

{
[F̂ ∗2 (Xi)− F̂ ∗1 (Xi)]

/{F̄ (Xi)[1− F̄ (Xi)]}1/2
}

, leading to a version of the
Kolmogorov–Smirnov–Anderson–Darling EDF divergence test.

15. T ∗� =
∑

i{�[F̂ ∗2 (Xi)]−�[F̂ ∗1 (Xi)]} for a generalized divergence of EDFs, where � is the
inverse CDF of any suitable and completely specified distribution. For instance, when �∗

ji =
�−1[(nj F̂

∗
j (Xi)+ 0.5)/(nj + 1)], j = 1, 2, i.e. � is the inverse CDF of a standard nor-

mal distribution, this gives a version of the Liptak divergence test (similar to the van der
Waerden test); when �∗

ji = − log[(nj (1− F̂ ∗j (Xi))+ 0.5)/(nj + 1)], it gives a version of
Fisher divergence test (similar to the log-rank test); when �∗

ji = n F̄ (X∗ji) it is similar to
the Wilcoxon–Mann–Whitney test; and so on.

16. As a special case of (15), one can also use statistics based on divergence of cumulative EDF
T ∗� =

∑
k≤n{

∑
i≤k[F̂ ∗2 (Xi)− F̂ ∗1 (Xi)] · ϕi}, where ϕi are permutationally invariant weights.

17. Divergence of sample medians T ∗Md = X̃∗1 − X̃∗2 , where X̃∗j = Md[X∗ji , i = 1, . . . nj ], j = 1, 2.

18. Divergence of preset sample π-quantiles T ∗π = X̃∗π1 − X̃∗π2, where X̃∗πj = [inf{t : F̂ ∗j (t) ≥ π} +
sup{t : F̂ ∗j (t) ≤ π}]/2 with 0 < π < 1, in which the EDFs are F̂ ∗j (t) =

∑
i I[X∗ji ≤ t]/nj , t ∈

R1, j = 1, 2 (of course, for π = 1/2 we get the median, X̃∗πj = X̃∗j , say). Also of interest is
a sort of multi-quantile test: supposing 0 < π1 < π2 < . . . < πk < 1 are k > 1 suitable preset
quantities, then {T ∗πh = Y̌ ∗πh1 − Y̌ ∗πh2, h = 1, . . . , k} is a k-dimensional test statistic (see Chapter
4 for multivariate testing).

19. Divergence of sample trimmed means of order r , T ∗r = X̃∗r1 − X̃∗r2, where 0 ≤ r <

min[n1, n2]/2, and X̃∗rj =
∑nj−r

i=r+1 X
∗
j (i)/(nj − 2r), X∗j (i) being the ith ordered value in the

j th group, j = 1, 2.

Remark 1. Sometimes instead of the EDF F̂ (t) we may use the so-called normalized EDF
introduced by Ruymgaart (1980) and defined as F̈ (t) = 1

n
[
∑

i I(Xi < t)+ 1
2 I(Xi = t)]. The reason

for this is that its behaviour is slightly more regular than that of F̂ , especially for discrete variables.
Its transformations nF̈ (Xji) give rise to the notion of midranks (see Remark 2, 2.8.2).

Remark 2. It is worth noting that all statistics (1)–(19) share the common form T (X) = S1(X1)−
S2(X2) where Sj , j = 1, 2, are symmetric functions, that is, invariant with respect to data entry,
and sharing the same analytic form so that are indicators of the same quantity. For this reason, the
number of distinct points of related permutation support T(X) is M(n) = Cn,n1 = n!/(n1!n2!), as
each point has multiplicity n1!n2!.

Of course, every test statistic can be expressed in one of its permutationally equivalent forms
(see Section 2.4). Moreover, it is straightforward to extend most of them to two-sided alternatives,
and to one-sample and multi-sample cases. Observe also that statistics corresponding to (5), (13),
(14) and (17)–(19) in the list are typically non-associative statistics.

2.4 Equivalence of Permutation Statistics
This section briefly discusses the concept of permutationally equivalent statistics. This is useful
in simplifying computations and sometimes in facilitating the establishment of the asymptotic
equivalence of permutation solutions with respect to some of their parametric counterparts.

Let X ∈ X be the given data set. We have the following definition of the permutation equivalence
of two statistics:

Definition 3. Two statistics T1 and T2, both mapping X into R1, are said to be permutationally
equivalent when, for all points X ∈ X and X∗ ∈ X/X, the relationship {T1(X∗) ≤ T1(X)} is true if
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and only if {T2(X∗) ≤ T2(X)} is true, where X∗ indicates any permutation of X and X/X indicates
the associated permutation sample space. This permutation equivalence relation is indicated by
T1 ≈ T2.

With reference to this definition we have the following theorem and corollaries.

Theorem 1. If between the two statistics T1 and T2 there is a one-to-one increasing relationship,
then they are permutationally equivalent and Pr{T1(X∗) ≤ T1(X)|X/X} = Pr{T2(X∗) ≤ T2(X)|X/X},
where these probabilities are evaluated with respect to permutation distribution induced by the
sampling experiment and defined on the permutation measurable space (X/X,A/X).

Proof. Let us consider any one-to-one increasing relationship ψ , ψ : R1 ↔ R1, and assume
T2 = ψ(T1). Then

{T1(X∗) ≤ T1(X)} → {ψ[T1(X∗)] ≤ ψ[T1(X)]} = {T2(X∗) ≤ T2(X)}
and

{T2(X∗) ≤ T2(X)} → {ψ−1[T2(X∗)] ≤ ψ−1[T2(X)]} = {T1(X∗) ≤ T1(X)};
thus the relationship Pr{T1(X∗) ≤ T1(X)|X/X} = Pr{T2(X∗) ≤ T2(X)|X/X} is straightforward.

Remark 1. The equivalence established in Definition 1 and Theorem 1 above, being valid for
all X ∈ X, is certain, not merely in probability. However, it is common to analyse permutation
equivalence of T1 and T2 for a given data set X by only considering points of the permutation
space X/X. It should then be emphasized that what we are asking for with the notion of equivalent
tests is that this is at least valid for almost all data sets X ∈ X, that is, valid except for a subset of
sample points of null probability with respect to the underlying population distribution P .

Corollary 1. If T1 and T2 are related by a decreasing one-to-one relationship, then they are
permutationally equivalent in the sense that {T1(X∗) ≤ T1(X)} ↔ {T2(X∗) ≥ T2(X)} for all X ∈ X
and X∗ ∈ X/X.

Corollary 2. The permutation equivalence relation is reflexive: T1 ≈ T1.

Corollary 3. The permutation equivalence relation is transitive: if T1 ≈ T2 and T2 ≈ T3, then
T1 ≈ T3.

Proofs of the above corollaries are straightforward and are left as exercises (see Problem 1, 2.4.2).

Corollary 4. If two statistics T1 and T2 are one-to-one related given the data set X they are
permutationally equivalent : T1 ≈ T2.

The proof of this corollary is trivial. In fact, for every permutation X∗ ∈ X/X it is obvious that
the relation [(T1(X∗) ≥ T1(X))|X/X] is true if and only if [(T2(X∗) ≥ T2(X))|X/X] is true. This
corollary in practice is equivalent to Theorem 1, in the sense that if T1 and T2 are equivalent for
any given X, they are also unconditionally equivalent.

Remark 2. Corollary 4 is perhaps the most frequently used when proving the permutation equiva-
lence of test statistics. A typical example is the equivalence of T ∗1 = X̄∗1 − X̄∗2 and T ∗2 =

∑
i X

∗
1i in

a two-sample design. Actually, as
∑

ji X
∗
ji =

∑
ji Xji = SX, we have T ∗1 =

∑
i X

∗
1i/n1 − [SX −∑

i X
∗
1i]/n2 =

∑
i X

∗
1i[

n
n1n2

]− SX
n2
≈∑i X

∗
1i because [ n

n1n2
] and SX/n2 are permutation constant

quantities given X. Thus T1 and T2 are one-to-one related, and so equivalent given X.
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2.4.1 Some Examples
Example 1. Let us first prove permutation equivalence between the Mann–Whitney rank test
(Section 1.10.4) T ∗MW = [

∑
i R

∗
1i − n1(n+ 1)/2]/[n1n2(n+ 1)/12]1/2 and the permutation test

T ∗ =∑n1
i=1 F̄n(X

∗
1i ), where F̄n(t) =

∑n
i=1 I(Xi ≤ t)/n is the pooled EDF. Indeed: (i) T ∗MW is

permutationally equivalent to
∑

i R
∗
1i because they are linearly related except for a positive

coefficient; (ii) by definition R∗1i =
∑n

j=1 I(Xj ≤ X∗1i ), so that R∗1i = nF̄n(X
∗
1i ). Thus, as between

T ∗MW and T ∗ there is a one-to-one increasing relationship, their permutation equivalence is proved.

Example 2. Consider the Snedecor F statistic for the one-way ANOVA (see Section 1.11.1). With
clear notation, we prove that F ∗ = n−C

C−1

∑C
j=1 nj (X̄

∗
j − X̄·)2nj /

∑
ji(X

∗
ji − X̄∗j )

2 is permutationally

equivalent to
∑C

j=1 nj (X̄
∗
j )

2, an expression much simpler for computation. Indeed, let us note that:
(i) X̄· = X̄∗· because both sum all the data; (b)

∑
ji (X

∗
ji − X̄·)2 =∑ji(X

∗
ji − X̄∗j )

2 +∑j nj (X̄
∗
j −

X̄·)2 =∑ji(Xji − X̄·)2 =∑ji(Xji − X̄j )
2 +∑j nj (X̄j − X̄·)2. Therefore, the following chain of

equivalence relations clearly holds:

Pr

{∑
j nj (X̄

∗
j − X̄·)2∑

ji (X
∗
ji − X̄∗j )2

≥
∑

j nj (X̄j − X̄·)2∑
ji(Xji − X̄j )2

∣∣X/X

}

= Pr

{ ∑
ji (X

∗
ji − X̄∗j )

2∑
j nj (X̄

∗
j − X̄·)2

+ 1 ≤
∑

ji(Xji − X̄j )
2∑

j nj (X̄j − X̄·)2
+ 1

∣∣X/X

}

= Pr

{ ∑
ji(X

∗
ji − X̄·)2∑

j nj (X̄
∗
j − X̄·)2

≤
∑

ji(Xji − X̄·)2∑
j nj (X̄j − X̄·)2

∣∣X/X

}

= Pr

∑
j

nj (X̄
∗
j − X̄·)2 ≥

∑
j

nj (X̄j − X̄·)2
∣∣X/X


= Pr

∑
j

nj (X̄
∗
j )

2 ≥
∑
j

nj (X̄j )
2
∣∣X/X

 .

Example 3. As a particular case of Snedecor’s F , the permutation equivalence of Student’s t

statistic in a two-sample design for two-sided alternatives with T ∗ =∑j nj (X
∗
j )

2 clearly holds.
Instead, by defining S∗g = 1 if X̄∗1 − X̄∗2 > 0 and S∗g = −1 if X̄∗1 − X̄∗2 < 0, for one-sided alternatives
the following chain of equivalence relations occurs:

Pr

 X̄∗1 − X̄∗2√∑
ji (X

∗
ji − X̄∗j )2

≥ X̄1 − X̄2√∑
ji(Xji − X̄j )2

∣∣X/X


= Pr

{
S∗g · (X̄∗1 − X̄∗2)

2∑
ji (X

∗
ji − X̄∗j )2

≥ Sg · (X̄1 − X̄2)
2∑

ji(Xji − X̄j )2

∣∣X/X

}

= Pr

{∑
ji (X

∗
ji − X̄∗j )

2

S∗g · (X̄∗1 − X̄∗2)2
+ 1 ≤

∑
ji(Xji − X̄j )

2

Sg · (X̄1 − X̄2)2
+ 1

∣∣X/X

}

= Pr

{∑
ji (X

∗
ji − X̄··)2

S∗g · (X̄∗1 − X̄∗2)2
≤
∑

ji(Xji − X̄··)2

Sg · (X̄1 − X̄2)2

∣∣X/X

}
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= Pr
{
S∗g · (X̄∗1 − X̄∗2)

2 ≥ Sg · (X̄1 − X̄2)
2
∣∣X/X

}
= Pr

{
X̄∗1 − X̄∗2 ≥ X̄1 − X̄2

∣∣X/X
}

= Pr
{
X̄∗1 ≥ X̄1

∣∣X/X
}
.

Thus, the one-sided test statistic for {X1
d
>X2} becomes T ∗ =∑i X

∗
1i and for {X1

d
< X2} it is

T ∗ =∑i X
∗
2i .

Remark 1. It should be noted, however, that if instead of Student’s t statistic, the standard-
ized statistic K∗ = (X̄∗1 − X̄∗2)/σE is used, where the permutation constant σE is the permutation
standard error of the numerator or even its unconditional (population) counterpart, then, based on

Remark 2, 2.4, K∗ ≈ X̄∗1 for {X1
d
>X2} alternatives and K∗ ≈ X̄∗2 for {X1

d
< X2}.

2.4.2 Problems and Exercises
1) Prove Corollaries 1–3 of Section 2.4.

2) Prove that, in the paired data design, the test statistic T ∗ =∑i XiS
∗
i in Section 1.9 is not

permutationally equivalent to T ∗Y =
∑

i Y1iS
∗
i (remember that T ∗ =∑i (Y1i − Y2i) · S∗i ).

3) With reference to the two-sample design, show that two tests T ∗ =∑i X
∗
1i and T ∗ϕ =

∑
i ϕ(X

∗
1i )

are not permutationally equivalent unless ϕ is a non-degenerate linear transformation.

4) Establish that when responses are binary, e.g. (0,1) or (−1,+1), then the binomial or one-sided
McNemar test of Section 1.8.6 is not equivalent to the permutation solution based on the test
statistic TY =

∑
i Y1i .

5) Show that, if the response variable is binary, then two-sided permutation tests T ∗1 = (f ∗11 −
f ∗21)

2 and T ∗2 = (f ∗11/n1 − f ∗21/n2)
2, respectively related to comparisons of absolute and relative

frequencies, are not permutationally equivalent.

6) Prove that Mood’s median test for the two-sample problem, comparing frequencies below the
pooled median X̃ of X, is permutationally equivalent neither to T = X̄1 nor to T̃ = X̃1.

7) Prove that, for testing H0 : {δ = 0} against the set of two-sided alternatives H1 : {δ 	= 0} in a
two-sample problem, test statistics |X̄1 − X̄2|, (X̄1 − X̄2)

2 and
∑2

j=1 nj · X̄2
j are permutationally

equivalent.

8) Prove that, for the two-sample problem for testing H0 : {X1
d= X2} against H1 : {X1

d
>X2}, the

two tests T1 =
∑

i X1i and T2 = −
∑

i X2i are permutationally equivalent.

9) Prove that, in the two-sample problem for testing H0 : {X1
d= X2} against H1 : {X1

d
>X2}, the four

tests T1 =
∑

i X1i , T2 = −
∑

i X2i , T3 = 1/
∑

i X2i and T4 =
∑

i X1i/
∑

i X2i are permutationally
equivalent, provided that the response variable X is positive.

10) With reference to point (iii) in Remark 2, 2.1.2, prove that tests T based on the standardized data
Ŷj i = (Xji − X̄)/σ̂ with σ̂ a function of the pooled data X, the empirical residuals Yji = Xji − X̄,
and the untransformed data Xji are permutationally equivalent.

11) With reference to point (iv) in Remark 2, 2.1.2, prove that tests T based on the empirical
residuals Ŷj i = [Yji − β̂(Xji)] and the marginal data Yji are not permutationally equivalent (where
β̂ is any estimate of the regression function β evaluated on the pooled set of pairs (Y,X), provided
that β is estimable).

12) Prove that Mood’s median test for the one-way ANOVA is not permutationally equivalent to
the test T ∗ in Section 1.11.2.

13) Show that the permutation test T ∗ for the one-way ANOVA is invariant with respect to linear
increasing transformations of data X.
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14) Show that the permutation test T ∗ above is not invariant with respect to nonlinear one-to-one
transformations ϕ applied to data X.

15) With reference to Example 1, 2.4.1, show that in a two-sample design the Cramér–von Mises
test, i.e. T ∗CM =∑i[F̂

∗
2 (Xi)− F̂ ∗1 (Xi)] as in (11) in Section 2.3, and Wilcoxon–Mann–Whitney

test are not permutationally equivalent.

16) With reference to Remark 1, 2.1.1, prove that if ϕ is any non-degenerate and non-decreasing
data transformation, then two test statistics T ∗ =∑i ϕ(X

∗
1i ) and T ∗µ =

∑
i ϕ(X

∗
1i + µ), where µ is

a constant, are permutationally equivalent. (Hint: for each i = 1, . . . , n1, ϕ(X
∗
1i ) ≥ ϕ(X1i ) implies

ϕ(X∗1i + µ) ≥ ϕ(X1i + µ) and vice versa.)

2.5 Arguments for Selecting Permutation Tests
The suggested permutation solution for two-sample designs in continuous situations, also partially
discussed in Chapter 1, is conditional on a set of minimal sufficient statistics for the unknown
distribution P . Note that the Wilcoxon–Mann–Whitney rank sum test TMW is essentially based on
the permutation distribution of T calculated on the rank transformation of data X. It is well known
that, in general, the rank transformation is not one-to-one with the data, so that the vector of ranks
R is not yet a set of sufficient statistics for P , it is only a maximal invariant transformation and
so TMW is distribution-free and nonparametric. Thus, unless the data transformation ϕ leading to a
best unconditional test statistic corresponds to the rank transformation (see Nikitin, 1995, for some
examples of population distributions admitting the Wilcoxon–Mann–Whitney test as asymptotically
optimal), in most cases any rank test is no more powerful than its permutation counterpart. Instead, if
data are i.i.d. from normally distributed populations, the permutation test is generally less powerful
than the Student’s t counterpart because in this case X is not minimal sufficient, although, except for
very small sample sizes, their power difference is negligible and vanishes asymptotically. However,
it is worth noting that in the multidimensional case ‘best’ parametric solutions are not always better
than their permutation counterparts.

On the one hand, permutation tests may be regarded as precursors of rank tests (see the review
by Bell and Sen, 1984). In rank tests, test statistics are generally expressed in terms of linear
functions of ranks R associated with the original sample X. However, permutation tests are generally
preferable to rank tests, because the former are genuinely conditional on a set of sufficient statistics.
It is well known that this generally implies desirable properties for a testing procedure (see Lehmann,
1986, Chapters 3–6). Rank tests are more commonly applied especially in univariate situations,
because asymptotic distributions are easier to achieve. Well-known introductory books on rank
tests, among others, are those by Fraser (1957), Puri and Sen (1971), Randles and Wolfe (1979),
Hollander and Wolfe (1999), and Hettmansperger (1984); the formal theory is well developed in
books by Hájek and Šidák (1967) and Hájek et al. (1999).

Conditioning on a set of sufficient statistics for P confers the distribution-free property on
permutation tests (see Sections 1.2 and 2.1.3). However, when sample sizes are not sufficiently
large, and especially in cases where data come from discrete populations, we must focus on the
fact that permutation distributions of any statistics of interest are essentially discrete, so that it may
be difficult to attain exactly every desired value for type I error rate α. In these cases, we have to
tolerate approximations, use the auxiliary randomization technique, or adopt the so-called attainable
α-values (see Section 2.2.3).

Among the general arguments related to permutation tests, there are two important questions we
wish to discuss:

(a) How can we motivate our preference for a test statistic based, for instance, on divergence of
sample means such as T ∗ =∑i X

∗
1i?
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(b) Why is its one-sided critical region a half-line, say T ≥ Tα > 0, so that large values are
significant?

The main arguments behind these questions are as follows.

(a) The conditions for the optimal selection of a permutation test statistic T are reported in Lehmann
(1986) (see also Hoeffding, 1951a; and Section 3.6). These conditions are so restrictive that they
almost never occur in the nonparametric context. Essentially, they are related to the fact that a
best test statistic is expressed as a function of the population distribution P . But, in the context
of permutation testing, on the one hand the population distribution P is assumed unknown; on
the other the permutation distribution depends on the pair (T ,X). Thus, a best permutation test
statistic for all data sets X and for all population distributions P does not generally exist because,
depending on P , it cannot be uniquely determined. Hence, in a general nonparametric framework,
permutation tests are heuristically established on the basis of intuitive and reasonable arguments,
both guided by obtaining an easier interpretation of results.

However, in the large majority of situations and for large sample sizes, one weak answer to this
question is the analogy with the parametric solution based on normality, or more generally on the
exponential family, associated with the behaviour of the induced permutation CDF FT (t |X/X) in
regular conditions. This analogy often leads to test statistics of the form T ∗ =∑i X

∗
1i . In addition,

as P is assumed to be unknown, we cannot know the analytic form of a best parametric test statistic
for the given testing problem because this is essentially based on the behaviour of the likelihood
ratio, which in turn implies knowledge of P . In any case, in mild regularity conditions the following
proposition holds:

Proposition 6. If T is a best statistic for a given parametric family of distributions and if its
unconditional critical region does not depend on any specific alternative, then its permutation coun-
terpart is asymptotically equivalent to it; hence, as they share the same limit power function, the
permutation version of T is asymptotically best for the same family .

A formal proof of this statement can be found in Hoeffding (1952). An explanation for the
asymptotic permutation behaviour of T in H0 is essentially based on the following argument. Let
FT (t; n, P,H0) denote the parametric CDF induced by T in H0, and FT (t;P,H0) its limit as n

tends to infinity, where the symbols indicate dependence on the population distribution P . Both
CDFs FT (t; n, P,H0) and FT (t;P,H0) may be regarded as obtained by an infinite Monte Carlo
simulation from P . Let us adopt the same statistic T in a permutation framework and denote by
F ∗T (t |X(n)

/X ) its permutation CDF related to the data set X = X(n) = {Xi; i = 1, . . . , n}. We know that

there is a one-to-one relation between the EPM P̂n(A) =∑i I(Xi ∈ A)/n, A ∈ A, and the data set
X(n), except for a proper rearrangement of the data (see Proposition 2 and Remark 1, 2.1.3). Hence,
they essentially contain the same relevant information with respect to the underlying distribution P ,
so that the whole EPM P̂n is also sufficient. In very mild conditions, according to the well-known
Glivenko–Cantelli theorem, as n tends to infinity, P̂n converges to P almost surely and uniformly
in A ∈ A. Thus, by the theorems on continuous functionals of empirical processes (see Shorack and
Wellner, 1986; Borovkov, 1987), F ∗T (t |X(n)

/X ) converges in probability to FT (t;P,H0) as n tends to
infinity, provided that T is a continuous function of X(n) and F is continuous and monotonically
increasing with respect to a suitable metric measuring the distance between any two members of
the parametric family P to which P belongs by assumption. Moreover, if T is any test statistic, the
power behaviour of its permutation counterpart being conditional on a set of sufficient statistics is
at least improved (see Cox and Hinkley, 1974; Lehmann, 1986).

The study of T in H1 is rather more complex. However, in general regular conditions, it is
possible to argue that, at least in the vicinity of H0, the parametric and permutation solutions are
still asymptotically coincident.
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From a practical point of view, as test statistics such as T ∗ =∑i X
∗
1i behave better than other

competitors when underlying population distributions are at least approximately symmetric with
finite second moments, a suggestion for choosing a suitable statistic is to use data transforma-
tions ϕ(X) so that the resulting distribution is at least approximately symmetric and the response
model is additive as in (M.i) in Sections 1.8.1 and 1.10.1. Moreover, in a large set of simulations
with exchangeable, symmetrically distributed errors, including some heavy-tailed distributions, we
found that the divergence of sample means is a proper test statistic for one- and two-sample
problems, provided that second moments are finite; instead, divergence of sample medians is
a proper test statistic for one- and two-sample problems regardless of the existence of finite
moments of underlying distributions. For heavy-tailed distributions and/or asymmetric distributions,
the Wilcoxon–Mann–Whitney TMW also has a good power behaviour (see Lehmann, 2006).

In this way, for finite sample sizes, T may only be considered a reasonable choice. Of course,
as P is unknown, in general it is not possible to provide T with any optimal property (see Section
3.6). However, if a single test statistic is felt not to provide an adequate summary of information,
it may sometimes be convenient to apply k > 1 different test statistics (T1, . . . , Tk), each sensitive
to a specific aspect of the alternative distribution, and so able to summarize specific pieces of
information, and then combine their related p-values, using a sort of two-stage choice. This multi-
aspect testing strategy, discussed in Example 3, 4.6, is often used in subsequent chapters.

Remark 1. In the conditions required by the Glivenko–Cantelli theorem, asymptotic permuta-
tion (conditional) inferences become unconditional. Although we may regard permutation tests
as being essentially robust with respect to underlying distributions, it would be interesting to
investigate the notion of robustness for test statistics in the permutation framework (see Lambert,
1985; Welch and Gutierrez, 1988; Hettmansperger and McKean, 1998). This investigation is left to
the reader.

(b) The answer to the second question concerning the rule that ‘large values are significant’ is
twofold and seems heuristically similar to regular situations. On the one hand there is no loss of
generality because all statistical tests can be equivalently transformed in such a way that in the
alternative their distributions are stochastically larger than in the null hypothesis. Indeed, we are
able to prove in very mild conditions that for one-sided alternatives the alternative permutation
distribution of any test statistic T , as in the list in Section 2.3, is stochastically larger than in H0

(see Section 3.1). This implies that the rule ‘large values are significant’ gives rise to tests whose
conditional and unconditional power functions are monotonic increasingly related to treatment
effects, independently of underlying distributions P and sample sizes. For two-sided alternatives
we know that with not too small sample sizes, |T | is almost always stochastically larger in H1 than
in H0, a condition which also justifies the rule. In this way, for finite sample sizes, T may only be
considered a reasonable choice.

On the other hand, we know that if P is provided with a monotonic likelihood ratio, then the
UMP and UMPU critical regions for positively one-sided alternatives and two-sided alternatives
have the form T ≥ Tα and |T | ≥ |Tα|, respectively. Of course, in a nonparametric framework we
cannot invoke such a property for P because it is assumed to be unknown. However, if n is not
too small and if T is a symmetric function (i.e. invariant with respect to data entry) of a continuous
transformation of data as in T ∗ =∑i ϕ(X

∗
1i ), then a PCLT can be applied for regular P , so that

the permutation limit distribution of T tends to enjoy the normal property. It thus seems reasonable
to choose a test statistic T according to asymptotic arguments.

2.6 Examples of One-Sample Problems
In this section, some examples of one-sample permutation testing problems are briefly discussed.
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Example 1. Testing for symmetry.
Let us assume that we are given a sample X = {X1, . . . , Xn} of n i.i.d. observations from a

continuous variable X with unknown distribution P on the real line. Suppose that we wish to test
the null hypothesis H0 that P is symmetric around the origin,

H0 : {P(z) = 1− P(−z), z ∈ R1},

against H1 : {P is not symmetric around the origin}.
To deal with this problem, we can regard the data as differences given by underlying paired

observations. Thus we have observable variables Xi = YAi − YBi, i = 1, . . . , n, where A and B

are two occasions of measurement. From Section 1.8.2, we know that the distribution of differ-
ences Xi is symmetric around 0 if YAi

d= YBi , that is, when paired responses are exchangeable
within each unit. We also know that the random attribution of the sign to the ith difference Xi is
equivalent to considering a random permutation of paired measurements, conditional upon these
paired observations (see Remark 3, 2.1.2). Thus, conditional testing of symmetry is equivalent to
the conditional testing with paired exchangeable observations. Therefore, we obtain the permutation
sample space X/X = {

⋃
S∗ [XiS

∗
i , i = 1, . . . , n]}, where the S∗i = 1− 2Bn(1, 1/2) are n i.i.d. ran-

dom signs. A suitable test for H0 against H1 is T =∑i Xi , the permutation distribution of which is
obtained by considering the permutation support T(X) = {T ∗ = T (X∗) =∑i Xi · S∗i ,X∗ ∈ X/X}.

Permutationally equivalent to T is K =∑i Xi/
(∑

i X
2
i

)1/2
, the permutation distribution of

which is obtained by taking K∗ =∑i Xi · S∗i /
(∑

i X
2
i

)1/2
. Note that the denominator in K∗ is

invariant at all points of the permutation sample space X/X. Since EX/X (K
∗) = 0 and VX/X (K

∗) = 1
(see Section 1.9.4), it follows that K∗ is the standardized sum of n independent variables, so that
if the ratio (

∑
i X

4
i )/(

∑
i X

2
i )

2 is small and the standard deviation σX is finite, when n is large the
approximate distribution of K∗, by the PCLT, is standard normal: K∗ ∼ N(0, 1). Note that this limit
distribution is obtained without involving the Student’s t distribution because, in the permutation
framework, with X given the role of a fixed finite population, the denominator

∑
i X

2
i is the exact

conditional variance of the numerator (see Section 3.8).

Remark 1. Testing for symmetry may also be used for testing location on one-sample problems.
To be specific, let us suppose that H0 : {δ = δ0} and that the observed data {Yi , i = 1, . . . , n} are
symmetrically distributed around δ, so that data transformations Xi = Yi − δ0 are symmetrically
distributed around 0 if and only if H0 is true. With clear notation, in H1 the observed value
of T is such that T o(δ) = T o(0)+ nδ and so it is stochastically larger than in H0. In Example
8, 4.6, these ideas are used for testing on the generalized Behrens–Fisher problem. When Y is
not symmetrically distributed around δ0, testing for H0 : {E(X) = 0} by using the test statistic
T ∗ =∑i Xi · S∗i cannot in general lead to exact solutions (see also Example 9 in this section). In
fact T ∗ can be either conservative or anticonservative, according to whether asymmetry is positive
or negative. In order to get inferences that are robust, that is, asymptotically exact and almost exact
for finite sample sizes, it is useful to adopt transformations to symmetry such as those suggested by
Hinkley (1975). One of these transformations involves finding a power a such that, for an integer
r , X̃a −Xa

(r) = Xa
(n−r−1) − X̃a , where X(r) is the rth order statistic of the Xi , i = 1, . . . , n, and

X̃ = Md(X1, . . . , Xn) is the median. Often, for positive Y and positive asymmetry, transformations
such as

√
Y , 3
√
Y or logY are satisfactory for good approximations.

Example 2. Testing independence of two variables.
Let X = {(X1, Y1), . . . , (Xn, Yn)} be a sample of n i.i.d. observations from a bivariate

response variable (X, Y ) with unknown bivariate distribution P on the Euclidean space R2. We
wish to test the null hypothesis H0 that P(x, y) has independent marginals P1(x) and P2(y)
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(see Bell and Doksum, 1967),

H0 : {P(x, y) = P1(x) · P2(y), ∀(x, y) ∈ R2}
against the alternative H1 : {H0 is not true}. Note that true H0 implies that each Xi

can be equally likely associated with any Yj . Thus, the permutation sample space is
X/X = {X∗ = {(X1, Yu∗1 ), . . . , (Xn, Yu∗n)}}, where (u∗1, . . . , u

∗
n) is any permutation of the basic

labels {1, . . . , n}, the cardinality of which is M(n) = n!. Here, we have implicitly assumed that
the j th marginal component takes values in sample space Xj and that X is the cartesian product
X = X1 × X2.

To cope with this testing problem, we require a suitable test statistic. The most common one is
based on the cross product T =∑i Xi · Yi , the permutation distribution of which is obtained by
considering T ∗ =∑i Xi · Yu∗i , and consists of examining the linear dependence between X and Y .
A more appropriate test statistic assumes the form T = ϕ(P, P1P2), where ϕ is a metric on the
nonparametric family of bivariate distributions P measuring distances of P from P1 · P2. Following
Romano (1989), a typical choice for T , in the spirit of the Kolmogorov–Smirnov test statistic, is

T ∗ = n1/2 · sup
A∈B

∣∣∣P̂ ∗(A)− P̂ ∗1 (A) · P̂ ∗2 (A)

∣∣∣ ,
where B is a suitable non-empty collection of events, and P̂ ∗, P̂ ∗1 and P̂ ∗2 are proper permutation
sample estimates of the probability distributions involved.

Example 3. Testing for linear regression.
Let X = {(X1, Y1), . . . , (Xn, Yn)} be a sample of n i.i.d. observations from a bivariate response

variable (X, Y ) with unknown bivariate distribution P on R2 and where two variables are linked
by a linear regression: E(Y |X = x) = a + βx. We wish to test the null hypothesis H0 : {β = 0}
against, for instance, H1 : {β > 0} under the assumption that in H0 responses Yi can be permuted
with respect to covariate X, so that permutation sample space is X/(X,Y) = {

⋃
u∗ [(Xi, Yu∗

i
), i =

1, . . . , n]}, where u∗ is a permutation of unit labels (1, . . . , n). Supposing that a suitable indicator
for regression coefficient β is β̂ = (∑i XiYi − nX̄Ȳ

)
/
[∑

i (Xi − X̄)2 ·∑i (Yi − Ȳ )2
]
, then a test

statistic is T ∗β =
∑

i XiY
∗
i which is permutationally equivalent to β̂∗ (see Problem 15, 2.6.2).

It is worth noting here that, in order for permutations in X/(X,Y) to be equally likely under H0,
we had to assume exchangeability of responses with respect to covariate. This assumption, which
is common for instance to Spearman’s and Kendall’s rank tests, more than non-correlation, implies
(quasi-)independence of two variables in H0.

Example 4. Testing for a change point.
Let us assume that we have a sample X = {X1, . . . , Xn} of n> 2 observations from n independent

variables X1, . . . , Xn, taking values in the same sample space X and respectively with unknown
distributions P1, . . . , Pn. We wish to test the null hypothesis H0 that the observations Xi have
a common distribution P , against the alternative H1 that, for some I , 1 ≤ I ≤ n, {X1, . . . , XI }
are i.i.d. from a distribution P1 and that {XI+1, . . . , Xn} are i.i.d. from a different distribution P2.
That is,

H0 :
{∏

i
Pi(Xi) =

∏
i
P (Xi)

}
against the alternative H1 :

{∏I
i=1 P1(Xi) ·

∏n
i=I+1 P2(Xi)

}
.

An appropriate test statistic for this problem is

T ∗ = max
1≤i≤n

[
γi · sup

A∈B

∣∣∣P̂ ∗1 (A)− P̂ ∗2 (A)

∣∣∣] ,
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where B is a suitable non-empty collection of events, γi are normalizing constants, and P̂ ∗1 and P̂ ∗2
are proper permutation estimates. This test statistic (see Romano, 1989) may be simplified if we
assume that variables Xi have finite means µi = E(Xi), i = 1, . . . , n, and that their distributions
are such that Pi(z) = P(z− µi), so that all variables have the same distribution except for the mean
(a kind of generalized homoscedasticity). In this case the hypotheses are H0 : {µ1 = . . . = µn} and
H1 :

{
[µ1 = . . . = µI ] 	= [µI+1 = . . . = µn

]}
. By defining Wi = X1 + . . .+Xi , a possible test

statistic is

T ∗ = max
1≤i≤n

[(
i

n
Wn −W ∗

i

)2

· {i(n− i)}−1

]
,

where W ∗
i = Xu∗1 + . . .+Xu∗i , in which (u∗1, . . . , u

∗
n) is any permutation of the basic labels

(1, . . . , n). Both test statistics have an intuitive appeal. In particular, the latter has some similarities
with the Smirnov–Anderson–Darling goodness-of-fit test for discrete distributions (see James
et al., 1987; see also Section 2.8.3 on goodness-of-fit testing for categorical variables). In Chapter
6 we will encounter different arguments for such a problem.

Example 5. Testing exchangeability.
Let X = {(X11, . . . , XV 1), . . . , (X1n, . . . , XVn)} be a sample of n i.i.d. observations from a

quantitative V -dimensional variable X, V ≥ 2, with unknown V -dimensional distribution P . We
wish to test the null hypothesis H0 that the V components of X are exchangeable, that is,
H0 : {P(X1, . . . , XV ) = P(Xv∗1 , . . . , Xv∗V )}, where (v∗1 , . . . , v

∗
V ) is any permutation of the labels

(1, . . . , V ), against the alternative H1 that H0 is not true.
For this problem the permutation sample space is X/X = {X∗ = (Xv∗111, . . . , Xv∗

q1
1), . . . , (Xv∗1nn,

. . . , Xv∗qnn)}, where {(v∗1i , . . . , v∗V i), i = 1, . . . , n}, are permutations of labels (1, . . . , V ) relative to
component variables Xh, h = 1, . . . , V .

Let us consider a map χ : P→ P0, characterizing the null hypothesis H0. That is, P0 is the set
of probability distributions satisfying χ(P ) = P (see Romano, 1989). Thus, to test H0 against H1,
an appropriate test statistic is

T = √n · sup
A∈A

|P(A)− χ(P (A))| ,

where A is a suitable non-empty collection of events.

Example 6. Some extensions of McNemar’s test.
Let us refer to the McNemar binomial solution to the problem with paired data discussed in

Section 1.8.6. A slight extension of the binomial test useful for one and two-sided alternatives may
be obtained in the following way. Let us assume, for instance, that observed differences are classified
into the four categories: very positive, C(++); positive, C(+); negative, C(−); and very negative,
C(−−), in place of the binary categories plus and minus . Let us denote by f (j) the observed
frequency of category C(j), that is, f (j) =∑i≤n I(Xi ∈ Cj), j = [(++), . . . , (−−)]. In H0 : X
is symmetric around 0, the testing problem reduces to testing for symmetry of ordered categorical
variables in which the differences are symmetrically distributed around zero. Let us denote by ν++ =
f (++)+ f (−−), ν+ = f (+)+ f (−), and ν =∑j f (j) = ν++ + ν+, frequencies of symmetric
categories and their sum (if the number of categories is odd there is one category, the central one,
with null differences), respectively. Since permutations are within each individual pair of responses
and independently with respect to individuals (see Remark 3, 2.1.2), the permutation frequency
f ∗(c) =∑i I[(XiS

∗
i ) ∈ Cc], c = [(++), (+)], where the i.i.d. S∗i = 1− 2Bn(1, 1/2), is binomially

distributed, f ∗(c) = Bn(νc, 1/2). Thus, one suitable test statistic for one-sided alternatives is

T ∗ =
∑

c

[f ∗(c)− νc/2]√
νc/4

,
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corresponding to the sum of two independent standardized binomial distributions, whose null
distribution is then approximately N(0, 2). Of course, based on the PCLT theorem, this approx-
imation is better for large sample sizes. For instance, if in the IPAT example (Section 1.8) we
decide that very positive differences correspond to X>+4, positive to 0 < X ≤ +4, negative
to −4 ≤ X < 0 and very negative to X < −4, we have f (++) = 7, f (+) = 10, f (−) = 3 and
f (−−) = 0, so that ν++ = 7, ν+ = 13, and T o = 4.986, leading to rejection at α = 0.001 (although
in the present case approximation to the normal distribution is not satisfactory, because sample
size n and νh frequencies are not sufficiently large; in turn, a more reliable result is obtained
by the permutation solution, which with B = 5000 iterations gives λ̂ = 0.0004). It is, however,
worth observing that the traditional McNemar standardized solution, since U∗ =∑c f

∗(c) ∼
Bn(ν, 1/2), that is, T ∗U = (U∗ − ν/2) /

√
ν/4, is approximately standard normally distributed, say

T ∗U � N(0, 1) – which in turn corresponds to the standardized sum of two independent binomials.
With Uo = 17, as T o

U = 3.130, the null hypothesis is rejected at α = 0.001. Due to the more accu-
rate management of information, T is expected to be somewhat more efficient than U when large
variations (from C(++) to C(−−)) are considered more important than small variations (from (+)

to (−)), because in U there might be compensations of effects. Problems 8 and 9, 2.6.2, suggest
the extension of this kind of solution to a 2k, k > 2, symmetric partition of the set of differences.

As a second extension, suitable for two-sided alternatives, let us consider a test statistic with the
chi-square form

X∗2 =
(−−)∑

j=(++)

[f ∗(j)− f̂0(j)]2

f̂0(j)
=

(+)∑
c=(++)

[f ∗(c)− νc/2]2/(νc/4),

where f̂0(j) = νj /2, j = [(c), (−c)], in which (−c) means (−−) if c = (++), and so on.
In H0, X∗2 is approximately distributed as a central χ2 with 2 d.f., because it is the sum of

two independent standardized squared binomial distributions. For instance, with the IPAT data we
have f̂0(++) = f̂0(−−) = 3.5, f̂0(+) = f̂0(−) = 6.5. Thus, although the approximation to the
χ2 distribution is not satisfactory, because the sample size n and expected frequencies f̂0(i) are
not sufficiently large, we have X2 = 10.769, which leads to the rejection of H0 at α = 0.005. Of
course, for small sample sizes all these approximations may not be satisfactory so CMC or exact
numeric calculations are needed.

Example 7. Testing for symmetry in an ordered categorical variable.
Solutions from Example 6 can be extended to testing for symmetry in an ordered categorical

variable. Let us suppose, to this end, that the support of a categorical variable X is (A1 ≺ A2 ≺ . . . ≺
Ak), where ≺ stands for ‘inferior to’, and suppose that H0 is that the distribution of X is symmetric
over its support, Pr{Ah} = Pr{Ak−h+1}, h = 1, . . . , k. This problem can be thought of in terms of an
underlying variable Y being observed on each individual before and after an administered treatment,
so that ‘differences’ X = φ(Y1, Y2) are classified according to ordered categories (A1, . . . , Ak).
According to this interpretation, the null hypothesis can equivalently be transformed into H0 ≡
{Y1

d= Y2}, giving rise to a symmetric distribution over (A1, . . . , Ak). The solution is then obtained
by conditioning with respect to the observed data set X = {Xi, i = 1, . . . , n}, which is sufficient
in H0 for the underlying problem. The related sample space X/X = {XiS

∗
i , i = 1, . . . , n}, where

the i.i.d. S∗i = ±1 each with probability 1/2, is obtained similarly to Example 6. Since f ∗(c) =∑
i I(XiS

∗
i ∈ Ac) ∼ Bn(νc, 1/2), where the i.i.d. S∗i ∼1− 2Bn(1, 1/2), νc = f (c)+ f (k − c + 1),

and if all ‘differences’ Xi = Y1i − Y2i , i = 1, . . . , n, are regarded as equally important although
differently informative, then a general solution for one-sided alternatives is

T ∗ =
∑�k/2�

c=1

[f ∗(c)− νc/2]√
νc/4

,
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where �k/2� is the integer part of k/2. Observing that T ∗ corresponds to the sum of �k/2� standard-
ized binomials, its distribution is approximately N(0, �k/2�). For two-sided alternatives a solution
in the spirit of chi-squared is then X∗2 =∑�k/2�

c=1 [f ∗(c)− νc/2]2/(νc/4), the asymptotic distribution
of which is χ2 with �k/2� d.f.

If ‘differences’ have different degrees of importance, so that for instance a variation from A1

to Ak is more important than a variation from A3 to Ak−2, and so ‘scores’ ωc are assigned to
‘differences’ from Ac to Ak−c+1, then a test statistic for one-sided alternatives is

T ∗ω =
∑�k/2�

c=1

ωc[f ∗(c)− νc/2]√
νc/4

,

that is, the weighted sum of �k/2� independent standardized binomials, the null distribution of
which is approximately N(0,

∑
c ω

2
c ). For two-sided alternatives, the solution in the spirit of chi-

squared is X∗2
ω =∑�k/2�

c=1 ωc[f ∗(c)− νc/2]2/(νc/4), the distribution of which is then the weighted
sum of �k/2� independent χ2 with 1 d.f. This is not available in closed form.

Example 8. Testing with paired data from an ordered categorical variable.
This example considers an extension of solutions shown in Example 7. Suppose that the support

of a variable Y is (A1 ≺ A2 ≺ . . . ≺ Ak) and that Y is observed on n units before treatment, occa-
sion 1, and after treatment, occasion 2. Thus the data set is Y = {(Y1i , Y2i ), i = 1, . . . , n}. The null
hypothesis is that treatment is ineffective, H0 : {Y1

d= Y2}. Thus, within each unit two observations
are exchangeable. According to Remark 3, 2.1.2, the set of pairs (Y1i , Y2i ), i = 1, . . . , n, is the
set of sufficient statistics for the problem in H0. Thus, the related permutation sample space X/X
is obtained by noting that for each unit the conditional probability of being in class Aj before
treatment and in class Ah after treatment is equal to the probability of being in Ah before and in
Aj after, that is, Pi{(Aj , Ah)|(Y1i , Y2i)} = Pi{(Ah, Aj )|(Y1i , Y2i)} = 1/2, and that units are inde-
pendent. So X/X contains 2n points. Thus, ‘differences’ Xi = φ(Y1i , Y2i), i = 1, . . . , n, lie in the
support (C11, C12, . . . , Ckk), where Xi = Chj means that ith subject has moved from category Ah

at occasion 1 to Aj at occasion 2. Observe that, due to the exchangeability within individuals stated
by H0, we have that Pr{Chj } = Pr{Cjh}, j, h = 1, . . . , k; that is, H0 implies that the distribution
of ‘differences’ is symmetric with respect to the main diagonal. Thus, we have the permutation
frequency f ∗(Chj ) =

∑
i I(XiS

∗
i ∈ Ahj ) ∼ Bn(νhj , 1/2), where the i.i.d. S∗i ∼1− 2Bn(1, 1/2) and

νhj = f (Chj )+ f (Cjh). In this context two permutation tests for one-sided alternatives are

T ∗ =
∑k

h> j

[f ∗(Chj )− νhj /2]√
νhj /4

,

corresponding to the sum of k(k − 1)/2 standardized binomials, and

T ∗ω =
∑k

h> j

ωhj [f ∗(Chj )− νhj /2]√
νhj /4

,

corresponding to the weighted sum of standardized binomials, where ωhj are suitable assigned
scores. MATLAB code is available from the book’s website for weights ωhj = |h− j |.

And one solution for two-sided alternatives, in the spirit of chi-squared, is X∗2 =∑k
h> j [f ∗(Chj )− νhj /2]24/νhj .

Example 9. Testing the median.
Let us suppose that the response X and the related error deviates Z do not possess a mean

value, that is, E(|Z|) is not finite, so that the sample mean X̄ is not a proper indicator for treatment
effect δ. In such cases it is wise to use test statistics based on the divergence of robust indicators
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such as sample medians or trimmed means (see Example 5, 4.5.3). To be precise, suppose that in
a one-sample problem the data model is X = {Xi = δ + Z1i , i = 1, . . . , n}, where the meanings of
symbols are clear. Suppose the hypotheses are H0 : {Md(X) = 0} = {δ = 0} against H1 : {δ > 0}.
If Z were symmetrically distributed around 0, the problem would be solved with the test statistic
T ∗ = Md[XiS

∗
i ] in which the i.i.d. S∗i ∼1− 2Bn(1, 1/2). This would be the solution if paired

data were observed, that is, if the data were {(Y1i = η + Z1i , Y2i = η + δ + Z2i), i = 1, . . . , n}
and individual differences Xi = Y2i − Y1i were used. In such a case this test is exact because in
H0 data are exchangeable within each unit. If instead error deviates Z were not symmetric around
0, or we know a data transformation ϕ such that ϕ(Z) becomes symmetric around 0, the solution
would be T ∗ = Md[ϕiS

∗
i ], unless ϕ(Z) has finite mean value in which case we might also use

T ∗ =∑i XiS
∗
i . Alternatively, we can use the drastic sign transformation ϕi = {−1 if Xi < 0, 0

if Xi = 0, and +1 if Xi > 0} and the McNemar test statistic T ∗ =∑i ϕiS
∗
i ∼ Bn(ν, 1/2), where

ν = n−∑i I(ϕi = 0). Since, in H0, Pr{ϕi = −1} = Pr{ϕi = +1}, the latter test is exact. It is,
however, worth noting that a test statistic like T ∗ = Md[XiS

∗
i ] with non-symmetric deviates Z

cannot be exact, because of lack of exchangeability (see Remark 1 above). Actually it can be either
conservative or anticonservative according to the kind of asymmetry, although for large sample
size it becomes almost exact.

2.6.1 A Problem with Repeated Observations

This testing problem arises when each experimental unit is observed on k occasions. To be more
specific, let us assume that n units are each observed k times, with reference to k occasions of
measurement which can be considered as playing the role of symbolic time treatment. Thus, realiza-
tions of a non-degenerate univariate response variable X are represented in a matrix layout such as
X = {Xji , i = 1, . . . , n, j = 1, . . . , k} = {(X1i , . . . , Xki), i = 1, . . . , n}, where the (X1i , . . . , Xki)

are called individual profiles .
This layout, when units play the role of blocks and we are not interested in the block effect,

may correspond to a two-way ANOVA with one observation per unit and treatment level, in which
only the so-called treatment effects are of interest and no interaction is assumed between units and
occasions of measurement. The block effect may be assumed either to be present or not, in the
sense that we do not assume that response profiles are identically distributed with respect to units,
so that we need not assume Pi = P , i = 1, . . . , n. As usual, let us assume that these underlying
unspecified distributions are non-degenerate and also that:

(i) The n profiles are independent.
(ii) Individual responses (X1i , . . . , Xki) are homoscedastic and exchangeable within units in the

null hypothesis (note that this interpretation is appropriate for most cases of repeated obser-
vations when there are no interaction effects between units and time).

(iii) The underlying model for fixed effects is additive. Thus, the model is assumed to behave
formally in accordance with Xji = µ+ ηi + δj + σi · Zji , where µ is a population constant,
ηi is the block effect corresponding to the ith unit, δj is the treatment effect, error terms Zji

are assumed to be exchangeable within units (i.e. equally distributed with respect to occasions
of measurement and independent with respect to units, where the common distribution PZ is
unknown), and σi are unknown scale coefficients which may vary with respect to units (an
extended response model is discussed in Pesarin, 2001, Chapters 7 and 11).

In particular, we also assume that error terms satisfy the condition E(Zji) = 0, ∀i, j , so that we
can adopt sample means as proper indicators for treatment effects. Note that this response model
corresponds to a two-way ANOVA without interaction (see Chapter 11 for analysis of two-way
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ANOVA). The null hypothesis is that responses within units are equal in distribution or, equivalently,
that no treatment effect is present:

H0 :

{
n⋂

i=1

(X1i
d= . . .

d= Xki)

}
= {δ1 = . . . = δk = 0},

against H1 : {H0 is not true}.
Note that this formulation of H0 assumes equality in distribution within each unit, jointly for all

units. Thus, this problem appears both as a multi-sample problem and as an extension of that with
paired observations.

Friedman’s Rank Test

Under continuity of observed data, so that the ordinary rank transformation can be applied, our
problem is solved by Friedman’s nonparametric rank test, in which the so-called block or individual
effect is ignored. Remember that Friedman’s test (see Friedman, 1937) is based on the permutation
rank statistic,

TF =
k∑

j=1

[
R̄j − k + 1

2

]2 12 · n
k(k + 1)

,

where R̄j =
∑

i Rji/n, i = 1, . . . , n, j = 1, . . . , k, is the j th mean rank and Rji =
∑

h≤k I(Xhi ≤
Xji) is the rank of the j th observation within those related to the ith unit. For large sample sizes,
in the null hypothesis, TF is approximately distributed according to a central χ2 with k − 1 degrees
of freedom.

Of course, if responses were homoscedastic and normally distributed, this kind of problem would
be solved by Snedecor’s well-known F test.

A Permutation Solution

Note that assumptions (i)–(iii) imply that, in H0, data within each unit are exchangeable with
respect to occasions of measurement, and that they are independent with respect to units. Thus, the
permutation sample space X/X contains (k!)n points. In fact, for each of the n independent units
there are k! permutations, which in H0 are equally likely. Thus, a CMC solution implies taking
into consideration a suitable test statistic, which may reasonably have the same form as in the
parametric normal case. Hence, a suitable permutation test statistic is

T ∗R =
∑k

j=1(X̄
∗
j · − X̄··)2∑

ji (X
∗
ji − X̄·i − X̄∗j · + X̄··)2

,

where X̄∗j · =
∑

i X
∗
ji/n, j = 1, . . . , k, X̄·i = X̄∗·i =

∑
j X

∗
ji/k, i = 1, . . . , n, and X̄·· = X̄∗·· =∑

ji X
∗
ji are the column, row and global means, respectively.

It is interesting to note that this test statistic, except for a constant coefficient, is nothing more
than the permutation ratio of estimated variances of the treatment effect by that of errors.

The multivariate extension of the above problem is presented in Chapter 11, while a complete
solution for fixed effects two-way ANOVA, balanced and unbalanced, is discussed in Pesarin (2001)
and Basso et al. (2009a). Some multivariate problems for repeated observations and missing data
are discussed in Chapter 7.
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Remark 1. The CMC algorithm implies considering n independent permutations of the k data,
one for each unit. This is done by the matrix of random permutations {u∗1i , . . . , u∗ki , i = 1, . . . , n},
where the ith row u∗1i , . . . , u

∗
ki represents a random permutation of integers (1, . . . , k) related to

the ith unit and where permutations related to different units are independent.

Remark 2. As permutations are taken within units, this solution is not appropriate for the so-
called block effect. In order to obtain a separate test for the block effect, a rather different strategy
must be followed (see Pesarin, 2001, Chapter 8). However, when testing for the block effect is not
important, the above solution is effective. From this point of view, this two-way ANOVA layout
for repeated observations may be seen as specific to the absence of interaction effects.

Remark 3. When assumption (i) or (ii) or both are violated, the permutation principle is also
violated. Thus, in these circumstances, some of the associated conclusions may become improper.

An Example

Let us consider an example from Landenna and Marasini (1990, p. 272) concerning observations of
blood testosterone in 11 women observed five times during one day at 08.00, 08.30, 09.00, 10.00,
and 15.00 hours. The data, expressed in milligrams per litre, are reported in Table 2.2.

The purpose of this experiment is to evaluate whether the level of testosterone in the blood
is subject to change during the day. This example has the peculiarity that the observations are
dependent since they are recorded on the same women at different times. Moreover, the problem
of testing for possible differences among individuals, the so-called block effect, was regarded as
unimportant, in the sense that its existence is well known and there is therefore no particular
interest in testing for it. Therefore, under H0 we can permute the data inside the rows of the data
set independently. This problem can be viewed as a two-way ANOVA model without interaction,
where the main factors are ‘time’ (factor B) and ‘woman’ (factor A: blocking factor, not of interest).

setwd("C:/path")

data<-read.csv("Testosterone.csv",header=TRUE)

Y = rep(seq(1,5),each=11) ; Time = colnames(data)

boxplot(unlist(data) Y,xlab="Time",ylab="Testosterone",names=Time)

lines(seq(1,5),apply(data,2,mean),lty="dotted")

Table 2.2 Repeated blood testosterone levels in 11 women

i 0800 0830 0900 1000 1500

1 320 278 236 222 232
2 478 513 415 359 292
3 921 701 645 526 458
4 213 230 261 253 199
5 273 338 323 332 222
6 392 302 289 305 172
7 469 443 292 235 233
8 422 389 359 331 185
9 613 649 626 588 636
10 395 318 298 269 328
11 462 400 360 247 284
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The commands above assign the data set to the object data and represent it with a box-plot, the
dotted line linking the sample means at each time. The total deviance SST can be decomposed as
SST = SSA+ SSB + SSR, where SSA and SSB are the deviances due to the main effects and
SSR is the residual deviance. Note that SST is constant at each permutation, and so is SSA since
we permute observations within the rows of data. On the other hand, SSB and SSR vary at each
permutation. The test statistic for the time effect is FB = (dfSSR/dfSSB)× SSB/SSR. Leaving
out the degrees of freedom dfSSB and dfSSR, which are permutationally invariant, the easiest way
to obtain the residual deviance at each permutation is to write it as SSR∗ = SST − SSA− SSB∗.
Therefore, the F statistic can be written as F ∗ = SSB∗/(SS − SSB∗), where the sum of squares
SS is constant at each permutation. It is easy to see that F ∗ is a monotone function of T ∗ = SSB∗.

n=dim(data)[1] ; p = dim(data)[2]; B=1000;

m = mean(mean(data))

m.col = apply(data,2,mean)

SSB = n*sum((m.col-m)^2)

T<-array(0,dim=c((B+1),1))

T[1] = SSB

data.star = data

for(bb in 2:(B+1)){

U = matrix(runif(n*p),nrow=n) ## U is n x p

R = apply(U,1,rank) ## R is p x n

for(i in 1:n){

data.star[i,] = data[i,R[,i]]

}

m.col = apply(data.star,2,mean)

SSB = n*sum((m.col-m)^2)

T[bb] = SSB

}

t2p(T)[1]

[1] 0.0003

The p-value of this example is extremely significant, therefore we can conclude that testosterone
levels varies according to time of day. With B = 5000 CMC iterations we obtain λ̂ = 0.0003, which
leads to the rejection of H0 at α = 0.001. This result fits with that of Friedman’s rank test: for the
present data set TF = 19.709, the permutation null distribution of which is well approximated by
a central χ2 with 4 d.f.

The corresponding MATLAB code is given below:

D=xlsimport(’TestosteroneMATLAB.xls’);

reminD(D)

[P T options] = NP_ReM(’Y’,’Time’,’seq’,1000,-1);

P2=NPC(P,’F’);

The data set and the corresponding software codes are available from the examples_chapters_

1-4 folder on the book’s website.
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2.6.2 Problems and Exercises

1) Discuss a solution for a problem with repeated measurements in which the response model is
Xji = µ+ δj + Zij , i = 1, . . . , n, j = 1, . . . , k (note that in H0 : {δ1 = . . . = δk = 0}, responses
are exchangeable with respect to treatment levels and also with respect to individuals).

2) In the spirit of Remark 3, 2.6.1, prove that the test T ∗R remains valid even when V(Zji) = σ 2
i ,

i = 1, . . . , n, corresponding to ‘within-unit homoscedasticity’. Discuss the distributional conditions
for error component Z in which the permutation solution remains valid.

3) With reference to the problem of repeated measurements discussed in this section, extend the
permutation solution to the case in which responses are binary (this corresponds to an extension of
McNemar’s test to k > 2 measurement occasions).

4) Prove that the test statistic T ∗R in Section 2.6.1 is permutationally equivalent to
∑

j (X̄
∗
j ·)

2, which
is easier for computation.

5) Assume that responses are repeated twice on the same units at two treatment levels and that
units are partitioned into k groups, X = {Xtji , t = 1, 2, j = 1, . . . , k, i = 1, . . . , nj }. Assuming suit-

able homoscedasticity, discuss a solution to the problem in which H0 : {X1j
d= X2j , j = 1, . . . , k}

against a reasonable set of alternatives.

6) With reference to the response model of Problem 5 above, discuss a solution to the problem
where H0 : {(X11 −X12)

d= . . .
d= (Xk1 −Xk2)} against a reasonable set of alternatives.

7) Prove that, with reference to the problem of repeated measurements discussed in this section, the
orbit X/X associated with the data set X contains (k!)n elements and that the set of sufficient statistics
in the presence of block effects is (X1; . . . ;Xn), that is, the set of individual profiles. In accordance
with this result, note that permutations are allowed only within units, and that permutations related
to different units are independent.

8) With reference to the solution of Example 7, 2.6, find a suitable solution when observed differ-
ences X are partitioned into 2k symmetric classes, with k > 2, where symmetry is with respect to
the origin.

9) Discuss a test on paired observations with the assumption that data are ordered categorical and
that paired observations permit us to establish whether responses are either better, equivalent or
worse on one occasion of measurement than on the other. Show that this leads to a version of
McNemar’s test.

10) Extend the test solution for paired observations to the case where the model for responses takes
the multiplicative form XBi = ρ ·XAi + εi , i = 1, . . . , n, so that H0 : {ρ = 1} against H1 : {ρ > 1}.
11) Discuss a permutation solution for paired observations in the case where σA 	= σB .

12) Show that when there are ties in Problem 9, that is, when there is at least one instance of
no variations in the categorical responses, a solution not restricted to non-null differences implies
auxiliary randomization (Lehmann, 1986).

13) With reference to Remark 3, 2.1.2, prove that if the ith unit has density distribution fi , then
the set of absolute differences {|Xi |, i = 1, . . . , n} is a set of jointly minimal sufficient statistics in
H0.

14) With reference to the problem of Example 6, 2.6.1, show that one suitable permutation solution
when observed differences X are partitioned into 2k symmetric classes, with k > 2, where symmetry

is with respect to the origin and when the alternatives are one-sided, as in H1 = {Y1
d
>Y2}, is T ∗> =∑

(k+1)≤i≤2k[f ∗(i)− f0(i)]/
√
f0(i). Show that if f0(i) are not small, the permutation asymptotic

distribution of T ∗> is normal with mean 0 and variance k.

15) With reference to Example 3, 2.6, prove that two tests T ∗ = (∑i XiY
∗
i − nX̄Ȳ ∗

)
/
[∑

i (Xi−
X̄)2 ·∑i (Y

∗
i − Ȳ ∗)2

]1/2
and T ∗β =

∑
i XiY

∗
i are permutationally equivalent.



64 Permutation Tests for Complex Data

2.7 Examples of Multi-Sample Problems
In this section we present some typical examples of multi-sample permutation problems.

Example 1. Testing for the equality of two distributions.
Let us assume that observations from a response variable X on n units are partitioned into two

groups corresponding to two levels of a symbolic treatment, of respectively n1 and n2 units. Let
us also assume that the response variables in the two groups have unknown distributions P1 and
P2, both defined on the probability space (X,B), where X is the sample space and B is an algebra
of events. Hence, the sample data are

X = {Xji, i = 1, . . . , nj , j = 1, 2
}
.

It is generally of interest to test the null hypothesis H0 : {P1 = P2}, that the two groups have
the same underlying distribution, against the alternative H1 : {P1 < (or 	=, or >) P2}, that events
A ∈ B exist such that P1(A) < (or 	=, or >) P2(A).

This problem may be dealt with in several ways, according to specific side-assumptions regarding
the meaning of the concept of inequality in distribution . The next four examples cover some
particular specifications of this concept. Two more specifications, the solution of which involves
the NPC method, are discussed in Examples 3–6 and 8, 4.6.

Example 2. Comparison of two locations.
The first specification of the concept of inequality in distribution is concerned with the so-

called comparison of two means (or, more generally, of two locations). This presumes that side-
assumptions for the problem are such that the response data behave according to an additive model
such as

Xji = µ+ δj + σ(δj ) · Zji, i = 1, . . . , nj , j = 1, 2,

where Zji are exchangeable random deviates with null mean values and unknown distribution P ,
µ is an unknown population constant, δj is the so-called fixed effect at the j th treatment, and
σ(δj ) is a scale coefficient which may be a monotonic function of δj or of |δj | and satisfies the
condition σ(0) = σ , provided that the two underlying CDFs F1 and F2 do not cross each other
(see Section 2.1.1). Some other specifications of this model are presented in Section 1.10.1.

Thus, the hypotheses become H0 : {δ1 = δ2} against H1 : {δ1 < (>) δ2}, and a test statistic is
T =∑i X1i/n1 −

∑
i X2i/n2, or any of its permutationally equivalent forms (we will see in Section

3.1 that this test is conditional and unconditional uniformly unbiased). Noting that H0 implies
exchangeability of the data between two groups, the set of sufficient statistics in H0 is the pooled
data set X = X1

⊎
X2 (see Section 2.1.2). It should be emphasized here that errors σ(δj ) · Zji are

exchangeable between the two groups only in H0.

Remark 1. In order to establish whether the test T is an exact permutation test (see Remark 1,
2.2.4 and Proposition 2, 3.1.1), let us consider its permutation structure, that is, the representation
of a generic permutation of T in terms of treatment effects and errors.

To this end, let us imagine that ν∗ data are randomly exchanged between two groups. Hence,
after very simple calculations, we see that the permutation structure of T is

T ∗ =
∑
i

X∗1i/n1 −
∑
i

X∗2i/n2

=
(

1− 2ν∗

n1

)
δ1 −

(
1− 2ν∗

n2

)
δ2 +

∑
i

σ (δ∗1)Z
∗
1i/n1 −

∑
i

σ (δ∗2)Z
∗
2i/n2.



Theory of One-Dimensional Permutation Tests 65

This structure shows that if and only if H0 is true, T ∗ depends only on a permutation of exchangeable
errors because all other quantities (µ, δ1, and δ2) simplify. Obviously, in H1, the permutation
structure depends also on treatment effects, but not on µ. Hence, this is an exact permutation test
for testing H0 : {δ1 = δ2} against H1 : {δ1 < (>) δ2}. Moreover, with random effects � such that
Pr{� ≥ 0} = 1 and Pr{� = 0}> 0, that is, when treatment is ineffective with some units, it is easy
to prove that the test statistic T ∗ =∑i X

∗
1i is exact and unbiased (see Problems 13, 2.9 and 41,

3.9). Furthermore, as the non-null permutation structure is monotonically ordered with respect to
δ2 − δ1 (see Theorem 2, 3.1.1), this test is at least unbiased.

Remark 2. Finding a proper solution to a problem such as the divergence of two medians or of
two trimmed means is also straightforward. In order to obtain such an extension, we should assume
that sample medians are proper indicators of treatment effects. Thus, one effective testing strategy
is to find data transformations Y = ϕ(X), so that an additive model such as that of the example is
appropriate, at least approximately. Indeed, it is known that when an additive model for responses
occurs, then test statistics based on sample means, such as T above, are often approximately
‘good’ tests provided that error components Z have finite mean. In Example 3, 4.6, a multi-aspect
permutation solution is presented for jointly testing for a set of different transformations of interest
within the NPC method.

Example 3. Testing for equality of two distributions.
The second specification of the concept of inequality in distribution is concerned with the so-

called comparison of two distributions P1 and P2. This is a typical goodness-of-fit problem which
gives rise to quite a large family of solutions, the best-known representatives of which are the
Kolmogorov–Smirnov and Anderson–Darling test statistics. Both are based on the divergence of
two EPMs, one from each data group. For more details, see, for example, D’Agostino and Stephens
(1986).

Let us use P̂j (A) =∑i I(Xji ∈ A)/nj , j = 1, 2, where A is any event of the algebra A (see
Definition 2, 2.1.3) to denote the two EPMs. Hence, a proper permutation test for H0 : {P1 = P2}
against H1 : {P1 	= P2}, in the spirit of the Kolmogorov–Smirnov statistic, is

T ∗KS = cn1n2 · sup
A∈B

∣∣∣P̂ ∗1 (A)− P̂ ∗2 (A)

∣∣∣ ,
where cn1n2 is a normalizing constant, B is a suitable non-empty collection of events and P̂ ∗j (A) =∑

i I(X∗ji ∈ A)/nj , j = 1, 2, are two permutation EPMs. Note that we usually only require B to
be a proper subset of A, although they may coincide. Observe that this solution does not assume
continuity for X, as it may be applicable to any kind of variable. For numeric variables for which
probability measures are equivalent to CDFs, it may be simplified into

T ∗KS = cn1n2 · sup
t∈R1

∣∣∣F̂ ∗1 (t)− F̂ ∗2 (t)
∣∣∣ ,

where the permutation EDFs are F̂ ∗j (t) =
∑

i I(X∗ji ≤ t)/nj , j = 1, 2.
Of course, a solution in the spirit of the Anderson–Darling test is

T ∗2
AD = n ·

∫ ∞

−∞

(
F̂ ∗1 (t)− F̂ ∗2 (t)

)2 ·
(
F̂ (t)[1− F̂ (t)]

)−1
dF̂ (t),

where F̂ (t) = [n1 · F̂1(t)+ n2 · F̂2(t)]/n is the pooled EDF, which in turn is a permutation invariant
function (see Proposition 2, 2.1.3) the role of which is to standardize differences F̂ ∗1 (t)− F̂ ∗2 (t) for
every t .
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In the case of stochastic dominance alternatives, when H1 : {F1(h) ≥ F2(h), h = 1 . . . , k} where
inequality becomes strict with probability greater than zero and the reverse inequality is assumed
not possible, the Anderson–Darling type permutation test becomes

T ∗AD =
n∑

i=1

[
F̂ ∗1 (Xi)− F̂ (Xi)

]
·
(
F̂ (Xi)[1− F̂ (Xi)]

)−1/2
.

Example 4. Goodness-of-fit test for ordered categorical variables.
The third specification of the concept of inequality in distribution is concerned with the so-called

goodness-of-fit for ordered categorical variables (see also Section 2.8).
Let us assume that a given ordered categorical variable X is partitioned into k ≥ 2 classes

{Ah, h = 1, . . . , k}, in the sense that relationships such as Ah ≺ Aj have a clear meaning for
every pair (1 ≤ h < j ≤ k). Let us also assume that the data are partitioned according to two
levels of a symbolic treatment. In other words, given two independent random samples Xj = {Xji ,
i = 1, . . . , nj }, j = 1, 2, we wish to test the hypotheses

H0 :
{
X1

d= X2

}
= {F1(h) = F2(h), ∀h = 1, . . . , k},

that is, H0 :
{⋂

h[F1(h) = F2(h)]
}
, against the non-dominance alternative H1 : {X1

d

	= X2} ={⋃
h[F1(h) 	= F2(h)]

}
, where Fj (h) = Pr{Xj ≤ Ah}, j = 1, 2, represent an analogue of a CDF

for categorical variable Xj in class Ah. Of course, H1 defines the inequality in distribution of X1

with respect to X2. Observed data are usually organized in a 2× k contingency table. Cumulative
distribution functions Fj are estimated by the corresponding EDFs: F̂j (h) =

∑
i I(Xji ≤ Ah)/nj ,

h = 1, . . . , k, j = 1, 2. Observe that in this setting the whole data set X = X1
⊎

X2 and the
set of marginal frequencies {n1, n2, f·1, . . . , f·k}, where f·h =

∑
j I(Xji ∈ Ah), are both sets of

sufficient statistics. Hence, a proper permutation test, in accordance with the Anderson–Darling
approach, is

T ∗2
AD =

k−1∑
h=1

[
F̂ ∗1 (h)− F̂ ∗2 (h)

]2 ·
(
F̂ (h)[1− F̂ (h)]

)−1
,

where F̂ (h) =∑ji I(Xji ≤ Ah)/n and F ∗j (h) =
∑

i I(X∗ji ≤ Ah)/nj , j = 1, 2. Note that all sum-
mands in T ∗2

AD are standardized quantities, except for a permutationally invariant coefficient common
to all h.

Of course, in the case of dominance alternatives, where H1 : {F1(x) ≥ F2(x), x ∈ R1}, this test
becomes

T ∗AD =
k−1∑
h=1

[
F̂ ∗1 (h)− F̂ ∗2 (h)

]
·
(
F̂ (h)[1− F̂ (h)]

)−1/2
.

Example 5. Equality of two nominal distributions.
The fourth specification of the concept of equality in distribution is concerned with the goodness-

of-fit for nominal (unordered) categorical variables, also referred to as equality of two nominal
distributions. As in the previous example, let us assume that a given nominal variable X is par-
titioned into k ≥ 2 non-overlapping classes {Ah, h = 1, . . . , k}, and that the data are grouped
according to two levels of a symbolic treatment. In other words, given two independent random
samples Xj = {Xji , i = 1, . . . , nj }, j = 1, 2, we wish to test the hypotheses

H0 :
{
X1

d= X2

}
=
{⋂

h
[p1(h) = p2(h)]

}
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against

H1 :

{
X1

d	= X2

}
=
{⋃

h
[p1(h) 	= p2(h)]

}
,

where pj (h) = Pj (Ah). In this setting, as in Example 4 above, the set of marginal frequencies
{n1, n2, f·1, . . . , f·k}, where the marginal frequencies f·h =

∑
ji I(Xji ∈ Ah) and the whole data

set X = X1
⊎

X2 are still sets of sufficient statistics in H0. A very popular permutation test is
Pearson’s well-known chi-square,

T ∗2 =
∑

jh

nj · [p∗j (h)− p̂(h)]2

p̂(h)
,

where p∗j (h) =
∑

i I(X∗ji ∈ Ah)/nj = f ∗jh/nj and p̂(h) = f·h/n, j = 1, 2, h = 1, . . . , k. Note that
if for some classes f·h = 0, then these may be discarded from the analysis without loss of gener-
ality. In the null hypothesis, the permutation distribution of T ∗2, when sample sizes are large and
|2pj (h)− 1| are not too close to 1, is well approximated by that of a central chi-square with k − 1
degrees of freedom. However, it is worth noting that T ∗2 is an exact permutation test because its null
distribution depends only on exchangeable errors (see Remark 1, 2.2.4 and Proposition 2, 3.1.1);
thus, avoiding well-known difficulties related to asymptotic approximations, its null distribution
may be evaluated by a CMC method or by exact calculation.

Essentially similar to T ∗2 and partially in the spirit of Anderson–Darling, with obvious notation,
is the test statistic

T ∗2
fAD =

∑
jh

(
f ∗jh
nj

− f·h
n

)2/[
f·h · (n− f·h)

n− nj

nj

]
.

Remark 3. Note that T ∗2 and T ∗2
fAD may also be used for the ordered categorical testing problem,

whereas T ∗2
AD in Example 4 can only be used for testing with ordered categorical variables.

Remark 4. There are many different permutation solutions for testing the equality in distribution of
two nominal variables; see, for instance, Cressie and Read (1988), Agresti (2002) and Section 2.8;
see Chapter 6 for multivariate situations.

Example 6. Testing for equality of C > 2 distributions.
This problem is simply an extension to C > 2 distributions of those shown in Examples 1–3.

Let us assume that data from a real-valued response variable X and observed on n units are par-
titioned into C > 2 groups, in accordance with C levels of a symbolic treatment of respectively
n1, . . . , nC units. Let us also assume that responses behave in accordance with unknown distri-
butions P1, . . . , PC , all defined on the same probability space (X,A). Hence, the sample data are
X = {Xji, i = 1, . . . , nj , j = 1, . . . , C

}
.

We present two different situations: one in which the null hypothesis is H0 : {P1 = . . . = PC},
that the C groups have the same distribution, against the alternative H1 : {H0 is not true}, that at
least one distribution is different from one of the others; and a second concerned with tests for the
equality of C > 2 means, the so-called one-way ANOVA design.

The problem concerning the equality of C continuous distributions may be solved, for example,
by an Anderson–Darling type test, which is based on the statistic

T ∗2
AD =

C∑
j=1

nj∑
i=1

[
F̂ ∗j (Xji)− F̂·(Xji)

]2 ·
(
F̂·(Xji)[1− F̂·(Xji)]

)−1
,
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where F̂·(x) =
∑

j nj · F̂j (x)/n is the pooled EDF, and all the other symbols have obvious
meanings.

In order to solve the one-way ANOVA problem, let us presume that side-assumptions are such
that the response data behave according to an additive model such as

Xji = µ+ δj + σ(δj ) · Zji, i = 1, . . . , nj , j = 1, . . . , C,

where the coefficients have the same meanings as in Example 2 above and treatment effects satisfy
the constraint

∑
j δj = 0. In particular, when σ(δj ) = σ , we have the so-called homoscedastic

situation. Other specifications of this model are presented in Section 1.11.
Of course, without loss of generality, the hypotheses for this problem become H0 : {δ1 = . . . =

δC = 0} against H1 : {H0 is not true}, and a test statistic is T =∑j nj X̄j
2, where X̄j =

∑
i Xji/nj .

Note that this statistic is permutationally equivalent to
∑

j nj (X̄j − X̄·)2/
∑

ji (Xji − X̄j )
2, where

X̄· =
∑

ji Xji/n is the pooled mean. A set of sufficient statistics in H0 is the pooled set of observed
data X = X1

⊎
. . .
⊎

XC . It should be observed that errors σ(δj ) · Zji are exchangeable with respect
to groups only in H0.

In order to prove that T is an exact permutation test (see Remark 1, 2.2.4 and Proposition 2,
3.1.1), let us consider its permutation structure (see Remark 1 above), and assume that ν∗hj data are
randomly moved from the hth to the j th group, where

∑
h ν

∗
hj = nj , j = 1, . . . , C, and where ν∗hh

represents the number of data which remain in the hth group. After very simple calculations, we

see that T ∗ =∑j

[∑
i

(
δ∗j + σ(δ∗j )Z

∗
ji

)]2
/nj . This permutation structure shows that, if and only

if H0 is true, T ∗ depends only on a permutation of exchangeable errors, whereas in H1 it depends
essentially on treatment effects as well. Hence, as the permutation null distribution of T , given X,
depends only on exchangeable errors, T is an exact permutation test. In the next chapter, we shall
discuss the properties of conditional and unconditional unbiasedness.

Remark 5. The literature deals with two concepts related to exactness for permutation tests. The
most important one is related to the exchangeability of observed data in H0 and to a statistic T , the
permutation distribution of which depends only on exchangeable errors (see Remark 1, 2.2.4 and
Proposition 2, 3.1.1). The other concept is related to the algorithms for evaluating the permutation
distribution of a given test statistic, either approximate or exact, according to the previous concept.
For instance, when a CMC procedure is used to evaluate the permutation distribution of any test,
then an unbiased estimate of this distribution is obtained. Of course, as the number B of CMC
iterations increases, this estimate becomes stochastically more accurate. In this case, we say that the
exact permutation distribution is known except for a statistical estimation. Of course, when proper
routines for exact calculations are available, the distribution of a test may be known exactly.

Example 7. Two-way ANOVA without interaction.
The two-way ANOVA design admits some simplifications, in accordance with assumptions

related to the response model. One of these assumes that the interaction effect is not present
and that there is only one unit per block, so that factor B is generally of no practical interest (see
Example 9 below). In the notation of Example 6 above, the related response model becomes

X = {Xji = µ+ aj + bi + Zji, j = 1, . . . , J, i = 1, . . . , n}.

Here the hypotheses of interest are H0 :
{
aj = 0, j = 1, . . . , J

}
against H1 :

{
some aj 	= 0,

j = 1, . . . , J }. We emphasize that a set of sufficient statistics in H0 is the set of individual response
profiles, X = (X1; . . . ;Xn), because individual (or block) effects bi , playing the role of unknown
nuisance entities, may assume different values. This implies that observations are exchangeable only
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within each unit and that permutations associated to different units are independent (see Remark 3,
2.1.1). Accordingly, an appropriate test statistic (see also Section 2.6.1) is

T ∗R =
∑

j nj (X̄
∗
j · − X̄··)2∑

ji (X
∗
ji − X̄∗j · − X̄·i + X̄··)2

,

where X̄∗j · =
∑

i X
∗
ji/n, j = 1, . . . , J , X̄·i =

∑
j Xji/J =

∑
j X

∗
ji/J , i = 1, . . . , n, because

exchanges are within each unit, and X̄·· = (nJ )−1∑
ji Xji respectively are column, row and

global means.
A solution based on within-unit rank transformation is the well-known Friedman’s rank test in

Section 2.6.1 (see Friedman, 1937).

Remark 6. It is interesting to note that here the permutation structure of the test T ∗R =
∑

j (X̄
∗
j · −

X̄··)2/
∑

ji(X
∗
ji − X̄∗j · − X̄·i + X̄··)2 does not depend on block effects bi , so that it is exact for

testing H0 against H1 independently of block effects (see Problem 12, 2.9).

Example 8. General two-way ANOVA.
In the balanced fixed effects homoscedastic two-way ANOVA design, in which two factors A

and B are presumed to be tested at respectively J and I levels, responses are assumed to behave
according to the model

X = {Xji , j = 1, . . . , J, i = 1, . . . , I }
= {Xjir = µ+ aj + bi + (ab)ji + Zjir , j = 1, . . . , J, i = 1, . . . , I, r = 1, . . . , n},

where Xjir are the responses, µ is a population constant, aj is the effect of factor A at the j th level,
bi is the effect of factor B at the ith level, (ab)ji is the jith interaction effect, n is the number of
independent runs of jith treatment, Zjir are exchangeable random errors with null mean value and
unknown distribution P (note homoscedasticity and E(Z) = 0), Xji are the data of the jith group,
and the effects satisfy the side-conditions∑

j
aj =

∑
i
bi =

∑
j
(ab)ji =

∑
i
(ab)ji = 0.

The null overall hypothesis is generally written as

H0 :
{[⋂

j
(aj = 0)

]⋂[⋂
i
(bi = 0)

]⋂[⋂
ji
((ab)ji = 0)

]}
,

and the overall alternative as H1 : {H0 is not true}. Let us briefly discuss these hypotheses (see also
Chapter 11). The experimenter’s greatest interest is usually in testing separately for main effects
and interactions. Hence, in the present case there are three separate null hypotheses of interest:
(i) H0A : {aj = 0, j = 1, . . . , J } against H1A : {H0A is not true}, irrespective of the truth of H0B

and/or H0AB ; (ii) H0B : {bi = 0, i = 1, . . . , I } against H1B , irrespective of the truth of H0A and/or
H0AB ; and (iii) H0AB : {(ab)ji = 0, j = 1, . . . , J, i = 1, . . . , I } against H1AB , irrespective of the
truth of H0A and/or H0B . Thus, the aim is to find three separate and possibly uncorrelated tests.

This problem is fully discussed in Pesarin (2001) and Basso et al. (2009a), for both balanced
and unbalanced situations within the conditionality principle, when conditioning on a minimal set
of jointly sufficient statistics under three partial null hypotheses H0A

⋃
H0B

⋃
H0AB . A set of

sufficient statistics for such a design is X = {X11; . . . ;XJ I }, that is, the data set is partitioned
in accordance with treatment groups. This implies that no datum can be exchanged between two
different blocks without compromising the separability of effects, so that within naive exchanges
effects remain confounded. So we should look at a kind of restricted permutation strategy.
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To find that {X11; . . . ;XJ I } is a set of sufficient statistics and to characterize the related per-
mutation sample space X/X, let us denote by f the density corresponding to the underlying
unknown distribution P . The global likelihood associated with the data set is L(X; a,b, ab) =∏

ijr f [Xijr ; ai, bj , (ab)ij ]. Two points, X and X′, lie in the same orbit of a minimal sufficient set
of statistics (see Section 2.1.2) if and only if the likelihood ratio

L(X; a,b, ab)
L(X′; a,b, ab)

=
∏

ijr f [Xijr ; ai, bj , (ab)ij ]∏
ijr f [X′ijr ; ai, bj , (ab)ij ]

= ρf (X,X′)

is independent of all effects (a,b, ab) and of the underlying likelihood model f . This occurs if
and only if X′ = (X′11; . . . ;X′J I ), where X′ji is a proper permutation of Xji . Thus, the associated
permutation sample space is X/X = X/X11 × . . .× X/XJ I

, which corresponds to the cartesian product
of J I separate subspaces.

Remark 7. It is worth noting that the pooled data set X11
⊎

. . .
⊎

XJ I is not sufficient for separate
testing of three null hypotheses (H0A, H0B , H0AB) in a replicated complete factorial design, whereas
it is sufficient for H ′

0 : {H0A
⋂

H0B
⋂

H0AB}. Straightforward proofs of these statements are left
to the reader.

Remark 8. It is well known that solutions based on the assumption of normality for errors are
known to be positively correlated. For a simple proof of this fact, let us suppose that variance
estimates of effects and errors are respectively σ̂ 2

A, σ̂ 2
B , σ̂ 2

AB and σ̂ 2
Z . Then the relationship

E

[
σ̂ 2
A

σ̂ 2
Z

· σ̂
2
B

σ̂ 2
Z

]
= E(σ̂ 2

A) · E(σ̂ 2
B) · E(1/σ̂ 4

Z)>E(σ̂ 2
A) · E(σ̂ 2

B) ·
[
E(1/σ̂ 2

Z)
]2

is always true provided that 0 < E(1/σ̂ 2
Z) <∞. Thus, the two statistics σ̂ 2

A/σ̂
2
Z and σ̂ 2

B/σ̂
2
Z are

positively correlated, as are all the others.
Hence, no uncorrelated testing for factors and interactions occurs within a parametric setting,

unless σ 2
Z is known or unless an arbitrary random partition of σ̂ 2

Z into three independent components
is taken into consideration. Moreover, in a nonparametric rank based setting, only heuristic solutions
have been proposed in the literature since Friedman (1937). Among these only a few are proper
exact solutions in very specific situations. For instance, when interaction is null by assumption, the
Friedman test, based on ranks, is exact (see Example 7 above).

Synchronized Permutations

To introduce the concept of synchronized permutations as a suitable kind of restricted permutation,
let us refer to a replicated 2× 2 complete factorial design. Table 2.3 lists the effects of combinations
of factor levels where X = (X11;X12;X21;X22) is the set of jointly sufficient statistics in the
separate set of null hypotheses {H0A,H0B,H0AB }.

Table 2.3 Effects of treatment combinations in a 22 factorial

A1 A2

B1 a, b, ab −a, b,−ab

B2 a,−b,−ab −a,−b, ab
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Let us first consider the permutation structure of two intermediate statistics for comparing factor
A separately at levels 1 and 2 of factor B : T11/21 = aTA|1 =

∑
r Y11r −

∑
r Y21r and T12/22 =

aTA|2 =
∑

r Y12r −
∑

r Y22r .
Let us imagine that ν∗1 data from block A1B1 are exchanged with ν∗1 data from block A2B1. In

addition, let us suppose that ν∗2 data are exchanged from blocks A1B2 and A2B2. After elementary
calculations, the permutation structures of the two intermediate statistics are respectively

aT ∗A|1 = 2(n− 2ν∗1 )(a + ab)+ n(Z
∗
11 − Z

∗
21)

and

aT ∗A|2 = 2(n− 2ν∗2 )(a − ab)+ n(Z
∗
12 − Z

∗
22),

where Z
∗
ij =

∑
r Z

∗
ijr/n are sample means of permutation errors relative to the ij th block.

Effects a and ab are confounded in both aT ∗A|1 and aT ∗A|2. However, if we synchronize the
permutations of two intermediate statistics by imposing that ν∗1 = ν∗2 = ν∗, then aT ∗A = aT ∗A|1 +
aT ∗A|2 and aT ∗AB = aT ∗A|1 − aT ∗A|2 have respective permutation structures given by

aT ∗A = 4(n− 2ν∗) · a + n(Z
∗
11 + Z

∗
12 − Z

∗
21 − Z

∗
22)

and

aT ∗AB = 4(n− 2ν∗) · ab + n(Z
∗
11 − Z

∗
12 − Z

∗
21 + Z

∗
22).

Thus, aT ∗A , being dependent only on effect a and on a linear combination of exchangeable errors,
gives a separate exact permutation test for H0A, independent of the truth of H0B and/or H0AB .
Separately, aT ∗AB , being dependent only on the interaction effect ab and on a linear combination
of exchangeable errors, gives an exact permutation test for H0AB , independent of the truth of H0A

and/or H0B . Note that by observing that two error components are mutually orthogonal, the two
separate tests, aT ∗A and aT ∗AB , are uncorrelated.

In order to complete the analysis we must take into consideration: (i) the intermediate statistics for
contrasting factor B separately for levels 1 and 2 of factor A, T11/12 = bTB|1 =

∑
r Y11r −

∑
r Y12r

and T21/22 = bTB|2 =
∑

r Y21 −
∑

r Y22; and (ii) the intermediate statistics for cross-comparison
of A1B1 with A2B2, and A1B2 with A2B1, T11/22 =

∑
r Y11r −

∑
r Y22r and T12/21 =

∑
r Y12r −∑

r Y21r . Of course, these new intermediate statistics are considered independently of aTA|1 and
aTA|2 and obtained by independent synchronized permutations. Thus, we consider permutations
between paired blocks (A1B1, A1B2), (A2B1, A2B2), and (A1B1,A2B2), (A1B2,A2B1) again by
randomly exchanging ν∗ data.

Therefore, the permutation structure of bT ∗B = bT ∗B|1 + bT ∗B|2 is given by 4(n− 2ν∗) · b +
n(Ẑ∗11 − Ẑ∗12 + Ẑ∗21 − Ẑ∗22) and that of bT ∗AB =b T ∗B|1 − bT ∗B|2 by 4(n− 2ν∗) · ab + n(Ẑ∗11 − Ẑ∗12 −
Ẑ∗21 + Ẑ∗22), where Ẑ∗ij are permutations of sample means of error components when ν∗ elements
are randomly exchanged between each pair of blocks. As bT ∗B depends only on effect b and on
a linear combination of exchangeable errors, it gives a separate exact permutation test for H0B ,
independent of the truth of H0A and/or H0AB . Moreover, bT ∗AB depends only on effect ab and on
a linear combination of exchangeable errors, so that it gives a separate exact permutation test for
H0AB , independent of the truth of H0A and/or H0B .

In addition, the permutation structure of T̃ ∗A = T ∗11/22 + T ∗12/21 is 4(n− 2ν∗) · a + n(Z̃∗11 + Z̃∗12 −
Z̃∗21 − Z̃∗22) and that of T̃ ∗B = T ∗11/22 − T ∗12/21 is 4(n− 2ν∗) · b + n(Z̃∗11 − Z̃∗12 + Z̃∗21 − Z̃∗22), where
Z̃∗ij are permutations of sample means of error components in cross-comparisons. Thus, they provide
separate exact permutation tests for a and b, respectively.
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Remark 9. In this analysis, we have two partial tests for each effect: for separately testing
{a = 0}, we have aT ∗A and T̃ ∗A ; for {b = 0}, bT ∗B and T̃ ∗B ; for {ab = 0}, aT ∗AB and bT ∗AB . It should
be observed that these pairs of partial tests are based on independent permutations; in addition,
all six partial tests are uncorrelated (e.g. aT ∗A and aT ∗AB are uncorrelated), because their error
components are based on orthogonal combinations of permuted sample means of errors. Thus,
in order to complete the test procedure, we use one combination for each pair of tests on the
same effect, T ′′∗A = ψA(

aT ∗A, T̃
∗
A), T ′′∗B = ψB(

bT ∗B , T̃
∗
B ) and T ′′∗AB = ψAB(

aT ∗AB , bT ∗AB), where ψh,
h = A,B,AB, are suitable combining functions (see Section 4.2.4).

Alternatively, and in order to save computation time, instead of using cross-comparisons, we
may consider using only one partial test for each effect, such as aT ∗A , bT ∗B , and aT ∗AB or bT ∗AB . As
a result of this choice, we have a kind of weakly randomized solution given by T ∗A = aT ∗A , T ∗B =
bT ∗B , and T ∗AB = aT ∗AB or T ∗AB = bT ∗AB . This solution is compatible with the idea of using only
one realignment for each main effect (see Chapter 11). However, we observe that, in general, T ′′∗h

and T ∗h , h = A,B,AB, always give rise to almost coincident inferences, because in both cases all
the observed data participate in the synchronized permutation procedure, although in T ∗h they are
not permuted in all possible ways. However, both are invariant with respect to the experimenter’s
choice. In this sense, the impact of this choice on inferential conclusions is substantially irrelevant.
Thus, henceforth, we mainly consider these weakly or almost non-randomized solutions.

Remark 10. Using the same arguments above, we observe that if interaction effects are assumed
not to be present, so that (ab)ji = 0, then the two separate sets of partially pooled data X11

⊎
X12

and X21
⊎

X22 are separately sufficient for H0A, conditionally on levels B1 and B2, respectively.
This allows us to obtain two independent partial tests for H0A|B1 and H0A|B2 . Hence, for testing
H0A, any combination of two independent tests gives the solution.

Remark 11. The permutation distribution of T ′′∗h , h = A,B,AB, in H0h depends only on per-
mutations of exchangeable errors, so that each test is permutationally exact. Moreover, the three
separate tests are uncorrelated. In addition, T ′′∗h are proper tests for one-sided alternatives, whereas
(T ′′∗h )2 or |T ′′∗h | are proper tests for two-sided alternatives.

Remark 12. Let us consider the data set (X11;X12;X21;X22) as a point in the sample space, in
the sense that all its coordinates are geometrically determined. Thus (i) if the permutation procedure
in the first pair of blocks exchanges elements in exactly the same corresponding coordinates as
that applied to the other pair of blocks, so that exactly the same permutation is applied to each
pair of blocks, giving rise to constrained synchronized permutations (CSP), then the cardinality of
the permutation support of intermediate and separate tests for restricted alternatives is

(2n
n

)
, where

n is the number of replicates in each block. Otherwise (ii) if permutations applied to each pair
of blocks exchange the same number of elements after shuffling data in each block , giving rise
to unconstrained synchronized permutations (USP), then the cardinality of the permutation support
of separate tests for restricted alternatives becomes

∑
ν∗
(
n
ν∗
)4

. We observe that CSP allow us to
control the minimum attainable α-size of the test, although in general USP give lower minimum
attainable α-sizes. For their use, see Basso et al. (2009a) and Chapter 11.

Example 9. A problem with repeated measurements (revisited).
One more simplification assumes that n units are partitioned into C ≥ 2 groups and that a

variable X is observed. Groups are of size nj ≥ 2, j = 1, . . . , C, with n =∑j nj . Units belonging
to the j th group are presumed to receive a treatment at the j th level. All units are observed on k

fixed time occasions τ1, . . . , τk , where k is a finite integer. Hence, for each unit we observe the
profile of a stochastic process, and profiles related to different units are assumed to be stochastically
independent. A profile may be viewed either as the outcome of an underlying stochastic process or
as a k-dimensional random variable.
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Let us assume that the response model is Xji(t) = µ+ ηj (t)+ δji (t)+ σ(ηj , t) · Zji(t),
i = 1, . . . , nj , j = 1, . . . , C, t = 1, . . . , k, where Zji(t) are error terms assumed to be i.i.d. with
respect to units and treatment levels but not independent of time; µ is a population constant;
coefficients ηj (t) represent treatment effects and may depend on time; coefficients δji (t) represent
the so-called individual effects; and σ(ηj , t) are time-varying scale coefficients which may depend,
through monotonic functions, on treatment effects ηj or |ηj |, provided that the stochastic ordering
of responses is satisfied. Hence, the whole set X of observed data is organized in a two-way
layout. Alternatively, X may be organized as a one-way layout of profiles X = {Xji , i = 1, . . . , nj ,
j = 1, . . . , C}, where Xji = {Xji(t), t = 1, . . . , k} indicates the jith observed profile. Let us
assume that the null hypothesis of interest is that there are no differences in time effects due to
treatment, so that H0 : {X1

d= . . .
d= XC} is equivalent to H0η : {η1 (t) = . . . = ηC (t) ,∀t} against

H1 : {at least one equality does not hold}. Distributional assumptions on responses allow us to
suppose that the pooled set of individual profiles X = X1

⊎
. . .
⊎

XC is a set of sufficient statistics
for the problem in H0. Moreover, it should be emphasized that H0 implies that the observed
individual time profiles are exchangeable with respect to treatment levels (see Chapter 7 for a
wider discussion).

Remark 13. The situation presented in this example is standard for most experimental designs
when units are randomly assigned to treatment levels and are assumed to be homogeneous with
respect to the most important experimental conditions, such as age, sex and health. Thus, the
permutation testing principle applies to observed time profiles.

Remark 14. As the testing problems with repeated measurements are quite complex, especially
when there are more measurements per individual than there are individuals, or when there are
missing values, we shall postpone their discussion to Chapter 7, after the theory and methods of
NPC have been developed.

Example 10. Approximate testing for equality of scale coefficients.
Suppose that we are interested in testing the equality of scale coefficients of two univariate

distributions. To be more specific, let us assume that data are collected according to a response
model Xji = µj + σj · Zji, i = 1, . . . , nj , j = 1, 2, and that the hypotheses are written as

H0 : {σ1 = σ2} =
{
(X1 − µ1)

d= (X2 − µ2)
}

against H1 : {σ1 < (or 	=, or >) σ2}, where µ1 and µ2 are unknown nuisance location parameters
and error components Zji are i.i.d. with null mean and unknown distribution P . Note that under
these assumptions the Zji are exchangeable in both H0 and H1.

This problem has been widely studied within the nonparametric approach based on ranks; see,
for instance, Ansari and Bradley (1960), Moses (1963) and Witting (1995). As it does not admit
of any exact nonparametric non-randomized solution, unless µ1 and µ2 are known, here we would
like to examine an approximate permutation solution.

For this problem, the pair of data groups X = (X1;X2) is a set of sufficient statistics (see
Section 2.1.2), so that any permutation solution should be referred to it or, equivalently, to
(X̄1; X̄2;Y1;Y2), where Yj = {Yji = Xji − X̄j , i = 1, . . . , nj }, X̄j =

∑
i Xji/nj , j = 1, 2,

because there is a one-to-one relationship between the two sets. It should be noted that, as
Yji = σj (Zji − Z̄j ), then sample deviates Yji are not exactly exchangeable in H0 (see point (ii)
in Remark 2, 2.1.2). However, if µ1 and µ2 were known, then the pooled set of true deviates
Y† = {Xji − µj , i = 1, . . . , nj , j = 1, 2} would be sufficient for the problem and exchangeability
in H0 would be satisfied. Thus, as µ1 and µ2 are unknown, we can only proceed approximately by
conditioning with respect to pooled sample deviates Y1

⊎
Y2, which may be used to estimate Y†.
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Then, according to Good (2000), this problem may be approximately solved, for instance, by
the test statistic

T ∗σ = ϕ
(∑

i
Y ∗2

1i /n1 −
∑

i
Y ∗2

2i /n2

)
,

the permutations are obtained as in Section 2.2.5, and the function ϕ(·) corresponds to +(·) if
the alternatives are ‘>’, −(·) if ‘<’, and the absolute value | · | if ‘	=’. Note that this solution
becomes exact asymptotically. The test statistic for comparison of mean absolute deviates, T ∗Aσ =
ϕ
(∑

i |Y ∗1i |/n1 −
∑

i |Y ∗2i |/n2
)
, may also be of interest.

Example 11. Testing for equality of two means when a covariate is observed.
Suppose that a covariate X is observed together with a response variable Y , so that in

a two-sample design the data set is (Y,X) = {Y1i = µ+ δ + β(X1i), i = 1, . . . , n1; Y2i =
µ+ β(X2i ), i = 1 . . . , n2} where β is a regression function as in point (iv) of Remark 2,
2.1.2. Suppose also that the hypotheses are H0 : {(Y1, X1)

d= (Y2, X2)} ≡ {δ = 0} against H1 :

{Y1
d
>Y2|X1

d= X2} ≡ {δ > 0}. H1 emphasizes that treatment effect operates only on the response
Y . This means that the covariate X and regression function β are not affected by treatment. This
problem can be solved, by ignoring the covariate, as in Section 1.10.3. However, as we will see in
Remark 1, 3.2.1, the conditional and unconditional power of a permutation test essentially depends
on the signal to noise ratio δ/σ , in the sense that the larger δ/σ the larger the power. Thus if, as
is usual, by taking account of covariate X the standard deviation reduces we may improve testing
power. To this end we should provide an estimate β̂ of regression β based on the pooled data set
(Y,X). With such an estimate we obtain the empirical deviates Ŷj i = [Yji − β̂(Xji)] which are
exchangeable and so the resulting test statistic becomes T ∗β =

∑
i Ŷ

∗
1i . It is worth noting that, when

β̂ is the least squares estimate, the residual variance σ 2
β (Y |X) does not exceed σ 2(Y ). Thus there

is a gain of inferential efficiency, at least asymptotically. In particular, if β is linear the residual
variance is σ 2

β (Y |X) = (1− ρ2)σ 2(Y ), where ρ is the correlation coefficient, in which case the

signal to noise ratio increases of a factor of 1/
√

1− ρ2.

2.8 Analysis of Ordered Categorical Variables

2.8.1 General Aspects

The statistical analysis of categorical variables (see also Examples 4 and 5, 2.7) is one of the oldest
problems in the area of testing statistical hypotheses (see Cressie and Read, 1988; Agresti, 2002).
Among the several solutions in the literature, it is worth mentioning the geometric solution of Berger
et al. (1998), based on a convex hull test. This section investigates this problem and presents some
solutions from the viewpoint of permutation testing, in particular by considering alternatives of the
so-called stochastic dominance type for ordered categorical variables, also referred to as problems
with restricted alternatives or alternatives under order restrictions (see Silvapulle and Sen, 2005). In
Chapter 6, together with multivariate extensions of stochastic dominance problems, we shall discuss
other solutions which are asymptotically good in the framework of the NPC of a set of dependent
permutation tests. In Section 6.7, a problem of isotonic inference for categorical variables and an
extension to multivariate responses are also discussed.

Without loss of generality, we describe the notation and define the goodness-of-fit testing prob-
lems for univariate ordered categorical variables by means of a two-sample design. We mainly
take into consideration stochastic dominance alternatives because they are rather difficult to cope
with using parametric approaches, especially within the framework of likelihood ratio tests (see
Sampson and Whitaker, 1989; El Barmi and Dykstra, 1995; Wang, 1996; Cohen and Sackrowitz,
1998; Silvapulle and Sen, 2005), and because they are very frequently encountered in practical
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problems. A rather serious difficulty with the maximum likelihood ratio test is that its asymptotic
null distribution depends upon the true unknown nuisance parameters. Thus, it is difficult to justify
its use in practice.

For unrestricted or non-dominance alternatives, we only discuss a few solutions in the spirit
of goodness-of-fit methods. The most common problems related to unrestricted alternatives and
C-sample situations, C > 2, are mentioned as simple extensions of those in Examples 4 and 5, 2.7.

Let us assume that the support of a categorical variable X is partitioned into k ≥ 2 ordered
classes {Ai , i = 1, . . . , k}, in the sense that relationships such as Ai ≺ Aj have a clear meaning for
every pair of subscripts i, j such that 1 ≤ i < j ≤ k. A typical situation occurs when, for instance,
A1 = ‘highly opposed’, A2 = ‘opposed’, up to Ak = ‘highly in favour’ or the like and where ≺
stands for inferior to. In this setting, we assume the existence of a suitable underlying statistical
model for responses (X,A, P ∈ P) where, as usual, X is the sample space of X, A is an algebra
of events, and P a nonparametric family of non-degenerate probability distributions on (X,A).
Moreover, classes Ai , i = 1, . . . , k, may represent either qualitative or quantitative categories,
according to the nature of X. We also assume that data are classified according to two levels of
a symbolic treatment, the expected effect of which is to decrease X2 with respect to X1 towards
smaller categorical values. In other words, given two independent random samples Xj = {Xju,
u = 1, . . . , nj }, j = 1, 2, we wish to test the hypothesis

H0 :
{
X1

d= X2

}
= {F1(Ai) = F2(Ai), i = 1, . . . , k}

against

H1 :

{
X1

d
>X2

}
= {F1(Ai) ≤ F2(Ai), i = 1, . . . , k − 1} ,

where at least one inequality is strict and Fj (Ak) = Pr{Xj ≤ Ak} plays the role of CDF for Xj ,
j = 1, 2. In this context, by assuming that no reverse inequality such as F1(Ai)>F2(Ai), i =
1, . . . , k − 1, is possible, the alternative can also be written as H1 : {⋃k−1

i=1 [F1(Ai) < F2(Ai)]}.
Note that H1 defines the stochastic dominance of X1 with respect to X2.

Observed data are usually organized in a 2× k contingency table as in Table 2.4, where Ai

are the ordered classes, fji =
∑

u I(Xju ∈ Ai) are the observed frequencies, Nji =
∑

s≤i fjs and
N·i = N1i +N2i are the cumulative frequencies, f·i = f1i + f2i are the marginal frequencies, nj =∑

i fji = Njk are the sample sizes, and n = n1 + n2 = N·k is the total sample size.
Note that the CDFs Fj are respectively estimated by the corresponding EDFs: F̂j (Ai) = Nji/nj ,

i = 1, . . . , k, j = 1, 2.
In order to simplify computational problems, we assume that the marginal frequencies f·i , i =

1, . . . , k, are all positive, in the sense that we remove class i from the analysis if f·i = 0. Observe
that, in this setting, the pooled data set X = X1

⊎
X2 and the set of marginal frequencies {n1, n2,

Table 2.4 A typical 2× k contingency table

Ai f1i f2i f·i N1i N2i N·i
A1 f11 f21 f·1 N11 N21 N·1

Ai f1i f2i f·i N1i N2i N·i

Ak f1k f2k f·k N1k N2k N·k
n1 n2 n − − −
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f·1, . . . , f·k} are equivalent sets of sufficient statistics for P in H0, being related by a one-to one
relation except for an irrelevant rearrangement of the data (see Problem 1, 2.9).

Note that the underlying response model is similar to model (M.i) of Section 1.10.1 when
extended to ordered categorical variables. The model for this stochastic dominance problem may
then be formalized by a notation such as X1 = ϕ(Y1)

d= ϕ(Y2 +�), where Yj , j = 1, 2, represent
underlying real-valued responses, ϕ is a function which transforms Y into ordered categorical data,
and � represents a non-negative stochastic effect. This notation is suitable for simulation algorithms
when underlying continuous models are supposed to be generated before data transformation into
ordered classes. This analogy allows us to extend the use of terminology adopted for quantitative
variables to the case of ordered categorical variables. Also note that the solution when k = 2
corresponds to Fisher’s well-known exact probability test , which is UMPS conditionally on the set
of sufficient statistics provided by the set of marginal frequencies.

In addition, it is worth noting that H0 implies that the data of two groups are exchangeable, so that
the permutation testing principle may be properly applied. This implies taking into consideration
the permutation sample space X/X generated by all permutations of pooled data set X, that is, the
set of all possible tables in which the marginal frequencies are held fixed.

Remark 1. The CMC analysis for discrete distributions, especially in multivariate situations,
becomes easier if, in place of the usual contingency tables, the unit-by-unit representation for
sample data is used, that is, the same representation as for quantitative variables obtained by
listing the n individual data X = {Xju, u = 1, . . . , nj , j = 1, 2}. For instance, in the example of
Table 2.4, the unit-by-unit representation of the pooled data set is the vector X = {X(u), u =
1, . . . , n; n1, n2}, in which the first n1 responses are the data belonging to group 1 and the other
n2 are those belonging to group 2. Of course, in this representation, individual responses are
categorical: X(u) ∈ {A1, . . . , Ak}, u = 1, . . . , n.

2.8.2 A Solution Based on Score Transformations

One way of solving the dominance testing problem is by attribution of real-valued scores ω to
classes. This implies transforming Ai into ωi , i = 1, . . . , k, where scores must satisfy the conditions
ωi < ωj if i < j . Hence, one solution is by a permutation comparison of sample means of scores.
That is, by using a permutation test statistic such as

T ∗ω =
k∑

i=1

ωi · (f ∗1i/n1 − f ∗2i/n2) = n1ω̄
∗
1 − n2ω̄

∗
2,

where f ∗ji =
∑

r≤n I(X∗jr ∈ Ai), j = 1, 2, i = 1, . . . , k, are permutation frequencies related to class
Ai , ω̄∗j are permutation sample means of scores, and X∗ = {X(v∗u), u = 1, . . . , n; n1, n2} is a
permutation obtained by the algorithm in Section 2.2.5. Note that, as ωi and f ∗1i + f ∗2i = f·i , i =
1, . . . , k, are fixed values, then T ∗ω is permutationally equivalent to T ∗ω =

∑
i ωi · f ∗1i ≈ n1 · ω̄∗1. Of

course, the observed value of this statistic is T o
ω = Tω(X) =∑i ωi · f1i .

General arguments for this kind of solution are discussed, for instance, in Chakraborti and
Schaafsma (1996) and Gautman (1997). However, it should be noted that, as scores are arbitrarily
established, this solution is often questionable.

Remark 1. If f·i = 1, i = 1, . . . , k, which corresponds to the case in which all data have distinct
(categorical) values, in accordance with a sort of quasi-continuity of categorical variables, and if
ωi = i = R(Ai), that is, by assigning ordinary ranks to ordered classes, then this solution corre-
sponds to a rank test of the Wilcoxon–Mann–Whitney type, whose null distribution can be well
approximated by a PCLT.
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On the other hand, in the general case where f·i ≥ 1, i = 1, . . . , k, frequencies may be regarded
as ties for ranks and thus the null permutation distribution cannot be satisfactorily approximated by
a CLT, unless sample sizes are very large. Hence, it must be evaluated by direct full calculations
or estimated by a CMC. Note that S∗ =∑i i · (f ∗1i − f ∗2i ) is just the divergence of mean-rank
indicators (see Problem 9, 2.9).

Remark 2. It is of interest to use scores ωi = N·i−1 + f·i/2, where N·i−1 = 0 if i = 1. These
scores, which correspond to a sort of average rank common to all values in the ith class, are related
to the so-called normalized EDF as introduced by Ruymgaart (1980) and frequently used in analysis
of discrete data (e.g. Brunner et al., 1995; Munzel, 1999). However, the corresponding statistic T ∗ω =∑

i ωi · f ∗1i also leads to a permutation Wilcoxon–Mann–Whitney type test (see Remark 1, 2.3).

2.8.3 Typical Goodness-of-Fit Solutions

In order to avoid the arbitrary act of assigning scores to classes, in the spirit of goodness-of-fit
methods we may use the same permutation test statistics as in Example 4, 2.7, that is,

T ∗AD =
k−1∑
i=1

N∗
2i · [N·i · (n−N·i )]−1/2 ,

where N·i = N1i +N2i = N∗
1i +N∗

2i , in which N∗
ji =

∑
s≤i f

∗
js , i = 1, . . . , k − 1, j = 1, 2, are per-

mutation cumulative frequencies. Note that TAD corresponds to the discrete version of a statistic
following the Anderson–Darling goodness-of-fit test for dominance alternatives, consisting of a
comparison of two EDFs, standardized by the reciprocals of permutation standard deviations.

Of course, in the spirit of goodness-of-fit testing, many other test statistics may be used. Examples
for restricted alternatives are: (a) T ∗KS = max(F ∗2i − F ∗1i ), which is a discretized version for restricted
alternatives of the Kolmogorov–Smirnov test; (b) T ∗CM =∑i (F

∗
2i − F ∗1i ), which is a discretized

version of the Cramér–von Mises test. In both these examples, F ∗ji = N∗
ji/nj , i = 1, . . . , k, j =

1, 2. It is straightforward to prove that T ∗CM is permutationally equivalent to S∗ in Remark 1,
2.8.2. Also of interest, in a multinomial parametric context, is the likelihood ratio test for restricted
alternatives as discussed in El Barmi and Dykstra (1995) and Wang (1996).

An Example

Let us consider the numerical example in Table 2.5, which gives fictitious data for two samples,
each with 40 units, partitioned into five ordered categories. With this data set, using B = 2000
CMC iterations, we obtain λ̂ω = 0.0894, where scores ωi = i, i = 1, . . . , k, were used for Tω.

Table 2.5 A 2× 5 contingency table of
fictitious data

Ai f1i f2i N1i N2i f·i
A1 8 17 8 17 25

A2 9 6 17 23 15

A3 6 6 23 29 12

A4 8 3 31 32 11

A5 9 8 40 40 17

40 40 80
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The data in Table 2.5 can be obtained by inserting the absolute frequencies of groups 1 and 2,
obtaining their cumulative sum and binding together the four vectors:

f1 = c(8,9,6,8,9) ; f2 = c(17,6,6,3,8);

N1 = cumsum(f1) ; N2 = cumsum(f2);

N = f1+f2 ; n = sum(N);

cbind(f1,f2,N1,N2,N)

The test statistic T ∗D is a sum over k − 1 = 4 categories of the quantities Di = N2i/

[N·i · (n−N·i )]1/2, i = 1, . . . , 4. It is then easier to create a vector containing the Di and then
sum its element to obtain T ∗D . For the observed data:

B=10000

T = array(0,dim=c((B+1),1))

D = N2/sqrt(N*(n-N))

T[1] = sum(D[1:4])

A random permutation of data can be obtained by re-creating the original data that gives the
observed frequencies f1 and f2. Indeed, we have to obtain all possible configurations of frequencies
{f ∗i1, f ∗i2} that satisfy the row and column totals. To do that, first we create the vectors X1 and X2

containing the categories of each observation in each sample (for simplicity the categories are
indicated by the numbers 1, . . . , 5). Later on, concatenate the vectors X1 and X2 in the vector X
and let X.star be a random permutation of X. Create a vector of labels Y indicating the sample.
In this example X1 and X2 are vectors of lengths 40, X and Y have lengths equal to 80. X1 and X2

are such that table(X1) = f1 and table(X1) = f2.
Finally, the frequency table corresponding to a random permutation can be obtained by applying

the function table to the elements of X.star belonging to the first and second sample, respectively.
The permutation values of the test statistic are then obtained as above. Note that this way of
proceeding guarantees that the marginal distributions of Table 2.5 are fixed, therefore we only need
to obtain the frequency distribution in the second sample.

X1<-rep(seq(1,5),f1)

X2<-rep(seq(1,5),f2)

X<-c(X1,X2)

Y <-rep(c(1,2),c(sum(f1),sum(f2)))

for(bb in 2:(B+1)){

X.star=sample(X)

f2.star = table(X.star[Y==2])

N2.star = cumsum(f2.star)

D.star = N2.star/sqrt(N*(n-N))

T[bb] = sum(D.star[1:4])

}

t2p(T)[1]

[1] 0.0635

The corresponding MATLAB code is given below:

F=[8 17

9 6

6 6
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8 3

9 8];

DATA=zeros(0,2);

for i=1:size(F,1)

DATA=[DATA;[[repmat(1,F(i,1),1); repmat(2,F(i,2),1)]

repmat(i,sum(F(i,:)),1) ]];

end

[P T] = NP_Cs_categ(DATA(:,2),DATA(:,1),1000,2,’A2’);

opts.tail=-1

[P T] = NP_Cs_categ(DATA(:,2),DATA(:,1),1000,2,’AD’,opts);

%it is different from A2. A2 does the weighted sum of

%squares (squared values)

%instead AD with tail=0 sum

%absolute values

opts.tail=0

[P T] = NP_Cs_categ(DATA(:,2),DATA(:,1),1000,2,’AD’,opts);

The data set and the corresponding software codes are available from the examples_chapters_
1-4 folder on the book’s website.

Incidentally, it is worth noting that the estimated p-value of TD is a little smaller than the others,
due to its generally better power behaviour with respect to other test statistics based on frequency
distances.

2.8.4 Extension to Non-Dominance Alternatives and C Groups

Let us again assume that C = 2 and that the hypotheses are H0 : {X1
d= X2} against

H1 : {X1

d	= X2} = {
⋃

i[F1(Ai) 	= F2(Ai)]}, that is, a two-sample problem with two-sided or
non-dominance alternatives. In this setting, according to, for instance, permutation one-way
ANOVA testing on score transformations, the test statistic Tω becomes T ∗2

ω = (ω̄∗1)
2, and TAD

becomes T ∗2
AD =

∑k−1
i=1

(
N∗

2i −N∗
1i

)2
[N·i · (n−N·i )]−1, which corresponds to a two-sample

Anderson–Darling test statistic adjusted for discrete variables.
Note that for non-dominance alternatives and nominal categorical variables, the most popular

test statistic is Pearson’s chi-square for 2× k contingency tables. Also appropriate is the Cochran’s
likelihood ratio test (Cochran, 1952),

T ∗2
LR = 2 ·

k∑
i=1

2∑
j=1

f ∗ji · log(f ∗ji/f̂ji ),

where f̂j i = f·i · nj/n are the so-called expected frequencies in H0. This test statistic, in H0, is
asymptotically distributed as a central χ2 with k − 1 degrees of freedom. However, it must be
stressed that both Pearson’s χ2 and Cochran’s T 2

LR , although useful for nominal variables, are
inadequate for ordered categorical variables because they do not take account of the ordering
property of responses.

Of course many other test statistics may be adopted for nominal variables, such as the
Freeman–Tukey square root divergence or the Cressie–Read power divergence families of tests
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(see Cressie and Read, 1988, for a full discussion). Here, within the framework of goodness-of-fit
methods, we only present one permutation solution which is alternative to the chi-square and
based on the statistic

T ∗2
f =

k∑
i=1

(
f ∗2i −

n2 · f.i
n

)2 [
f·i · (n− f·i )

]−1
.

This test statistic, again following the Anderson–Darling approach, in H0 is equivalent to the
sum of standardized squared summands, except for a permutationally invariant coefficient. The
rationale for this solution will be clarified in Chapter 4 because it is essentially an NPC of several
dependent partial tests, by means of the so-called direct combining function (see (g) in Section
4.2.4). However, its behaviour is very close to that of the chi-square.

Extensions of hypotheses and tests to C > 2 groups are straightforward. Here, we only mention
one extension of T 2

D for ordered variables and one extension of T 2
f for nominal variables and, of

course, for unrestricted alternatives. In terms of our notation, such extensions are clearly

T ∗2
AD =

C∑
j=1

k−1∑
i=1

(
F ∗ji −

_
F i

)2 [
F̄i · (1− F̄i) · (n− nj )/nj

]−1
,

where
_
F i = N·i/n and N·i =

∑
j Nji , and

T ∗2
fAD =

C∑
j=1

k∑
i=1

(
f ∗ji
nj

− f·i
n

)2 [
f·i · (n− f·i ) · (n− nj )/nj

]−1
.

In Chapter 6 two more solutions to this problem and an extension to multivariate situations within
the context of NPC of several dependent permutation tests are presented. Moreover, in Section 6.9
an approximate permutation test for dominance in heterogeneity (concentration) in a two-sample
design with nominal variables is discussed.

2.9 Problems and Exercises
1) Show that in standard contingency tables, related to univariate responses, marginal frequencies
{f·i , i = 1, . . . , k, n1, . . . , nC} are equivalent to the pooled set of observations X, that is, both
are minimal sufficient in H0 for the underlying multinomial distribution (establish a one-to-one
relationship between unit-by-unit representation and the contingency table).

2) Show that when conditioning on marginal frequencies, the standard chi-square test for equality
in distribution of two categorical variables in a two-sample problem is a permutation test.

3) Show that when conditioning on marginal frequencies, the standard chi-square test for equality
in the distribution of C categorical variables in a C-sample problem is a permutation test.

4) Using unit-by-unit representation of sample data, prove that the standard chi-square test in a
C-sample problem may be viewed as a one-way ANOVA problem for categorical variables.

5) Using unit-by-unit representation of sample categorical data, show that Cochran’s likelihood
ratio test is a permutation test and that it may be viewed as a solution to a one-way ANOVA
problem.

6) Using unit-by-unit representation of sample categorical data, find the permutation distribution
for a stochastic dominance problem in a 2× 2 contingency table, that is, the distribution of Fisher’s
exact probability test.

7) Prove that the test statistic T ∗2
fAD in Section 2.8.4 is permutationally equivalent to the chi-square

statistic when k = 2.
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8) With reference to Remark 1, 2.8.2, prove that if all marginal frequencies f·i = 1, i = 1, . . . , k =
n, then

∑
i i · f ∗1i is permutationally equivalent to the Wilcoxon–Mann–Whitney test (note that

there is only one observation per category).

9) Prove that if the response variables in the two-sample problem are binary (Xji = 0 if Xji ∈ X0

and Xji = 1 if Xji ∈ X1, i = 1, . . . , nj , j = 1, 2, where X0
⋃

X1 = X and X0
⋂

X1 = ∅), then
the permutation test for two-sided alternatives T = |X̄1 − X̄2| is permutationally equivalent to
Pearson’s chi-square test for the resulting 2× 2 contingency table.

10) Prove that if the response variables in the two-sample problem are binary, then the permu-
tation test for restricted alternatives T = X̄1 − X̄2 is permutationally equivalent to Fisher’s exact
probability test for the resulting 2× 2 contingency table.

11) With reference to the two-way design in Example 8, 2.7, show that the pooled data set
X11

⊎
. . .
⊎

XJ I is not sufficient for separate testing of three null hypotheses (H0A, H0B , H0AB),
whereas it is sufficient for H ′

0 : {H0A
⋂

H0B
⋂

H0AB}.
12) With reference to Remark 6, 2.7, show that the permutation structure (Remark 1, 2.7) of the test
statistic T ∗R =

∑
j (X̄

∗
j · − X̄··)2/

∑
ji(X

∗
ji − X̄∗j · − X̄·i + X̄··)2 in a two-way ANOVA design does

not depend on block effects bi , so that it is exact for testing H0 against H1 independently of block
effects.

13) Show that in a standard two-sample design for one-sided alternatives, if random effects � are
such that Pr{� ≥ 0} = 1 and Pr{� = 0}> 0, that is, if treatment is ineffective with some units,
then the test statistic T ∗ =∑i X

∗
1i is exact.





3
Further Properties of
Permutation Tests

3.1 Unbiasedness of Two-sample Tests

3.1.1 One-Sided Alternatives

Introduction and Notation

For simplicity and without loss of generality, let us assume that the real one-dimensional variable
X takes value on sample space X, with probability distribution P defined on the measurable space
(X,A), and that in H1 the distribution of X1 is shifted by a random quantity � with respect to that
of X2, so that the two respective CDFs are such that F1(x) ≤ F2(x), x ∈ R1, showing stochastic
dominance. Most of the results on unbiasedness we obtain are also valid for ordered categorical
variables and for paired observation designs. We assume that random effects � are non-negative,

that is, Pr {� ≥ 0} = 1 and Pr {�> 0} ≤ 1, so that H0 : {X1
d= X2} and H1 : {X1

d
>X2}. Of course,

if � takes negative values, such that Pr {� ≤ 0} = 1, it will suffice to convert subscript 1 into 2 in
response variables and in all consequent statistics, for instance by writing the alternative as H1 :

{X2
d
>X1}, and so on. Problems for which 0 < Pr {� ≥ 0} < 1, in which there are positive effects

on some units and negative on others, are much more complex and are briefly discussed in Example
5, 4.6. To represent data sets in the alternative we use the notation X(�) = {Xji = µ+�ji + Zji,

i = 1, . . . , nj , j = 1, 2}, where µ is a finite nuisance quantity common to all units, and the random
deviates Zji are exchangeable and have unknown distribution P ∈ P. If the existence of the mean
value of Z is assumed, E(|Z|) <∞, we put E(Z) = 0, so that errors are centred variables. We

assume that random effects are such that �1i = δ1 +Q1i
p≥ 0, i = 1, . . . , n1, with strict inequality

for at least one i ∈ (1, . . . , n1), in which δ1 plays the role of average effect and deviates Q1i may
produce heteroscedasticity in the alternative and may depend on (µ, Z1i ); we also assume that
Pr{�2i = 0} = 1, i = 1, . . . , n2, i.e. there are no effects on X2. In Section 4.5.3 we will see two
ways of obtaining random effects dependent on the Z deviates.

In the following we use symbols � and δ when referring to random and fixed effects, respectively.
Of course, fixed effects imply Pr {Q1 = 0} = 1. Since µ is a nuisance quantity common to all units
and thus inessential for comparing X1 to X2 (see Problem 16, 2.4.2), we may model data sets
as X(�) = (Z1 +�,Z2), where � = (�11, . . . ,�1n1). The latter notation emphasizes that effects
� are assumed to be active only on units of the first sample, in accordance with the convention
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that units of the second sample receive the placebo. Connected with such a notation, we may
equivalently express the hypotheses as H0 : Pr{� = 0} = 1 and H1 : Pr{�> 0}> 0.

The notion of unbiasedness for a test statistic is related to its comparative rejection behaviour in
H1 with respect to that in H0. To this end, let us consider a non-degenerate test statistic T : Xn →
R1, where typically we have T (X) = S1(X1)− S2(X2) corresponding to the comparison of two non-
degenerate sample (measurable) statistics. Typically, Sj , j = 1, 2, corresponds to

∑
i ϕ(Xji)/nj ,

or Md(Xji), etc. (a list of the most commonly used test statistics is given in Section 2.3). In order
to be suitable for evaluating the related sampling diversity, we assume that functions S satisfy the
following conditions:

(a) Statistics Sj are symmetric functions, that is, invariant with respect to rearrangements of data
input, Sj (Xj ) = Sj (X

†
j ), with X†

j any rearrangement (i.e. within-sample permutation) of Xj ,

j = 1, 2, and provided with the same analytic form that may only differ for sample sizes so
that both are indicators of the same quantity.

(b) Sj are monotonic non-decreasing, that is, Sj (X+ Y) ≥ Sj (X), j = 1, 2, for any data set X and

non-negative Y
p≥ 0, so that large values of T are evidence against H0.

With obvious notation, a test statistic is said to be unbiased if its rejection probability is such
that Pr {T (X(0)) ≥ Tα |H0} ≤ α ≤ Pr {T (X(�)) ≥ Tα|H1} for every type I error rate α ∈ (0, 1) and
every specific alternative in H1, where Tα is the critical value, assumed to be finite. The probability
distribution involved is that which is generated by T when X takes values on sample space Xn

according to the underlying distribution Pn. This notion corresponds to the traditional notion for
unbiasedness, also called unconditional or population unbiasedness .

A well-known sufficient condition for unconditional unbiasedness of T is that its unconditional
null distribution is at least weakly dominated by every specific distribution from the alternative:

T (X(0))
d≤ T (X(�)).

In permutation testing we meet a somewhat more stringent notion of unbiasedness, which in turn
is sufficient but not necessary for the unconditional form. We call it the conditional or permutation
unbiasedness . A test statistic T is said to be conditionally or permutationally unbiased if the
p-values λT (X) = Pr{T (X∗) ≥ T (X)|X/X} are such that, for each X ∈ Xn and for any � ∈ H1,

Pr{λT (X(�)) ≤ αa |X/X(�)} ≥ Pr{λT (X(0)) ≤ αa|X/X(0)} = αa,

where: X(�) = (Z1 +�,Z2), X(0) = (Z1,Z2); X∗ is interpreted as a random permutation of X;
and αa is any attainable α-value. Similarly to Section 2.2.3, we suppress the subscript a and use
the symbol α to denote attainable α-value. A sufficient condition for conditional unbiasedness is

λT (X(�)) = Pr
{
T (X∗(�)) ≥ T o(�) = T (X(�))|X/X(�)

}
≤ Pr

{
T (X∗(0)) ≥ T o(0) = T (X(0))|X/X(0)

} = λT (X(0)) .

It is worth noting that the weak dominance relation ≤ on p-values can be uniform (i.e. satisfied by
all data sets X ∈ Xn) or in distribution (i.e. satisfied by the majority of the X).

Since the unconditional rejection probability of permutation test T is∫
Xn

Pr{λT (X(�)) ≤ α
∣∣X/X(�) } dPn(X(�)) ≥ α,

because the integrand is greater than or equal to α and dPn(X(�)) ≥ 0, ∀X ∈ Xn, the following
property is trivially true:
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Proposition 1. If a permutation test statistic T is conditionally unbiased for every X ∈ Xn, then
it is also unconditionally unbiased for whatever underlying distribution P .

Since the converse is not true, in that unconditional unbiasedness does not imply conditional
unbiasedness, the notion of conditional (permutation) unbiasedness is somewhat more stringent than
that of unconditional (see Problem 40, 3.9). Moreover, if a conditionally unbiased permutation test
T is applied to subjects which were previously randomized to treatments, then the observed data set
X, instead of being i.i.d., can be selected from Xn by any selection-bias procedure (for a discussion,
see Pesarin, 2002; see also Section 3.5) without compromising unconditional unbiasedness, provided
that data are exchangeable in H0. In this sense, permutation unbiasedness, also more stringent, is
more frequently and usefully applicable to real problems than its unconditional counterpart.

Characterizing Conditional Unbiasedness

In order to look further into the conditional (permutation) unbiasedness of a test statistic T , let us
consider its permutation structure, that is, the behaviour of values it takes in the observed data set
X and in any of its permutations X∗ ∈ Xn

/X under both H0 and H1 (see the informal definition
in Remark 1, 2.7). Two observed values under H0 and H1 are respectively T o(0) = T (X(0))
and T o(�) = T (X(�)); two permutation values are T ∗(0) = T (X∗(0)) and T ∗(�) = T (X∗(�)),

where X∗(�) = {[Z(u∗i )+�(u∗i )], i = 1, . . . , n; n1, n2}, X∗(0) = {Z(u∗i ), i = 1, . . . , n; n1, n2},
and u∗ = (u∗1, . . . , u

∗
n) is any permutation of u = (1, . . . , n). Let us define the increments of T

due to random effects �, that is, the difference of two values, in X(�) and X(0) by DT (X(�)) =
T (X(�))− T (X(0)), and in X∗(�) and X∗(0) by DT (X∗(�)) = T (X∗(�))− T (X∗(0)).

The assumptions that � is non-negative, T is non-decreasing with respect to � in the first n1

arguments and non-increasing in the second n2 arguments, and that large values of T are evidence
against H0, imply that T (X(�))− T (X(0)) = DT (X(�)) ≥ 0. Thus, the related p-values in H0

and H1 are respectively

λT (X(0)) = Pr
{
T (X∗(0)) ≥ T (X(0))|X/X(0)

}
,

and

λT (X(�)) = Pr
{
T (X∗(�)) ≥ T (X(�))|X/X(�)

}
= Pr

{
T (X∗(0))+DT (X∗(�))−DT (X(�)) ≥ T (X(0))|X/X(0)

}
.

In the latter expression it is worth noting that a one-to-one pointwise relationship between
two conditional permutation spaces X/X(�) and X/X(0) has been used. Indeed, focusing on a
generic permutation u∗ of u, for each point X∗(0) = {Z(u∗i ), i = 1, . . . , n; n1, n2} ∈ X/X(0) we
may obtain the corresponding point of X/X(�) by simply writing X∗(�) = {[Z(u∗i )+�(u∗i )], i =
1, . . . , n; n1, n2} = X∗(0)+�∗, where �∗ = {�(u∗i ), i = 1, . . . , n; n1, n2}. Conversely, for any
X∗(�) ∈ X/X(�), we may write the corresponding point X∗(0) ∈ X/X(0). Because of this, the nota-
tion Pr

{
T (X∗(�)) ≥ T (X(�))|X/X(�)

}
has the same meaning as Pr

{
T (X∗(�)) ≥ T (X(�))|X/X

}
.

This one-to-one pointwise relationship is illustrated in Figure 3.1.
It is well known that:

• any test statistic T is built up to evaluate the sampling diversity of data distribution in H1 with
respect to that in H0;

• the observed data X(�) are such that effects � are active only on the first sample;
• the difference of test statistics in any data permutation DT (X∗(�)), since some effects are

exchanged between two groups, tends to be smaller than that of its observed value DT (X(�))

which contains all non-null effects.
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 • X*(0)  • X*(∆)←→

/X(0) /X(∆)

Figure 3.1 Pointwise relationship

Thus, we expect that DT (X∗(�))−DT (X(�)) is likely to assume non-positive values. Therefore,
depending on how this occurs, we can have different notions of permutation unbiasedness. More
explicitly, therefore, we have the following:

(i) If for any �
p≥ 0, DT (X∗(�))−DT (X(�)) ≤ 0 pointwise, that is, for all possible permuta-

tions X∗ ∈ X/X, and uniformly for all data sets X ∈ Xn, then λT (X(0)) ≥ λT (X(�)). This
uniform weak dominance leads to quite a stringent form of conditional unbiasedness, called
strictly uniform . Associative statistics that satisfy condition (a) above, such as sample ϕ-
means, ϕ̄j =

∑
i ϕ(Xji)/nj , j = 1, 2, satisfy DT (X∗(�))−DT (X(�)) ≤ 0 pointwise. Point-

wise weak dominance is also satisfied by non-associative S statistics for fixed effects: �
p= δ.

(ii) If uniformly for all data sets X ∈ Xn, DT (X∗(�))−DT (X(�)) ≤ 0 in permutation distribu-

tion, which implies λT (X(0))
d≥ λT (X(�)) , then we have a slightly weaker form of condi-

tional uniform unbiasedness. Non-associative statistics that satisfy condition (a) above, such
as sample quantiles, satisfy DT (X∗(�))−DT (X(�)) ≤ 0 in permutation distribution and uni-
formly for all data sets X ∈ Xn (see below).

(iii) If for some statistics with some data sets and/or some permutations DT (X∗(�))−
DT (X(�))> 0, and if the permutation probability Pr{DT (X∗(�))−DT (X(�))> 0|X/X(�)}
is not sufficiently smaller than Pr{DT (X∗(�))−DT (X(�)) < 0|X/X(�)}, then the conditional
unbiasedness might not occur. Such a situation may sometimes arise when the dominance
condition of the CDFs is violated, that is, when two sets A> = {t : F1(t)>F2(t)} and
A< = {t : F1(t) < F2(t)} have positive probability with respect to both distributions.
Moreover, associative and non-associative statistics for two-sided alternatives may fall within
this framework, and so related tests might not be unbiased (see Section 3.1.2).

The strictly uniform conditional unbiasedness (i) is the most useful in practice. Here we will
prove it for all tests based on sampling diversity of associative statistics such as

T ∗ϕ (�) =
∑
i

ϕ[X∗1i (�)]−
∑
i

ϕ[X∗2i (�)],

which in turn, if ϕ is any non-degenerate measurable non-decreasing function, is permutationally
equivalent to ϕ̄∗1 − ϕ̄∗2 . For general statistics, including non-associative forms, the weaker form of
conditional unbiasedness (ii) is slightly more difficult to prove and to apply, unless effects are fixed,
that is, �

p= δ. Its proof, however, is also given below.

Uniform Conditional Unbiasedness

For simplicity, we prove conditional unbiasedness of tests based on divergence of associative
statistics first. We then consider the permutation structures of T ∗ in H0 and in H1. Since X∗ji(�) =
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Z∗ji +�∗ji , with obvious notation, we note that
∑

i[ϕ(Z
∗
ji +�∗ji )− ϕ(Z∗ji)] =

∑
i dT (Z

∗
ji ,�

∗
ji ) =

DT (Z∗j ,�
∗
j ) ≥ 0, j = 1, 2, where dT (Z

∗
ji ,�

∗
ji ) = ϕ(Z∗ji +�∗ji )− ϕ(Z∗ji ) ≥ 0, because some �∗ji

are positive quantities and ϕ is non-degenerate and non-decreasing by assumption. Of course, if
�∗ji = 0, dT (Z∗ji , 0) = 0, whereas DT (Z∗j , �

∗
j ) = 0 implies �∗ji = 0, i = 1, . . . , nj , j = 1, 2. The

two observed values are then T o(0) =∑i ϕ(Z1i )−
∑

i ϕ(Z2i) and T o(�) =∑i ϕ(Z1i +�1i )−∑
i ϕ(Z2i) = T o(0)+DT (Z1,�1), because �2i = 0, i = 1, . . . , n2. Moreover, the two permutation

values are T ∗(0) =∑i ϕ(Z
∗
1i )−

∑
i ϕ(Z

∗
2i ) and T ∗(�) =∑i ϕ(Z

∗
1i +�∗1i )−

∑
i ϕ(Z

∗
2i +�∗2i ) =

T ∗(0)+DT (Z∗1,�
∗
1)−DT (Z∗2,�

∗
2). In addition, the following pointwise relations clearly occur:

DT (Z∗1,�
∗
1) ≤ DT (Z1, �1), because for u∗i > n1 and i ≤ n1 the corresponding �∗1i = �(u∗i ) = 0;

and DT (Z∗2,�
∗
2) ≥ 0, because for u∗i ≤ n1 and i > n1 the corresponding �∗2i = �(u∗i ) ≥ 0.

Therefore, the related p-values are such that

λT (X(�)) = Pr
{
T ∗(�) ≥ T o(�)

∣∣X/X(�)

}
= Pr

{
T ∗(0)+DT (Z∗1, �

∗
1)−DT (Z∗2, �

∗
2)−DT (Z1,�1) ≥ T o(0)

∣∣X/X(0)
}

≤ Pr
{
T ∗(0) ≥ T o(0)

∣∣X/X(0)
} = λT (X(0)),

from which we see that p-values in every alternative of H1 are not larger than in H0, and this
holds for any underlying distribution P , for any associative test statistic T , and uniformly for all
data sets X ∈ Xn, because DT (Z∗1,�

∗
1)−DT (Z∗2,�

∗
2)−DT (Z1, �1) is pointwise non-positive and

because Pr{T ∗ −W ≥ t} ≤ Pr{T ∗ ≤ t} for any W ≥ 0.
To establish conditional unbiasedness for any kind of statistic of the form T (X(�)) =

S1(X1(�))− S2(X2), with special attention to non-associative statistics and with obvious notation,
let us observe that:

• T o(0) = S1(Z1)− S2(Z2).

• T o(�) = S1(Z1 +�1)− S2(Z2) = S1(Z1)+DS(Z1, �1)− S2(Z2) = T o(0)+DS(Z1,�1),

where DS(Z1, �1) ≥ 0.
• T ∗(0) = S1(Z∗1)− S2(Z∗2).
• T ∗(�) = S1(Z∗1 +�∗1)− S2(Z∗2 +�∗2) = T ∗(0)+DS(Z∗1,�

∗
1)−DS(Z∗2, �

∗
2).

• DS(Z∗2, �
∗
2) ≥ DS(Z∗2, 0) = 0 = DS(Z2, 0), because effects �∗2i from the first group are non-

negative.
• DS(Z∗1, �

∗
1) ≤ DS(Z∗1,�1) pointwise, because in DS(Z∗1, �1) there are non-negative effects

assigned to units from the second group. For example, suppose that n1 = 3, n2 = 3, and
u∗ = (3, 5, 4, 1, 2, 6). Then (Z∗1, �

∗
1) = [(Z13,�13), (Z22, 0), (Z21, 0)], and so (Z∗1, �1) =

[(Z13, �13), (Z22, �11), (Z21, �12)] or (Z∗1,�1) = [(Z13,�13), (Z22,�12), (Z21, �11)]. It is
to be emphasized that X(u∗i ) = Z(u∗i )+�(u∗i ) if u∗i ≤ n1, that is, units from the first group
maintain their effects, whereas the rest of the effects are randomly assigned to units from the
second group.

• DS(Z∗1, �1)
d= DS(Z1,�1), because Pr{Z∗1|X/X(0)} = Pr{Z1|X/X(0)} by Proposition 1, 2.1.2.

Thus, DS(Z∗1,�
∗
1)−DS(Z∗2,�

∗
2) ≤ DS(Z1,�1) in permutation distribution and so

λT (X(�)) = Pr
{
T (X∗(�)) ≥ T (X(�))|X/X(�)

}
= Pr

{
T ∗(0)+DS(Z∗1, �

∗
1)−DS(Z∗2,�

∗
2)−DS(Z1, �1) ≥ T o(0)|X/X(0)

}
≤ Pr

{
T ∗(0) ≥ T o(0)|X/X(0)

} = λT (X(0)) ,

where emphasis is on the dominance in permutation distribution of λT (X(�)) with respect to
λT (X(0)), uniformly for all data sets X ∈ Xn, for all underlying distributions P, and for all asso-
ciative and non-associative statistics T = S1(X1)− S2(X2) which satisfy conditions (a) and (b)
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above. If effects were fixed, �
p= δ say, then DS(Z∗1, δ

∗
1)−DS(Z∗2, δ

∗
2) ≤ DS(Z1, δ1) pointwise,

instead of merely in permutation distribution. The simple proof of this is left to the reader
as an exercise.

These results allow us to prove the following theorem:

Theorem 1. (Uniform conditional unbiasedness of T ). Permutation tests for random shift alter-

natives (�
p
>0) based on divergence of associative or non-associative statistics of non-degenerate

measurable non-decreasing transformations of the data , i.e. T ∗(�) = S1(X∗1(�))− S2(X∗2(�)), are
conditionally unbiased for every attainable α ∈ �

(n)

X(0), every population distribution P , and uni-
formly for all data sets X ∈ Xn. In particular ,

Pr{λ(X(�)) ≤ α|X/X(�)} ≥ Pr{λ(X(0)) ≤ α|X/X(0)} = α.

One important consequence of the uniform conditional unbiasedness property of test statistics
T is that we are allowed to extend the conditional inference (associated with the observed data
set X) unconditionally to the whole population from which data X are generated (see Section 3.5).
This extension is useful, for instance, when in a randomized experiment on a drug compared to a
placebo the conditional inferential conclusion is in favour of H1, that is, by noting that the drug is
effective on the present units. Indeed, the same conclusion can be extended to all the populations
P ∈ P, such that dP(X)/dξ > 0, by concluding that the drug is effective and this irrespective
of whether subjects are enrolled by random sampling or selection-bias sampling, provided that
such subjects are randomized to treatments so that data exchangeability is satisfied in H0. It is
worth observing that if a selection-bias sampling is used in a parametric framework, in general no
population (unconditional) inference can correctly be obtained (for a discussion see Pesarin, 2002),
unless the selection mechanism is well defined, suitably modelled, and properly estimated.

In addition, by using the same reasoning to prove Theorem 1 above, it is also straightforward to
prove the following theorem.

Theorem 2. (Uniform stochastic ordering of p-values). If �′
p
< 0

p
< �

p
< �′′ are ordered random

effects, where it is intended that �
p
< �′′ implies �1i ≤ �′′1i , i = 1, . . . , n1, then for every test T

based on divergence of associative or non-associative statistics that satisfy conditions (a) and (b)

above, the p-values are such that λ
(
X(�′)

) u≥ λ (X(0))
u≥ λ (X(�))

u≥ λ
(
X(�′′)

)
uniformly for all

data sets X ∈ Xn and every underlying distribution P . Hence, with respect to �, p-values are
non-decreasingly uniformly ordered random variables .

The proof is left as an exercise.
One consequence of Theorem 2 is that the conditional power of T ,

W [(�, α, T )|X/X] = Pr{λT (X(�)) ≤ α|X/X(�)},
is such that for any attainable α-value,

W [(�′′, α, T )|X/X] ≥ W [(�, α, T )|X/X] ≥ α = W [(0, α, T )|X/X] ≥ W [(�′, α, T )|X/X].

From the latter set of inequalities in particular we see that permutation test T is conditionally
uniformly unbiased also for composite hypotheses with fixed effects such as H0 : {δ ≤ 0} versus
H1 : {δ > 0}, and also for H0 : {δ ≤ δ0 < 0} versus H1 : {δ > δ1 > 0}. Of course, in these cases
tests become conservative. Moreover, it is worth noting that for �

p= 0, the conditional power
essentially depends on random deviates Z only. In such a case, the test statistic T is said to provide
an exact test. Due to its importance, the exactness property of permutation tests is stated by the
following proposition:
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Proposition 2. A permutation test statistic T is said to be an exact test if its null distribution
essentially depends on exchangeable deviates Z only .

Although being permutationally exact is a known important property for a test statistic T , this
does not imply that T is also a good test. Indeed, there are many permutationally exact tests for the
same hypotheses with the same data X, and some are better than others in terms of unbiasedness,
power behaviour, etc. Furthermore, there are exact tests which are not unbiased, exact unbiased
tests which are not consistent (see Section 4.3.2), and also consistent tests which are neither exact
nor unbiased, such as permutation solutions of the Behrens–Fisher problem (see Example 8, 4.6).

One more consequence of Theorem 2 is that as λ (X(0)) is uniformly distributed over its support,

�
(n)
X(0) ∈ (0, 1) only when �

p= 0, whereas if �
p
< 0 (

p
>0), with respect to the underlying distribution

Pn, λ (X(�)) is stochastically larger (smaller) than the uniform distribution. On the one hand this
shows that the power function increases with � for fixed n; on the other the exchangeability
condition, which is satisfied when �

p= 0, is not strictly necessary for defining a proper permutation
test. We have the following proposition:

Proposition 3. What is really necessary for T to be a proper permutation test statistic is that, for
instance, in the continuous case and for fixed effects, there exists a value δ′, not belonging to H1,
such that λ

(
X(δ′)

)
is uniformly distributed over �(n) and that for every δ0 ∈ H0 and δ1 ∈ H1,

λ (X(δ0))> λ (X(δ1)) , where this dominance is uniform for all X ∈ X. Hence, the value δ′, for
which data exchangeability is satisfied, must not be a member of H1. Of course, when it is not
a member of H0, as when, for instance, H0 : {δ ≤ δ0} versus H1 : {δ > δ1}, where we can have
δ0 < δ′ < δ1, then the test becomes conservative.

The results of Theorems 1 and 2 and of Propositions 1 and 3 can be easily extended to one-
sample designs for one-sided alternatives. Such extensions, by observing that test statistics T are
required to satisfy conditions (a) and (b) above similarly to statistics S, are left to the reader
as exercises.

The results of Theorem 2 can also be used to obtain exact permutation confidence intervals for
fixed effects δ and to deal with testing problems of non-inferiority (see Example 6, 4.6). Moreover,
within the NPC methodology it also allows us to deal with testing for two-sided alternatives and
with cases in which random effects can be positive on some subjects, null on others, and negative
on the rest (see Example 5, 4.6).

Remark 1. The permutation test T allows for relaxation of the homoscedasticity condition in H1,
without compromising its exactness or its unbiasedness. It should be noted that the two-sample
testing problem, when we may assume that treatment effects, together with locations, may also act
on other aspects of interest, may be conveniently examined through k > 1 different statistics, each
appropriate for one particular aspect. Problems of this kind and related solutions by multi-aspect
tests are examined in Example 3, 4.6.

Remark 2. The assumption of non-negativity for stochastic effects � is equivalent to the domi-
nance condition of two responses. Thus, two CDFs F1 and F2 are such that ∀x ∈ R1, F1(x) ≤ F2(x)

(see Problem 31, 3.9). This condition may sometimes be achieved by a model such as that of
Example 2, 2.7, provided that the resulting CDFs do not cross. One general way of achieving
this dominance condition in fixed effect models is through a model such as {Xji = X(µ, δj , Zji),
i = 1, . . . , nj , j = 1, 2}, where responses are represented by a suitable monotonic function (increas-
ing or decreasing) with respect to each argument. Observe that, in particular, one specification of
this model is {Xji = µ+ δj + σ(δj ) · Zji , i = 1, . . . , nj , j = 1, 2}, where scale coefficients may
depend on treatment effects through a monotonic function of δj or of their absolute values |δj |,
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provided that ordering conditions on CDFs are not violated. Note that the latter model is consistent
with the notion of randomization (see Section 1.5), where units are randomly assigned to treatments,
which in turn may also affect scale coefficients. It should be noted that, in general, this problem
has no exact parametric solution.

If the dominance condition on CDFs, F1(x) ≤ F2(x), ∀x ∈ R1, is violated in the alternative,
so that two CDFs cross each other, then the resulting permutation test may be biased, although
it remains exact because the exchangeability condition is satisfied in H0. For instance, there are
situations connected with the Behrens–Fisher problem in which the acceptance probability in H1

may be higher than in H0.

Remark 3. With regard to Remark 2 above, we stress that the assumption of non-negativity
for stochastic effects � (see Theorem 1 above) and the consequent stochastic dominance of the
CDFs are only sufficient conditions for the unbiasedness of T . We guess that they may be partially
relaxed. However, finding necessary conditions seems to be quite a difficult problem, which we leave
to the reader.

3.1.2 Two-Sided Alternatives

General Aspects

Let us now turn to two-sided alternatives, that is test statistics for H0 : X1
d= X2 against H1 : X1

d

	=
X2, where the direction of active effect is undefined. The notion of conditional and unconditional
unbiasedness for two-sided alternatives is much more intriguing than for one-sided alternatives

(see Lehmann, 1986, for a discussion). One of the reasons for this is that random effects �
p

	= 0
might not imply the truth of either �

p
< 0 or �

p
>0 and, except for quite special cases such as

balanced designs, it is generally difficult to find suitable data transformations ϕ : X→ Rn such that

ϕ(X(�))
d
>ϕ(X(0)), for any �

p
< 0 or �

p
>0. Of course, if such a data transformation is known for

the problem at hand, then the testing problem can be converted into an equivalent one-sided problem,
the related permutation solutions of which have already been discussed. Two further reasons are that
when unconditionally unbiased parametric tests exist, their acceptance regions, unless the population
distribution is symmetric, are generally not symmetric or the rejection probabilities on both sides
are not balanced, that is, not equal to α/2. Furthermore, they are generally too impractical to use
(see Cox and Hinkley, 1974, for a discussion), and essentially based on merely academic arguments.
As a result, in practice, symmetric or balanced regions are commonly used. Of course, this may
imply that we have to accept some slight bias in consequent inferences.

A practical and commonly used argument in population testing consists then in introducing a
sort of extra condition requiring some weak indifference principle similar to the following: since

we do not know the exact direction of the active alternative, we behave as if |X1 +�−X2| d>0

would imply H1 : |�| d>0 with the possible exception of some small and irrelevant values of �. The
sense of this weak indifference principle is that for some small values of � it is not particularly
important to be able to distinguish between H0 and H1, especially if the bias is reasonably bounded
and asymptotically vanishing, so that if sample sizes are sufficiently large, we can be confident the
test remains unbiased.

In practice, the most commonly used two-sided tests are obtained by considering, for instance,
statistics according to:

(a) the absolute mean divergence,

T2(�) =
∣∣∣∣∣∑

i

ϕ[X1i(�)]/n1 −
∑
i

ϕ(X2i )/n2

∣∣∣∣∣ ;
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(b) the squared mean divergence,

T 2(�) =
[∑

i

ϕ[X1i (�)]/n1 −
∑
i

ϕ(X2i )/n2

]2

;

(c) the absolute divergence of general S statistics, either associative or non-associative,

TS(�) = |S1[X1(�)]− S2(X2)| ;

(d) the two-sided balanced confidence interval for fixed effects δ, [δα/2(X), δα/2(X)], where H0 is
accepted if 0 lies inside the confidence interval, i.e. if δα/2(X) ≤ 0 ≤ δα/2(X) (see Section 3.4);

(e) by considering symmetric acceptance regions −tα/2 < T (0) < tα/2, where tα/2 is such that
Pr{T (0) ≤ tα/2} = 1− α/2;

(f) if the null density distribution fT (·) of T is unimodal, by the highest-density acceptance regions,
fT (t1α) = fT (t2α) and Pr{t1α ≤ T (0) ≤ t2α} = 1− α;

(g) the p-value, calculated as

λ2 (X(�)) = 1− Pr[−|T o| < T < |T o|].

An Example of an Unconditionally Biased Test

However, it is worth observing that if the unconditional sample distribution FT (t;�) induced by
a test statistic T in H1 does not dominate the one induced in H0, that is, if FT (t;�) � FT (t; 0),
∀t ∈ R1, then in general there exist associated with T no unconditionally unbiased two-sided tests
of the form (a)–(g). As a simple counterexample let us consider the following:

(1) the unconditional balanced acceptance region of T is (Tα/2 ≤ T ≤ T1−α/2), where Tπ is the
null π-quantile FT (Tπ ; 0) = π , and FT (t; 0) is the null CDF of T ;

(2) the unconditional sample distribution of T for fixed effects 0 < δ <∞ is FT (t; δ) = 1−
exp(−t δ), which is the distribution of a form of a chi-squared variable with two degrees
of freedom and scale 2δ;

(3) the hypotheses are H0 : δ − 1 = 0 and H1 : δ − 1 	= 0, and the two-sided null rejection proba-
bilities are α/2 = 0.05 on both sides.

The rejection probability for some values of δ is reported in Table 3.1. Exactly the same results are
obtained if, instead of T , the rejection rule based on the balanced confidence interval (d) is used.

The maximum bias for α = 0.10 is about 0.0156, which is obtained for δ = 1.40 and is consider-
ably smaller than α/2. These results show a slight bias of T because its power is not monotonically
non-decreasing with respect to |δ|, and the region for which the test remains biased is 1 < δ < 2.
Of course, if this bias is considered not to be particularly important, then according to the weak
indifference principle we may regard the test as ‘practically’ unbiased.

Moreover, it is worth noting that as sample sizes increase, two-sided consistent tests become
unconditionally unbiased. For instance, if the non-centrality of a chi-squared test with 2 d.f. is
proportional to n · (δ − 1), the set of δ values for which the test remains biased is 1 < δ < 1+ 1/n.

Table 3.1 Rejection probability of a two-sided test (balanced regions)

δ 0.90 1.00 1.10 1.40 1.80 2.00

W(δ) 0.1126 0.1000 0.0919 0.0844 0.0928 0.1000
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Hence, if sample sizes are not too small, so that the set of biased δ-values tends to vanish and
the maximum bias is bounded, in general we can be confident of unconditional unbiasedness. It is,
however, worth observing that as sample sizes increase, we are generally stricter and stricter with
performance testing because for increasing sample sizes we usually wish to distinguish even small
effects with increasing probability.

An Example of a Conditionally Biased Test

In conditional testing we find similar problems. Indeed, it is easy to find counterexamples against
two-sided conditional unbiasedness for permutation tests. Moreover, since in nonparametric prob-
lems the population distribution is generally unknown, unbiased two-sided test statistics cannot be
used, and so we are forced to confine ourselves to statistics of the form (a)–(f).

As a simple example, showing biasedness of permutation tests for testing H0 : δ = 0 against
H1 : |δ|> 0, let us consider the following:

(1) the observed data sets are Z1 = {1, 3} and Z2 = {2, 4};
(2) the fixed effects are δ = {−2;−1; 0; 1; 2; 3; 4};
(3) the test statistic is T ∗2 (δ) =

∣∣∑
i X

∗
1i (δ)−

∑
i X

∗
2i (δ)

∣∣.
Permutation test statistics and related p-values are reported in Table 3.2, from which biasedness

of T2 can easily be seen, since p-values are not non-increasing with respect to |δ|. Indeed, as
λT (δ = 1) = 6/6>λT (0) = λT (2) = 4/6, p-values seem non-increasing with respect to |δ − 1| but
not to |δ − 0|. However, if sample sizes increase, two-sided consistent tests become conditionally
unbiased and so in general we can be confident of unbiasedness of permutation tests as well. Thus,
the notion of permutation (conditional) consistency is of great importance.

In permutation contexts it is common to use the same kind of statistics as in population contexts,
for example,

T2(�) =
∣∣∣∣∣∑

i

ϕ[X∗1i (�)]/n1 −
∑
i

ϕ[X∗2i (�)]/n2

∣∣∣∣∣
for tests based on the absolute divergence;

T 2∗(�) =
[∑

i

ϕ[X∗1i (�)]/n1 −
∑
i

ϕ[X∗2i (�)]/n2

]2

Table 3.2 Permutation distribution of T ∗2 (δ)
u∗ \ δ −2 −1 0 1 2 3 4

1,2;3,4 |0−6| |2−6| |4−6| |6−6| |8−6| |10−6| |12−6|
1,3;2,4 |1−5| |2−6| |3−7| |4−8| |5−9| |6−10| |7−11|
1,4;2,3 |3−3| |4−4| |5−5| |6−6| |7−7| |8−8| |9−9|
2,3;1,4 |3−3| |4−4| |5−5| |6−6| |7−7| |8−8| |9−9|
2,4;1,3 |5−1| |6−2| |7−3| |8−4| |9−5| |10−6| |11−7|
3,4;1,2 |6−0| |6−2| |6−4| |6−6| |6−8| |6−10| |6−12|
λT (δ) 2/6 4/6 4/6 6/6 4/6 4/6 2/6
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for tests based on squared divergence;

T ∗S (�) = ∣∣S1[X∗1(�)]− S2[X∗2(�)]
∣∣

for tests based on absolute divergence of S statistics; [δα/2(X), δα/2(X)], where H0 is accepted if 0
lies inside the confidence interval (i.e. if δα/2(X) ≤ 0 ≤ δα/2(X)), for a test based on the two-sided
confidence interval for fixed effects; or by using the p-value of T ∗ calculated as

λ2 (X(�)) = 1− Pr[−|T o| < T ∗ < |T o|
∣∣∣X/X(�) ]

or

λ2 (X(�)) = 2 ·min
{

Pr[T ∗ ≥ T o|X/X(�)], Pr[T ∗ ≤ T o|X/X(�)]
}
.

It is, however, worth observing that for any given data set X and for fixed effects δ, it possible
to find a value δX such that for all |δ|> |δX| the two-sided test is uniformly unbiased. In contrast,
for |δ| < |δX|, the two-sided test might be biased, although its bias cannot be larger than α/2.
Moreover, this δX equals zero when in the null hypothesis data X are symmetric with respect to a
point µ, otherwise it is generally very close to zero, and goes to zero as sample sizes increase.

Within multi-aspect testing, in Example 4, 4.6, we will see a different way of obtaining two-
sided alternatives by combining two tests, one for positive T + and one for negative alternatives
T −. This strategy may also yield the benefit of testing which arm is active while controlling the
inferential errors.

Remark 1. From the arguments and examples above it is clear that for two-sided alternatives we
have to tolerate some slight bias in consequent inferences. Indeed, unbiasedness in two-sided per-
mutation tests, for either one-sample, two-sample or C-sample problems, is generally unattainable
for finite sample sizes. It is in general achievable for large sample sizes or when the permutation
null distribution is symmetric. For instance, in ANOVA designs the usual tests are not unbiased.
However, when in two-sample designs, for every t ∈ R1, either F1(t) � F2(t) or F1(t) � F2(t), so
that there is dominance in distribution between two variables and the test is consistent, then for suf-
ficiently large sample sizes the two-sided test is also unbiased. This same property is also valid for
ANOVA designs, provided that for any pair of distributions either Fj (t) � Fh(t) or Fj (t) � Fh(t),
j 	= h = 1, . . . , C.

3.2 Power Functions of Permutation Tests

3.2.1 Definition and Algorithm for the Conditional Power

As a guide, let us refer to a two-sample design for one-sided alternatives and fixed effects.
Extensions to two-sided alternatives, one-sample, and C-sample designs are straightforward and
are left to the reader as exercises. We consider a given test statistic T applied on the data set
X(δ) = (Z1 + δ,Z2), where fixed effects are δ = (δi = δ > 0, i = 1, . . . , n1), and the deviates Z,
since we are arguing conditionally, are assumed to have the role of unobservable fixed quantities.
With obvious notation, the conditional power function is defined as

W [(δ, α, T )|X/X] = Pr{λT (X(δ)) ≤ α|X/X(δ)}
= E{I[λ(X†(δ)) ≤ α]|XX†(δ)},

where its dependence on T , α, δ, n, and Z is self-evident, and the mean value is taken with respect
to all possible X†(δ). It should be emphasized that, due to Theorem 2, 3.1.1, δ < δ′ implies that
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W [(δ, α, T )|X/X] ≤ W [(δ′, α, T )|X/X] for every X ∈ X and any α ∈ �X. It is also worth noting
that λ(X†(δ)) is the p-value calculated on the data set X†(δ) = (Z†

1 + δ,Z†
2), where Z† ∈ X/Z is

a random permutation of unobservable deviates Z. Indeed, the randomization principle essentially
involves a random assingment of a subset Z†

1 of deviates Z to treated units for which δ is active
and the rest to the untreated, so that Z†

1 + δ are the data X†
1 of the first sample. From this point

of view, the actual data set X(δ) is just one of the possible sets X†(δ) that can be obtained by a
re-randomization of deviates to treatments. And so the notion of conditional power uses as many
data sets X† as there are re-randomizations in X/Z.

An algorithm for evaluating conditional power is based on the following steps:

1. Consider the pooled set of deviates Z = Z1
⊎

Z2 and the effects δ.

2. Take a re-randomization Z† of Z and the corresponding data set X†
r (δ) = (Z†

r1 + δ,Z†
r2).

3. Using the algorithm in Section 2.2.5, based on B CMC iterations, calculate the p-value
λ̂T (X†

r (δ)).

4. Independently repeat steps 2 and 3 R times.
5. The conditional power is then evaluated as Ŵ [(δ, α, T )|X/X] =∑r I[λ̂T (X†

r (δ)) ≤ α]/R.

The extension to random effects � is straightforward if these, from step 2, are assumed inde-
pendent of deviates Z.

Remark 1. In particular, it should be noted that in a homoscedastic context, if conditions for a
PCLT are satisfied (see Section 3.8) and sample sizes are large enough, the conditional power may
be approximated by

W [(δ, α, T )|X/X] ∼= 1−�

(
zα − δ

σ̂

√
n1 · n2

n

)
,

where � is the standard normal CDF and σ̂ =
(∑

ji(Xji − X̄j )
2/n

)1/2
and we note its essential

dependence on the empirical signal to noise ratio δ/σ̂ .

Remark 2. According to Theorem 2, 3.1.1, it is easy to prove that for increasing α the conditional
power W [(δ, α, T )|X/X] cannot decrease. The simple proof of this is left to the reader as an exercise.

In order for this algorithm to be effectively carried out, in the given data set we should be
able to separate the contributions of random deviates Z from those of effects δ. This is generally
not possible in practice, because the Z and δ components are not separately observable. Thus,
conditional power is essentially a virtual notion in the sense that it is well defined but is not
calculable. However, in place of W [(δ, α, T )|X/X], for a fixed effect model X(δ) = (Z1 + δ,Z2),
we may then attain the so-called empirical post-hoc conditional power W [(δ, δ̂, α, T )|X/X]. This
can be evaluated by the following algorithm.

1. Based on a suitable indicator T , consider the estimate δ̂ of δ from the pooled data set X(δ) and
the consequent empirical deviates Ẑ = (X1 − δ̂,X2). Note that, in accordance with point (ii) in
Remark 2, 2.1.2, empirical deviates Ẑ are exchangeable.

2. Take a random re-randomization Ẑ† = {Ẑ(u
†
i ), i = 1, . . . , n} of Ẑ, where (u

†
i , i = 1, . . . , n) is

a permutation of (1, . . . , n), and for any chosen δ the corresponding data set X̂†
r (δ) = (Ẑ†

r1 +
δ, Ẑ†

r2).

3. Using the algorithm in Section 2.2.5, based on B CMC iterations, calculate the p-value
λ̂T (X̂†

r (δ)).

4. Independently repeat steps 2 and 3 R times.
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5. The empirical post-hoc conditional power for δ is then evaluated as Ŵ [(δ, δ̂, α, T )|X/X] =∑
r I[λ̂T (X̂†

r (δ)) ≤ α]/R.

6. To obtain a function in δ and α, repeat steps 2–5 for different values of δ and α. With δ = δ̂

we obtain the actual post-hoc conditional power Ŵ [(δ̂, δ̂, α, T )|X/X].

The actual post-hoc conditional power may be used to assess how reliable the testing inference
associated with (T ,X) is, in the sense that if by chance the probability of obtaining the same
inference with (T ,X†) as with (T ,X) is greater than (say) 1/2, then the actual inferential conclusion,
given the set of units underlying X, is reproducible more often than not. For instance, using the data
of Section 1.10 on job satisfaction in 20 subjects, we take α = 0.05, B = 1000 CMC iterations and
R = 1000 re-randomizations. The estimate of the effect is δ̂ = X̄1 − X̄2, and Ẑ = [X1 − δ̂1n1 ,X2],
where X1 and X2 are the data vectors of the first and second sample, and 1n1 is a +1 vector of
length n1.

setwd("C:/path")

R=1000; B=1000

data<-read.csv("Job.csv",header=TRUE)

attach(data)

delta = mean(X[Y==1])-mean(X[Y==2])

Z = c(X[Y==1]-delta,X[Y==2])

Each resampling is then obtained by considering a random permutation of Z and by adding δ̂ to
the first n1 elements of Z∗:

set.seed(100)

p.val = array(0,dim=c(R,1))

for(cc in 1:R){

Z.star=sample(Z)

Z.star[Y==1]=Z.star[Y==1] + delta

T<-array(0,dim=c((B+1),1))

T[1] = mean(Z.star[Y==1])-mean(Z.star[Y==2])

for(bb in 2:B){

Z.perm=sample(Z.star)

T[bb]= mean(Z.perm[Y==1])-mean(Z.perm[Y==2])

}## end bb

p.val[cc] = mean(T[-1]>=T[1])

print(cc)

}## end cc

As in the previous example, the vector p.val contains the p-values related to each resampling.
The (estimated) conditional power is then:

pow = mean(p.val<=0.05); pow

[1] 0.998
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Table 3.3 Empirical post-hoc conditional power: two-sample data

δ 0.00 9.00 13.00 17.292 19.00

Ŵ 0.048 0.704 0.943 0.998 1.000

The data set and the corresponding software codes are available from the examples_chapters_
1-4 folder on the book’s website. The empirical post-hoc conditional power for α = 0.05 and
various values of δ is shown in Table 3.3. From these results it is worth noting that the
actual post-hoc conditional power at α = 0.05 calculated on the estimated point δ̂ = 17.292 is
Ŵ [(δ̂, δ̂, α, T )|X/X] = 0.998, that is, the test rejects H0 on almost all re-randomized data sets.
Thus, for this specific problem the rejection of equality of job satisfaction is highly reliable.

A similar conclusion can be obtained using the IPAT paired data of Section 1.8.
The conditional power is obtained by subtracting the estimate of the average difference δ̂ =

Ȳ1 − Ȳ2 from the vector X, i.e. by letting Z = X - delta, obtaining Z.star, a random resampling
of Z, adding delta to Z.star and finally performing a paired one-sample permutation test on
Y.star with B permutations (B = 1000).

setwd("C:/path")

data<-read.csv("IPAT.csv",header=TRUE)

n = dim(data)[1]; C=1000 ; B=1000

Z = data[,1]-data[,2]-sum(d)

We repeat this procedure for all possible resamplings of Z (in fact we use R=1000 random
resamplings) and each time store the p-value of the test in the vecrtor p.val:

p.val =array(0,dim=c(R,1))

for(cc in 1:R){ ## n of resamplings

Z.star=sample(Z)

Z.star=Z.star + sum(d)

print(cc)

T<-array(0,dim=c((B+1),1))

T[1] = sum(d)

for(bb in 2:(B+1)){

T[bb] = t(d)%*%(1-2*rbinom(n,1,.5))

}## end bb

p.val[cc]=t2p(T)[1]

}## end cc

The conditional power is then computed as the proportion of times the null hypothesis has been
rejected at level α (here we let α = 0.005):

alpha = 0.0005

pow = mean(p.val <= alpha)

pow
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Table 3.4 Empirical post-hoc conditional power: paired data

δ 0.00 1.50 2.00 2.50 3.10

Ŵ 0.0054 0.291 0.570 0.844 0.991

Indeed, by again using B = 1000, R = 1000, α = 0.005, δ̂ = 3.10 and various δ we obtain the
results shown in Table 3.4.

Now the actual post hoc power with 0.005 is Ŵ [(δ̂, δ̂, α, T )|X/X] = 0.991, and so the related
rejection of H0, with λ̂ = 0.0003, is highly reliable. Of course, the algorithm for paired data designs
changes steps 1, 2 and 3 respectively into the following:

1′. Based on a suitable indicator T , consider the estimate of δ from the pooled data set X(δ) =
Z2 + δ − Z1 and the consequent empirical deviates X̂ = X(δ)− δ̂, where δ̂ =∑i Xi/n.

2′. Take a random rearrangement X̂†
r = {X̂i · S†

i , i = 1, . . . , n}, where S
†
i = 1 or −1 each with

probability 1/2, and for any chosen δ the corresponding data set X̂†
r (δ) = X̂†

r + δ.

3′. Using the algorithm in Section 1.9.3, based on B CMC iterations, calculate the p-value
λ̂T (X̂†

r (δ)).

In Section 4.3.4 within the nonparametric combination procedure we will see extensions of these
algorithms to multidimensional problems.

Remark 3. It is worth noting that, as was mentioned in Section 1.9.2, the null differences,
X(δ) = 0, cannot be discarded from the permutation analysis because the algorithm takes into
consideration the empirical deviates X̂ = X(δ)− δ̂ and the connected hypothesized deviates X̂+ δ′.

3.2.2 The Empirical Conditional ROC Curve

If in step 6 of the algorithm in Section 3.2.1 above, we consider the pair (α, Ŵ [(δ̂, δ̂, α, T )|X/X])
for various α-values, we obtain the so-called empirical conditional ROC curve. This, calculated for
various test statistics T , can be used to choose a ‘practically best’ test statistic with the present
data set X. A more in-depth look at the empirical conditional ROC curve is left to the reader.

3.2.3 Definition and Algorithm for the Unconditional Power:
Fixed Effects

Of course, to define the unconditional version we must obtain the mean value of W [(δ, α, T )|X/X]
with respect to the underlying population distribution Pn. That is:

W(δ, α, T , P, n) = EXn\X/X {E[W((δ, α, T , n)|X/X)]}
= EX{W [(δ, α, T , n)|X/X]}

=
∫
Xn

I
[
λT (X(δ)) ≤ α

∣∣X/X
]

dPn(X(δ)).

Note that in order to properly define the unconditional power W(δ, α, T , P, n), the underlying
population distribution P must be fully specified, that is, defined in its analytical form and all its
parameters. Also note that averaging with respect the whole sample space Xn implies taking the
mean with respect to each conditional distribution over X/X and then taking the mean of these
with respect to the distribution over Xn\X/X. A practical algorithm for evaluating the unconditional
power can be based on a standard Monte Carlo simulation from P with MC iterations as follows:



98 Permutation Tests for Complex Data

1. Choose a value of δ.

2. From the given population distribution P draw one set of n deviates Zr , and then add δ to the
first n1 errors to define the data set Xr (δ) = (Zr1 + δ,Zr2).

3. Using the algorithm in Section 2.2.5, based on B CMC iterations, calculate the p-value
λ̂T (Xr (δ)).

4. Independently repeat steps 2 and 3 MC times.
5. Evaluate the estimated power as Ŵ (δ, α, T , P, n) =∑r I[λ̂T (Xr (δ)) ≤ α]/MC.

6. To obtain a function in δ, α, T and n, repeat steps 1–5 with different values of δ, α, T and n.

The latter result allows us to assess whether the α-size of any given test statistic T is α by
means of a Monte Carlo simulation from any given fully specified distributions P , when δ = 0. We
sometimes use this property when wishing to examine the behaviour of a permutation test in H0,
especially when complex problems are involved. It is also used to assess whether a test statistic
T is unbiased, that is, whether Ŵ (δ, α, T , P, n) ≥ α. Extensions to multidimensional problems are
straightforward within the NPC methodology (see Section 4.3.4).

Note that the unconditional power function W(δ, α, T , P, n) depends on the underlying distri-
bution P and, of course, on the test statistic T . Also note that for increasing sample sizes, it is not
always possible to compare related power functions in discrete cases. Suppose, indeed, that we are
given two data sets X and X′ with respective sample sizes n and n′, where n < n′. It may be that
the intersection of related sets of attainable p-values �X and �X′ is empty, since they may have
no common point. Because of this, the power function may apparently decrease at some (desired)
α = αd for increasing sample sizes especially when αd >α>α′ where α and α′ are the largest
values in �X and in �X′ which are smaller than αd. In such situations, either we consider the
power behaviour for large sample sizes so that the two sets �X and �X′ are not distinguishable
in practice (in fact they are asymptotically coincident), or we consider randomized permutation
tests φR . With regard to the latter, it is worth noting that φR satisfies W(δ, α, T , P, n) ≥ α and
W(0, α, T , P, n) = α without restriction, for all X ∈ Xn, all P , all exact T and all n.

Remark 1. It is worth noting that, since the unconditional power is the expectation of the
conditional power, W(δ, α, T , P, n) = EX{W [(δ, α, T , n)|X/X]}, the latter may be interpreted
as a least squares estimate of the former, that is, with obvious notation, W̄ [(δ, α, T , n)|X/X] =
W(δ, α, T , P, n). Moreover, it is straightforward to see that for any exact T , any P and any n,

W(δ, α, T , P, n) is non-decreasing in both δ and α.

3.2.4 Unconditional Power: Random Effects

If the distribution Q(�|X) of random effects � ∈ �, given the observable data X ∈ X and the
population distribution Pn[X(�)], is known, the unconditional power function W(�, α, T , P,Q, n)

with random effects is defined as

W(�, α, T , P,Q, n) =
∫
Xn×�

I
[
λT (X(�)) ≤ α

∣∣X/X
]
dQ(�|X) dPn[X(�)].

The algorithm for its evaluation is straightforward. It is also straightforward to see that for any
exact T , any P and any n, W(�, α, T , P,Q, n) is is non-decreasing in both � and α.

3.2.5 Comments on Power Functions

Unfortunately it is generally difficult for permutation tests to express conditional and unconditional
power functions in closed form for finite sample sizes, for use in actual calculations. This is often
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true for parametric tests as well when unknown nuisance parameters occur. For instance, when using
the Student’s t , in practice it is impossible to express its power function without knowledge of σ

because the power depends essentially on the standardized non-centrality parameter, i.e. the signal
to noise ratio δ/σ . Thus, power functions remain hypothetical entities measuring the probability of
a test rejecting the null hypothesis when it is false. Power functions are hypothetical because they
may be evaluated when the treatment effect and the population distribution are hypothesized to be
δ and P, respectively.

On the one hand, we know that permutation conditional and unconditional power functions, for
any given population distribution P , any given test statistic T and any given sample size n, are
well-defined functions of δ, α, and X. In particular, at least in principle, both may be evaluated
by numerical calculation, Monte Carlo simulation or asymptotic approximations (see Remark 1,
3.2.1 and Section 3.7). On the other hand, the empirical conditional power, given a data set X(δ),
where the treatment effect is hypothesized to be δ, may be evaluated by appropriate algorithms;
one is illustrated in Section 3.2.1. Such evaluation is useful when comparing various kinds of test
statistics applied to the same data set X(δ) or for all uses of conditional power functions. For
instance, in problems of determining a permutation confidence interval or estimating a sample size
which guarantees a specified testing performance, we do not know the so-called true value of δ or
the underlying distribution P , so that the power function must be estimated in some way, typically
the so-called post-hoc procedure.

The unconditional power function may sometimes be estimated by estimating P through EDF
estimates, nonparametric density estimates, semiparametric approximations, saddlepoint approxi-
mations, Edgeworth expansions (Albers et al., 1976; Bickel and Van Zwet, 1978; Robinson, 1982;
John and Robinson, 1983a; De Martini, 1998), and the plug-in principle by approaches such as the
bootstrap, smoothed bootstrap, etc.

3.3 Consistency of Permutation Tests
When for any fixed α, T , and P, and any given δ > 0, the limit as n→∞ of the unconditional
power function is limn↑∞W(δ, α, T , P, n) = 1, the test statistic T is said to be consistent in the
traditional sense. Quite a different notion of consistency connected with multivariate variables is
discussed in Section 4.5 when, in place of the divergent number n of units, it is the number of
informative variables V that diverges.

Proof of traditional consistency may easily be obtained by observing that, in conditions for
asymptotically finite critical values Tα , test statistics of the form T [X(n)∗(δ)] =∑i X

∗
i (δ)/

√
n =∑

i X
∗
i /
√
n+ δ

√
n are such that, ∀α > 0,

lim
n→∞Pr{T (X(n)∗(δ)) ≥ Tα(X(n)(δ))|X(n)(δ)} = 1.

The proof of this is straightforward and left to the reader (see Problem 1, 3.9). Note that for
divergent sample sizes, there is no possibility of distinguishing between the concepts of conditional
and unconditional consistency . The problem of finding general conditions for lim Tα(X(n)) = Tα ,
that is, the convergence of permutation critical values to a constant, is postponed to Section 3.7
(see Hoeffding, 1952; Romano, 1990).

3.4 Permutation Confidence Interval for δ

In this section we assume fixed effects δ. Confidence intervals have a clear interpretation for
fixed δ whereas for random effects � they are difficult to interpret and to obtain (for a hint, see
Remark 2 below). The monotonic ordering property with respect to δ of conditional p-values and
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of permutation CDFs (related proof is given in Theorem 2, 3.1.1) allows for the construction of
permutation confidence intervals of level 1− α for δ by quite a natural procedure.

With reference to a two-sample design, let us assume that the pooled data set is X(δ) =
X1(δ)

⊎
X2, in which X1(δ) = (µ+ δ + σZ1i , i = 1, . . . , n1) and X2 = (µ+ σZ2i , i = 1, . . . , n),

where µ and σ are finite unknown nuisance quantities. The solution to this problem implies deter-
mining two functions of the data, δ∗(X(δ)) and δ

∗
(X(δ)), with the role of lower and upper limits

respectively, in such a way that the permutation coverage probability

Pr{δ∗(X(δ)) ≤ δ ≤ δ
∗
(X(δ))|X/X(δ)} = 1− α

holds for any chosen value of 0 < α < 1
2 , for any unknown δ, for whatever non-degenerate data

set X(δ), and of course independently of the underlying population distribution P . To this end, we
recall the well-known rule that a confidence interval for δ contains all those values δ◦ for which, by
using a given test statistic T , the null hypothesis H0(δ

◦) : {(X1(δ)− δ◦) d= X2}, against H1(δ
◦) :

{(X1(δ)− δ◦)
d

	= X2}, is accepted at level α. Of course, the one-sided permutation confidence
interval for δ consists of all values δo which would be accepted at level α, if the null hypothesis
H0 : {δ = δo} were tested against the alternative H1 : {δ < (or >) δo} (see Noether, 1978; Gabriel
and Hall, 1983; John and Robinson, 1983b; Robinson, 1987).

Thus, given the pair (T ,X) we have to determine the set of values of δ such that, up to a given
numeric accuracy, the associated two-sided permutation p-value leads to the acceptance of the null
hypothesis. Note that, in determining such an interval, the algorithm and related computations are
easier if T is permutationally equivalent to a convenient sampling indicator δ̂ for δ. For instance,
if the response model is linear, namely X1(δ) = µ+ δ + σZ and X2 = µ+ σZ, where deviates
Z are such that EP (Z) = 0, then a natural sampling indicator for δ is the test statistic T =∑

i X1i/n1 −
∑

i X2i/n2 = δ̂. An extension of permutation confidence intervals to random effects
� is suggested in Problem 6, 3.4.1.

An algorithm for evaluating the lower limit δ∗(X(δ)), solved within the CMC framework by
using B iterations, with an estimated error of preset width ε > 0 on confidence level 1− α/2,
consists of the following steps:

(S.a) Choose a value for ε; of course ε must be reasonably related to B: the smaller ε is, the larger
B is.

(S.b) Choose a negative number η and subtract δ̂ + η from every value of the first data group,
obtaining the vector X1(η) = {X1i(δ)− (δ̂ + η), i = 1, . . . , n1} and the resulting pooled data
set X(η) = X1(η)

⊎
X2.

(S.c) Using a CMC procedure based on B iterations, compute F̂ ∗B(T
o
η ) on the statistic T ∗(η) =

X̄∗1(η)− X̄∗2(η), where T o
η = T [X(η)].

(S.d) Repeat steps (S.b) and (S.c) with different values for η until the condition |1− F̂ ∗B(T
o
η )− α

2 |
< ε

2 is satisfied, then assign δ∗(X(δ)) = δ̂ + η.

In order to evaluate the upper confidence limit δ
∗
(X(δ)) change step (S.d) to:

(S.d′) Repeat steps (S.b) and (S.c) with different positive values for η, until the condition |F̂ ∗B(T o
η )−

α
2 | < ε

2 is satisfied, then assign δ
∗
(X(δ)) = δ̂ + η.

It is worth observing that the resulting permutation confidence interval for δ is the one induced
by the statistic T , given the data set X(δ). Also observe that, since in the nonparametric setting
no statistic T : X→ R1 can be claimed to maintain sufficiency for the underlying population
distribution P, then with the same data set different intervals are obtained if different non-equivalent
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statistics T are used. With the data from Section 1.10, related to job satisfaction, using B = 10 000,
α = 0.05, and ε = 0.001, we obtain δ̂ = 17.29 and δ∗(X(δ)) = 8.542 ≤ δ ≤ δ

∗
(X(δ)) = 25.947,

which is slightly asymmetric but very close to that based on the Student’s t : 8.58 ≤ δ ≤ 26.00.
To speed up computations, the search can start with values resulting from the Student’s t

approach. It is worth observing that, conditionally on observed data X, the Student’s t approx-
imates the permutation distribution. The procedure may easily be extended to any functional of
the form δϕ = E[ϕ(X1(δ))]− E[ϕ(X2)], where ϕ is a monotonic transformation of the data which
may be chosen in order that δϕ has a suitable physical meaning. Also observe that these confidence
intervals are balanced, leaving α/2 of error probability on both sides. As permutation distributions
F(t; δ|X/X) may be asymmetric with respect to δ, these permutation intervals might not be the
shortest ones. However, if F(t; δ|X/X) is not far from symmetry, as is often the case, balanced
intervals are approximately close to the shortest intervals.

Remark 1. This same procedure is also valid for paired data designs. Only here we must take into
consideration that permutations are now in accordance with Remark 3, 2.1.2 – that is to say, step 2
of the algorithm in Section 2.2.5 is converted into step (S.b) of the algorithm in Section 1.9.3 (see
Problem 2, 3.4.1). In this regard, with the IPAT data of Chapter 1, using B = 10 000, α = 0.05, and
ε = 0.001, we obtain δ∗(X(δ)) = 1.768 and δ

∗
(X(δ)) = 4.435, which is very close to the values

based on the Student’s t : 1.760 ≤ δ ≤ 4.440. It is worth observing that null differences enter the
process for determining confidence intervals as well as non-null differences, and so they cannot be
discarded from analysis. Instead, for determining the (observed) p-value they can be discarded since
their permutation values are null in any case (see Section 1.9.2). Also observe that the permutation
confidence interval in the example is included in the one based on Student’s t . This is not surprising
because the underlying distribution, being related to the sum of a finite number of discrete items,
cannot be normal and so the estimated sample deviation cannot be independent of the sample
mean, making doubtful the applicability of Student’s t distribution. Often with rounded normal
data, the permutation confidence interval may be included in the Student’s t counterpart because
rounding data makes the estimate of σ smaller, and so gives a larger t and an anticonservative
confidence interval.

Remark 2. In developing a complete theory for permutation confidence intervals with a given
pair (T ,X), suppose that the permutation support T(X), CDF F [(t; δ)|X/X] and related attainable
α-values are defined in discrete sets; in particular, F(t; δ|X/X) has jumps on points of T(X). Hence,
confidence limits δ∗(X) and δ

∗
(X) of size α may be determined up to intervals related to T(h) ≤

t < T(h+1) and with probability jumps F [(T(h+1); δ)|X/X]− F [(T(h); δ)|X/X], where T(h) is the hth
ordered element of T(X). Note that the lengths of (T(h), T(h+1)] and jumps of F [(t; δ)|X/X] both
depend on the sample size n, statistic T and data set X. Moreover, in developing confidence intervals
for random effects �, assuming that � = δ +Q�, where deviates Q� are such that E(Q�) = 0,
we can obtain confidence intervals on the mean effect value δ by exactly the same algorithm
for fixed effects. It should be noted, however, that data sets now have the structure of X1(�) =
[µ+ δ + (Q� + σZ1i ), i = 1, . . . , n1] and X2 = (µ+ σZ2i , i = 1, . . . , n) where random deviates
on data are σ · Z +Q� for X1(�) and σ · Z for X2, respectively (note non-homoscedasticity in
the alternative). In Section 4.3.5 we will see an extension to the multidimensional case.

Remark 3. (Permutation likelihood ). Benefiting from the statement in Theorem 2, 3.1.1, and the
algorithm for confidence intervals, we may define the so-called permutation likelihood induced by
T given X which, although derived differently from the one introduced by Owen (1988), may be
seen as a form of empirical likelihood. To this end, let us assume a fixed effect model for responses.
Therefore, given the pair (T ,X), and with obvious notation, p-values may also be expressed by

λ[X(δ)] =
∫ ∞

T o(δ)

dFT [(t; δ)|X/X] =
∑

t≥T o(δ)

Pr{T ∗(δ) = t |X/X},
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where, of course, the sum includes all points t of the conditional support T(X(δ)) of T which are
not smaller than T o(δ), and the CDF FT [(t; δ)|X/X] for t ∈ R1 is obtained by considering the
pooled data set X(δ) = X1(δ)

⊎
X2. Note that the cardinality M of the conditional support T(X(δ))

is related to that of the permutation sample space X/X. When there are no ties, the two sets share
the same cardinality with probability one. Thus, in general, dFT [(t; δ)|X/X] = 1/M if t ∈ T(X(δ))

and zero elsewhere, where the differential is with respect to t .
However, depending on δ and X(δ), and so also on n, points in T(X(δ)) tend to concentrate, in the

sense that for any ε > 0 the frequency of points in the interval t ± ε is FT [(t + ε; δ)|X/X]− FT [(t −
ε; δ)|X/X] = DεFT [(t; δ)|X/X]. From this point of view, according to a naive kernel estimate (see
Wasserman, 2006), the quantity DεFT [(t; δ)|X/X]/2ε may be regarded as similar to a nonparametric
density estimate of points around t given δ. Therefore, for fixed values of t , the behaviour of

f
(ε)
T [(t; δ)|X/X] = DεFT [(t; δ)|X/X]/2ε

is formally and conceptually similar to that of a likelihood function for δ. We may call this quantity
the smoothed permutation likelihood of T given X. In this sense, the p-value of a test T , given X,
corresponds to a form of integrated permutation likelihood induced by T . Indeed, we may write

λ[X(δ)] �
∫ ∞

T o(δ)

f
(ε)
T [(t; δ)|X/X] · dt.

For practical purposes if any, in order to obtain good evaluations of f (ε)
T [t; δ|X/X] we can choose

the window bandwidth for instance as ε � 1.06s∗T /M
1/5, where s∗T = min{σ ∗T , (T ∗Q3 − T ∗Q1)/1.34}

in which σ ∗T =
√

E[T ∗ − E(T ∗)]2 is the permutation standard deviation, and T ∗Q3 and T ∗Q1 are the
third and first permutation quartiles of T . When sample sizes tend to the infinity, so that points in
T(X(δ)) become dense, the permutation likelihood f

(ε)
T [(t; δ)|X/X] converges to a proper likelihood

function. Of course, in place of this naive estimate it is possible to use any kernel estimate.
However, as the permutation likelihood is induced by a test statistic T , given X, it should be

emphasized that in general f
(ε)
T [(t; δ)|X/X] cannot be directly used to find a best nonparametric

estimator for δ because T , used as a statistical indicator, is pre-established with respect to any
consequent inference. Moreover, it is worth noting that, similarly to most permutation entities, the
permutation likelihood f

(ε)
T [(t; δ)|X/X] cannot be expressed in closed form; so it has to be evaluated

numerically through quite computer-intensive methods. The development of specific algorithms for
it is outside the scope of this book. However, these algorithms may benefit from those established
for determining the confidence interval.

Remark 4. (Bayesian permutation inference). In accordance with Remark 3 above, we may use
the concept of the permutation likelihood induced by (T ,X) on a functional δ in order to define a
kind of Bayesian permutation inference, in terms of tests of hypotheses, estimators and confidence
intervals on δ, etc. Of course, similarly to parametric contexts, a Bayesian permutation approach
implies referring to a prior distribution π(δ) for δ.

From this point of view, in general a functional such as δ is a function of all parameters defining
the specific population distribution P within the nonparametric family P. Of course associated
with P there is the likelihood fT (t; δ, P ) induced by T . Therefore, the Bayesian permutation
approach is slightly different from the traditional Bayesian parametric approach. In fact, the former
is nonparametric and strictly conditional on the observed data set X (for a discussion on conditioning
in parametric Bayesian inferences see Celant and Pesarin, 2000, 2001). Furthermore, although it
is essentially different from the nonparametric Bayesian approach introduced by Ferguson (1973),
it does seem to be of interest as a further way of making inference. For instance, if we use π(δ)

to denote the prior density distribution of δ, which should be defined over (�,A�), where � is
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the sample space for δ and A� is a σ -algebra of subsets of �, then the posterior permutation
distribution , given (T , t,X), is

πT (δ|(t,X,ε)) = π(δ) · f (ε)
T [(t; δ)|X/X]∫

�
f

(ε)
T [(t; δ)|X/X] · π(δ) · dδ

,

where the roles played by test statistic T , sample point t ∈ T(X) and prior distribution π are
emphasized. Of course, the most important sample point t is the observed value T o = T (X). For
instance, the best Bayesian permutation estimate of δ under quadratic loss, given (T ,X), assuming
that E[δ2|(T o,X, ε;π)] is finite, is the posterior mean

δ̂X,π =
∫
�

δ · πT (δ|(T o,X, ε)) · dδ,

and the best (1− α) Bayesian permutation confidence interval, based on the notion of highest
posterior density provided that this is sufficiently regular, is δX,π ≤ δ ≤ δ̄X,π in such a way that

πT (δX,π |(T o,X, ε)) = πT (δ̄X,π |(T o,X, ε)),

and
δ̄X,π∫

δX,π

πT (δ|(T o,X, ε)) · dδ = 1− α.

Further developments in Bayesian permutation procedures are left to the reader (see Problems
15–17, 3.9).

It is worth noting that since Bayesian permutation inference is strictly conditional on X/X, that
is, on the data set X (more precisely, conditioning is with respect to the unobservable exchangeable
deviates Z), due to sufficiency of X/X (see Section 2.1.3) is completely unaffected by the underly-
ing population distribution P. This implies a noticeable difference with respect to the parametric
Bayesian inference based on the posterior distribution πT (δ|X, P ), which also is conditional with
respect to the actual data set X but through the population likelihood associated with P , namely
fP (t). For instance, two researchers with the same prior π(δ), the same pair (T ,X), but with
different likelihoods, f1 and f2 (say), arrive at exactly the same inference within the Bayesian
permutation approach, since the posterior permutation distribution πT (δ|(t,X, ε)) does not depend
on f ; whereas within the traditional Bayesian approach they may arrive at different inferences,
since their posterior distributions are πT (δ|X, f1) and πT (δ|X, f2) respectively.

3.4.1 Problems and Exercises
1) Having proved the statement in Remark 2, 3.2.1, show that in the paired data design null
differences cannot be discarded when considering permutation confidence intervals for effect δ.

2) Write an algorithm for a confidence interval for δ in the paired data design.

3) Write an algorithm to evaluate the shortest confidence interval of any functional of the form
δϕ = E[ϕ(X1)]− E[ϕ(X2)].

4) With reference to the two-sample design, discuss the confidence interval for a functional δϕ =
E[ϕ(X1(δ))]− E[ϕ(X2)], where ϕ is a monotonic measurable transformation of the data.

5) Analogously to Problem 4 above, discuss the confidence interval for fuctional δϕ = E[ϕ(X(δ))]
in the paired data design.
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6) With reference to the two-sample design, with random effect � = δ +D, where random deviates
D are such that δ is common to all units, E(D) = 0 and Pr{� ≥ 0} = 1, show that the confidence
interval on δ is the same as above, provided that D + σZ1 stochastically dominates σZ2.

7) Extend the results of Problem 6 above to the paired data design.

8) Extend the notion of confidence interval to the functional δ2 =∑j nj δ
2
j in a one-way ANOVA

design and provide an algorithm for it (in which, by assumption,
∑

j nj δj = 0).

3.5 Extending Inference from Conditional to Unconditional
It was shown in Section 3.1.1 that the non-randomized permutation test φ based on a given test
statistic T on divergence of symmetric functions S of the data, possesses both conditional unbi-
asedness and similarity properties, the former satisfied by all population distributions P and all
data sets X ∈ Xn, the latter satisfied for continuous, non-degenerate variables and almost all data
sets . These two properties are jointly sufficient for extending conditional inferential conclusions
to unconditional ones, that is, for the extension of inferences related to the specific set of actually
observed units (e.g. the drug is effective on the observed units) to conclusions related to the pop-
ulation from which units have been obtained (e.g. the drug is unconditionally effective). Such an
extension is done with weak control of inferential errors. To this end, and with obvious notation,
we observe the following:

(i) For each attainable α ∈ � and all sample sizes n, the similarity property implies that the power
of the test in H0 satisfies the relation

W(0, α, T , P, n) =
∫
Xn

Pr{λT (X(0)) ≤ α|Xn
/X} · dPn(X) = α,

because Pr{λ(X(0)) ≤ α|Xn
/X} = α for almost all samples X ∈ Xn and all continuous, non-

degenerate distributions P , independently of how data are selected.
(ii) The conditional unbiasedness for each α ∈ �X and all sample sizes n implies that the uncon-

ditional power function for each δ > 0 satisfies

W(δ, α, T , P, n) =
∫
Xn

Pr{λT (X(δ)) ≤ α|Xn
/X} · dPn(X) ≥ α,

for all distributions P , independently of how data are selected and provided that the general-
ized density is positive, i.e. dPn(X)/dξn > 0 (see Chapter 2), because in these conditions the
integrand Pr{λ(X(δ)) ≤ α|Xn

/X(δ)} is greater than or equal to α.

As a consequence, if for instance the inferential conclusion related to the actual data set X is in
favour of H1, so that we say that ‘the data X are evidence of treatment effectiveness on observed
units’, due to (i) and (ii) we are allowed to say that this conclusion is also valid unconditionally for
all populations P such that dPn(X)/dξn > 0. Thus, the extended inferential conclusion becomes
that ‘the treatment is likely to be effective’.

The condition that dPn(X)/dξn > 0 implies that inferential extensions must be carefully inter-
preted. In order to give a simple illustration of this aspect, let us consider an example of an
experiment in which only males of a given population of animals are observed. Hence, based on
the result actually obtained, the inferential extension from the observed units to the selected sub-
population (X,X/M , PM) is immediate, where X/M is the reference set of the male sub-population
and PM its associated distribution. Indeed, on the one hand, rejecting the null hypothesis with the
actual data set means that the actual data are evidence for a non-null effect of treatment , which in
turn means that treatment appears to be effective irrespective of how data are collected, provided
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that they are exchangeable in the null hypothesis, because exchangeability, conditional unbiased-
ness and similarity guarantee that W(δ, α, T , P, n) ≥ α. On the other hand, if females of that
population, due to the selection procedure, have a probability of zero of being observed, so that
dPn

F (X)/dξn = 0, then regarding them in general we can say nothing reliable, because it may be
impossible to guarantee that the test statistic which has been used for male data satisfies conditional
unbiasedness and/or similarity properties for female data as well. As an example of this, suppose
that on males (the actual data) the treatment effect is additive on deviates from the population mean,
whereas on females it is multiplicative. Thus, T =∑X1i possesses the similarity and conditional
unbiasedness properties for male data, but there is no guarantee that it has such properties for female
data, in which case T may be essentially inadequate. In general, the problem of establishing if that
statistic possesses the required properties, when it is impossible to observe any data, remains essen-
tially undefined. In these cases, therefore, the statistical properties and the inferential extensions
may remain hypothetical and with no clear guarantees. In general, the extension (i.e. essentially
the extrapolation) of any inferential conclusion to populations which cannot be observed can only
be formally done with reference to assumptions that lie outside the control of experimenters, and
so should be carefully considered. For instance, extensions to humans of inferential conclusions
obtained from experiments on laboratory animals require specific hypothetical assumptions beyond
those connected with the distributional properties of the actual data.

It is worth noting that properties (i) and (ii) are jointly sufficient (but not necessary) for inferential
extension, because only the unbiasedness or only the similarity may provide insufficient guarantees.
The following two examples illustrate this point: (a) a purely randomized test, for which the rejection
is a function of only an auxiliary continuous random quantity independent of X, is uniformly of
size α for all possible data sets and thus it is strongly similar but not consistent, its type II error
rate being fixed at α for all sample sizes and all non-centrality parameters; (b) a test that rejects
H0 with probability one for all X is conditionally and unconditionally unbiased and with maximum
power in H1, but in H0 its type I error rate, being equal to 1, is strictly greater than α, and so it is
strongly anticonservative.

We observe that for parametric tests, when there are nuisance entities to eliminate, the extension
of inferential conclusions from conditional to unconditional can generally only be done if the data set
is obtained through well-designed sampling procedures and applied to the entire target population.
This is because if data are obtained by selection-bias procedures, then the associated inferences can
be conditionally biased, or the estimates of nuisance parameters cannot be boundedly complete, or
both (see Section 1.4). Thus, similarity or conditional unbiasedness, or both, are not guaranteed and
so there is no guarantee of controlling required inferential properties. When selection-bias data X
are observed and the selection mechanism is not well designed, due to the impossibility of writing
a credible likelihood function, there no point in staying outside the conditioning with respect the
associated orbit X/X and the related discrete distribution induced by the chosen statistic T . On the
one hand, this implies adopting the permutation principle of testing; on the other, no parametric
approach can be invoked for obtaining credible inferences.

In order to illustrate the latter point, among the infinite possibilities of carrying out selection-
bias procedures, let us consider two situations which may be common in both experimental and
observational studies.

Suppose that, in one-sample situations and normally distributed errors, the sample space X is
partitioned into the subsets X/A and X/B of points respectively defined by small and large sample
standard deviations, so that X = X/A

⋃
X/B . Suppose also that the specific selection-bias procedure

only considers sample points from X/A and that the pair of estimates (X̄A, σ̂A) is obtained. Figure 3.2
describes such a situation. Since σ̂A is stochastically smaller than the corresponding estimate σ̂ we
would have by random sampling from the entire target population (note that in this context X̄A

has the same marginal distribution as X̄), the Student’s t statistic tA = (X̄A − µ0)
√
n/σ̂A, being

stochastically larger than the corresponding t = (X̄ − µ0)
√
n/σ̂ , clearly becomes anticonservative.

Indeed, its type I error rate satisfies the relation α ≤ αA < 1. Thus, the parametric t test is strongly
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Figure 3.2 A case of selection-bias sampling from a normal population

anticonservative and so inferences based on selection-bias procedures from normal populations are
generally conditionally biased, in the sense that we are unable to guarantee their unbiasedness. In
these situations, therefore, Student’s t test cannot be used since both invariance and boundedly
complete properties are not satisfied. However, we may note that if Student’s t is carried out with
selection-bias data, results can correctly be extended to the actually selected (and usually unknown)
population, but not to the target.

The second situation considers a very special case of the so-called weighted distributions (see
Patil and Rao, 1977) in which it is supposed that

fP (x) · ϕ(x) = Kϕ · exp{−(x − µϕ)
2/2σ 2

ϕ },
where fP (x) is the density corresponding to the target population P , ϕ(x) is a non-negative weight
function, Kϕ is a normalizing constant, and µϕ and σϕ are the mean and standard deviation of
the selected population Pϕ (note normality). Thus, Student’s t is a proper test for Pϕ , but related
inferential results cannot be extended to the target population P , unless the weight function ϕ is
well specified and the corresponding parameters and coefficients well estimated.

Remark 1. Note that in the context of selection-bias sampling, it may be that sample means and
variances are stochastically independent even if the target population is not normal, as in the second
situation. Thus, in general we know that statistics based on selection-bias procedures may violate
important parts of most of the theorems based on the notion of random sampling. Therefore, when
sampling experiments are not well designed, to some extent parametric unconditional inferences
become improper and so cannot be used correctly for inferential purposes.

Remark 2. It is, however, to be emphasized that with selection-bias data, we can extend testing
conclusions but we cannot extend estimates of the size effect δ because no population functional can
be correctly estimated on the target population unless the sample design has a known probabilistic
structure. That is to say, we can extend test conclusions but not sample estimates.

3.6 Optimal Properties
It is well known that the unconditional power function (see Section 3.4) is particularly important
in selecting an optimal test φ from a class of test statistics when testing H0 against H1.

Permutation tests differ from parametric tests mainly in that permutation critical values, Tα(X),
vary as X varies in X (see Section 2.2.1). This fact makes it difficult to express in closed form the
exact evaluation of the conditional and unconditional permutation power functions, as shown in
Section 3.2. Moreover, the unconditional power function also depends on the underlying unknown
distribution P generating points X ∈ X.
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However, in order to appreciate the optimal properties of permutation tests, some useful results
are stated in this section without proof. Proofs may be found in the references quoted. Let us begin
with the following lemma.

Lemma 1. (Lehmann and Stein, 1949; Lehmann, 1986). If ψ is any test of a hypothesis of
invariance for a class of density functions with respect to a dominating measure ξ , and if the size of
ψ is less than or equal to α, then there exists a permutation similar test φ such that

∫
φdP ≥ ∫ ψdP,

for all probability distributions P .

In practice, Lemma 1 states that permutation similar tests are at least as good as any other test
of invariance and, from this point of view, they lie within a class of admissible tests. In this sense,
optimal tests of invariance may be found within permutation similar tests. A test φ is said to be
admissible if there is no other test which is at least as powerful as φ against some alternatives in
H1 and more powerful against all other alternatives (see Lehmann, 1986).

Section 3.7 presents some asymptotic approximations for the permutation power. Here we present
a somewhat different way of defining an optimal permutation test in terms of parametric alternatives.

Theorem 3. (Lehmann and Stein, 1949; Lehmann, 1986). Let H0 be a hypothesis of invariance
under a finite group of transformations G, and let fP be the density function corresponding to a
distribution P in H1. For any X ∈ X, we denote by X∗(1), . . . ,X∗(M) the M points of the associ-
ated permutation sample space X/X, arranged so that fP (X∗(1)) ≥ . . . ≥ fP (X∗(M)). For testing H0

against H1 the most powerful randomization test of size α is given by

φR(X) =
 1 if fP (X)>fα,

γ if fP (X) = fα,

0 if fP (X) < fα,

where, for any α ∈ (0, 1), fα = fP (X∗(Mα)
) is the critical value, Mα = �α ·M� is the number of

points in the critical region, and γ = [α − Pr{f (X)>fα |X}]/ Pr{f (X) = fα |X}.
Theorem 3 shows that, in order to obtain an optimal permutation test, we must know the pop-

ulation distribution P in H1. In the general nonparametric situation, this distribution is unknown,
so that this theorem is difficult to apply. However, as we sometimes have approximate knowledge
of P , we have a weak guideline enabling us to establish a reasonable choice for good tests.

Remark 1. We know that permutation tests φ work when H0 implies invariance of the conditional
distribution P|X with respect to a finite group of transformations G. This basic structure may be
relaxed in a few special cases. Permutation tests φ may sometimes become valid asymptotically.
For more details on this subject, see the interesting results provided by Romano (1990), and some
of the results in Chapters 4–12.

3.6.1 Problems and Exercises
1) Prove Proposition 2, 3.1.1, i.e. that if the permutation distribution of a test T may only be
expressed in terms of exchangeable errors Zi , then it is a permutationally exact test .

2) Extend Theorem 1, 3.1.1 to H1 : {� d
< 0}, in which random effects are non-positive.

3) Draw a block diagram for the test of symmetry of Example 1, 2.6.

4) Give a formal proof of the ordering property established in Theorem 2, 3.1.1.

5) Using the notation in Section 3.1, formally prove unbiasedness of the randomized test φ; give
expressions for the conditional and unconditional power functions and show that they are conse-
quences of the monotonic ordering property stated in Theorem 2, 3.1.1.
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6) Prove that both conditional and unconditional power functions of the permutation test T for the
problem with paired observations are monotonically non-decreasing with respect to δ.

7) With reference to Theorem 2, 3.1.1, prove that, in a two-sample design, the test for composite
hypotheses, i.e. for H0 : {δ ≤ δ0} against H1 : {δ > δ0}, T ∗ = X̄∗1 is unbiased and conservative.

8) Using the notation in Section 3.1, prove that the permutation CDF F(t; δ|X/X) = Pr{T ∗(δ) ≤
t |X/X} is non-decreasing with respect to δ, for all t ∈ R1.

9) Using the notation of Section 3.1.1 in a paired data design (see Section 1.8), prove that the test
T ∗ =∑i XiS

∗
i is unbiased for testing H0 : {δ = 0} against H1 : {δ > 0}, i.e. prove that

Pr{T ∗(δ) ≥ T o(δ)|X/X} = Pr{T ∗(0)+ δ(n−
∑

i
S∗i ) ≥ T o(0)|X/X}.

10) With reference to the Problem 9 above, prove unbiasedness of T ∗ =∑i XiS
∗
i in paired data

designs with (non-negative) random effects �.

11) Assume that the response model for paired observations is {Y1i = µ+ ηi + σi · Z1i , Y2i = µ+
ηi − δ + σi(δ) · Z2i , i = 1, . . . , n}, where (Z1i , Z2i ) are identically distributed within units and
independent with respect to units, and scale coefficients σi(δ) are such that σi(0) = σi > 0. Show
that the test T ∗ =∑i Xi · S∗i is unbiased for testing H0 : {δ = 0} against H1 : {δ > 0} (note that
location and scale functionals depend on units and in the null hypothesis scale coefficients are
equal, hence exchangeability is satisfied).

12) Prove that, in the alternative, the probability distribution of points on the permutation sample
space X/X depends on the treatment effect δ.

13) With reference to the paired data design, show that the permutation sample median X̃∗ =
Md(XiS

∗
i ) is unbiased for testing H0 : {δ = 0} against H1 : {δ > 0}.

14) With reference to the paired data design, show that the permutation sample trimmed mean of
order b,

X̄∗b =
∑

b<i<n−b
X∗(i)/(n− 2b), 0 ≤ b ≤ (n− 1)/2,

where X(i) and X∗(i) = X(i)S
∗
i are the increasing order statistics associated with X and X∗ respec-

tively, is unbiased for testing H0 : {δ = 0} against H1 : {δ > 0}.
15) When dealing with a paired data design the underlying response model is Y1i = µ+ ηi + σ1 ·
Z1i , Y2i = µ+ ηi − δ + σ2 · Z2i , i = 1, . . . , n, where the two unknown scale coefficients σ1 and
σ2 are assumed not equal, due to the lack of exchangeability within units, prove that no general
exact solution is possible.

16) Under the same conditions as in Problem 15, and in the very special case where error terms
Z1i and Z2i are independent and symmetrically distributed around zero, prove that the permutation
exact solutions are those based on testing for symmetry (see Example 1, 2.6). Also prove that
one particular solution is provided by the sign or McNemar test (note that if two variables are
symmetric around the same finite quantity, then their difference is symmetric around zero).

3.7 Some Asymptotic Properties

3.7.1 Introduction

This section presents some asymptotic properties of permutation tests. Proofs of theorems may be
found in the literature. We refer here to the randomized version of the permutation test φR (see
Section 2.2.2).

Permutation tests φR differ from parametric tests mainly because critical values Tα and p-values
λ, if expressed in terms of the random data set X, are essentially random quantities. In fact, for any
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finite sample size n, permutation functionals F(t |X/X), Tα and λ, associated with (T , X), vary as
X randomly varies in the sample space X. Specifically, the permutation conditional power function
is also a random entity, which takes on different values when we start from different sample points
X (see Section 2.2.1). This makes comparisons between permutation tests and other tests difficult.

Study of the asymptotic behaviour of permutation tests φR may be of some help in overcoming
this difficulty. We shall see that, in quite general conditions, the permutation conditional distribution
and parametric unconditional sample distribution of the test statistic T converge to the same limit,
as sample size n goes to infinity. This gives us a theoretical basis on which to compare permutation
tests with their parametric or nonparametric rank-based counterparts.

3.7.2 Two Basic Theorems

Let us examine the asymptotic behaviour of the permutation critical value Tα(X(n)) = Tαn, where its
dependence on the data set X(n) based on sample size n ≥ 2 (see Sections 2.1 and 2.2) is emphasized.
Assume that elements X(n) ∈ Xn, P (n), X/X(n) , Mn, φR(X(n)), T (X(n)), Tαn, etc., are defined on an
infinite sequence of positive integers n. Also assume that Mn →∞ and

∑
X
/X(n)

(T ∗ < Tα)/M
n →

1− α, as n→∞. Following Hoeffding (1952), let us suppose that for a given sequence P (n) of
distributions of X(n) the following assumptions are satisfied:

(A.1) Test statistics T are expressed in such a way that there is a constant ξα , so that Tαn
p→ ξα ,

as n→∞.
(A.2) There is a function K(y), continuous at y = ξα , so that for every y, for which K(y) is

continuous, Pr{T (X(n)) ≤ y} → K(y).

From the definition of a permutation test φR (see Section 5.1.1), we have

Pr{T (X(n))>Tαn|X(n)} ≤ EX
/X(n)

{φR(X(n))}
≤ Pr{T (X(n)) ≥ Tαn|X(n)}.

Therefore, it follows that conditions (A.1) and (A.2) imply that

EX(n)
/X
{φR(X(n))} → 1−K(λ).

To better identify situations when assumption (A.2) holds, we may introduce a stronger condition,
valid for any sequence {P (n), n ≥ 2}, as follows:

(A.3) F(y|X(n)
/X )

p→ F(y) for every y at which F(y) is continuous, where F(y) is a distribution
function, the equation F(y) = 1− α has only one solution yα = ξα , and F(y) is continuous
at y = ξα (see also the discussion of question (a) in Section 2.5).

We report here, without proof, some results obtained by Hoeffding (1952), showing that (A.3)
generally implies (A.2).

Theorem 4. (Hoeffding, 1952). Under assumption (A.3), there is a constant ξα , such that Tαn
p→

ξα , as n→∞.

Let X(n)∗ be any permutations of X(n), randomly chosen in the permutation sample space X(n)
/X .

Moreover, let X(n)′ be one more random element from X(n)
/X , having the same distribution as X(n)∗,

and let X(n)∗,X(n)′ and X(n) be mutually independent.
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Theorem 5. (Hoeffding, 1952). Assume that, for some sequences of distributions {Pn, n ≥ 2},
T (X(n)∗) and T (X(n)′) have the limiting joint distribution function F(y) · F(y ′). Thus, for every
y at which F(y) is continuous F(y|X(n)

/X )
p→ F(y), and if equation F(y) = 1− α has only one

solution yα = ξα , Tαn
p→ ξα , as n→∞.

Note that if F(y|X(n)
/X )

p→ F(y) for a sequence of distributions invariant under the action of a
group of transformations Gn, then T (X(n)) has asymptotic distribution F(y).

Let φ′ be a test defined as follows:

φ′(X(n)) =


1 if T (X(n))> tαn,

γ ′n if T (X(n)) = tαn,

0 if T (X(n)) < tαn.

Assume that tαn and γ ′n are such that φ′ has size α for testing H0. For instance, φ′ may be a
parametric test for H0, satisfying some desirable property. If (A.3) is satisfied, then tαn → ξα .
Moreover, if (A.2) holds, then

EP (n) {φ′(X(n))} → 1−K(λ).

If Pξ denotes the class of all sequences {P (n); n ≥ 2} for which assumptions (A.3), with ξα fixed,
and (A.2), with some K ′(y), are satisfied, and if Pξ contains all sequences induced by H0, then the
powers of permutation tests φR and φ′ tend to the same limit for every {P (n); n ≥ 2} in Pξ . The
permutation test φR is thus asymptotically as powerful with respect to Pξ as φ′. If φ′ is the most
powerful, or more generally ‘optimum’ in terms of power, the permutation test φR asymptotically
captures the same properties.

Example 1. Testing symmetry revisited (see Example 1, 2.6).
It can be shown that assumption (A.3) is satisfied when approximating the permutation distribu-

tion of a test statistic by the standard normal distribution. Let us consider a situation in which X(n)

is a sample of n i.i.d. observations from a normal distribution. Thus, to test H0 : {δ = 0} against
H1 : {δ > 0}, the permutation test φR based on the test statistic T =∑i Xi has the same asymptotic
power as the standard one-sided Student’s t test of size α.

Example 2. One-way ANOVA revisited (see Example 6, 2.7).
The permutation test φR for the ANOVA may be based on the test statistic T = T (X(n)) defined

(in familiar notation) as

T =
∑C

j=1 nj (X̄j − X̄.)
2∑C

j=1

∑nj
i=1(Xji − X̄j )2

.

Assume that X(n) is generated from C independent normal distributions. Thus, the permutation test
φR of size α, based on the test statistic T , has the same asymptotic power as the Snedecor F test.

Remark 1. In these examples, we tackle the problem of studying the asymptotic behaviour of
permutation tests φR by checking assumption (A.3). This is perhaps the easiest way of achieving
asymptotic results. Other ways include using versions of the so-called PCLT for approximating
permutation CDFs F(t |X(n)

/X ) by the standard normal CDF �(t), t ∈ R1. This is done in the
next section.
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3.8 Permutation Central Limit Theorems

3.8.1 Basic Notions

Let us assume that a sample X(n) = {X1, . . . , Xn} of n i.i.d. observations from X is given, that
the point X(n) takes values on a sample space Xn, and that P (n) denotes probability distributions
on Xn induced by the sampling experiment producing X(n). Also assume that the null hypothesis
H0 to be tested implies that permutations of elements of X(n) are equally likely (see Proposition 1,
2.1.3). We define a linear permutation test statistic T = T (X(n)) as

T =
n∑

i=1

Ai ·Xi,

where An = {A1, . . . , An} is a suitable vector of real numbers, not all equal to zero. We define X̄ =
n−1∑n

i=1 Xi , Ā = n−1∑n
i=1 Ai , V2(X(n)) = n−1∑n

i=1(Xi − X̄)2 and V2(An) = n−1∑n
i=1(Ai −

Ā)2. From the permutation distribution of T , it turns out that

EX(n)
/X
{T (X(n)∗)|X(n)

/X } = nX̄Ā,

because only {X1, . . . , Xn} are permuted, whereas {A1, . . . , An} remain fixed. Moreover,

EX(n)
/X
{(T (X(n)∗)− nX̄Ā)2|X(n)

/X } = (n− 1)−1{n2V2(X(n))V2(An)}2.

Let us consider the standardized form,

Z = (n− 1)1/2(T − nX̄Ā){n2V2(X(n))V2(An)}−1.

We know that the permutation CDF of the statistic Z,FZ(t |X(n)
/X ), t ∈ R1, may be exactly determined

in principle by enumerating all permutations of elements of X(n). Assume that {X(n); n ≥ 2} and
{An; n ≥ 2} are independently defined, each on an infinite sequence of positive integers n. In
this situation, there are versions of the PCLT related to the question of how to find conditions on
sequences {X(n); n ≥ 2} and {An; n ≥ 2}, in which FZ(t |X(n)

/X ) may be approximated by the standard
normal CDF �(t), t ∈ R1.

3.8.2 Permutation Central Limit Theorems

In order to present some of the most important conditions on sequences {X(n); n ≥ 2} and
{An; n ≥ 2} the limit distribution of which is found by a PCLT, it is convenient to consider
a generic sequence {Dn; n ≥ 2}, so that we can refer conditions (C.1)–(C.4) below to both
sequences {X(n); n ≥ 2} and {An; n ≥ 2}. Following Puri and Sen (1971, Chapter 3), and Sen
(1983, 1985), let us define D̄ = n−1∑n

i=1 Di , Vr(Dn) = n−1∑n
i=1(Di − D̄)r , r = 2, 3, 4, . . . ,

Wr(Dn) = n−1∑n
i=1 |Di − D̄|r , r ≥ 0, and R(Dn) = max1≤i≤n(Di)−min1≤i≤n(Di).

We discuss the PCLT by taking into consideration conditions such as the following:

(C.1)
∏I

i=1 Pκ(Xi) ·
∏n

i=I+1 Pκκ(Xi)Vr (Dn){V2(Dn)}−r/2 = O(1) for all r = 3, 4, . . . (Wald and
Wolfowitz, 1944).

(C.2) Vr(Dn){V2(Dn)}−r/2 = o(nr/2−1), for all r = 3, 4, . . . (Noether, 1949).
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It is easy to verify that condition (C.1) implies (C.2). Moreover, (C.2) is equivalent to either of the
following two conditions (see Hoeffding, 1951b):

(C.3) For some r > 2, Wr(Dn){V2(Dn)}−r/2 = o(nr/2−1).
(C.4) R(Dn){V2(Dn)}−1/2 = o(n1/2).

Theorem 6. (PCLT). If the sequence {An; n ≥ 2} satisfies condition (C.1), and {X(n); n ≥ 2}
satisfies condition (C.2), and if

{nV2(X(n))}−1
{

max
1≤i≤n

|Xi − X̄|
}
→ 0,

as n→∞, then, for every t ∈ R1, FZ(t |X(n)
/X )

p→ �(t).

Remark 1. More general versions of Theorem 6 may be found in the literature. See, among others,
Hoeffding (1951b), Motoo (1957), Hájek (1961), Jogdeo (1968) and Shapiro and Hubert (1979).
Their results are especially useful when treating the so-called bilinear permutation statistics. For a
review of multivariate generalizations of Theorem 6, see Sen (1983, 1985).

Remark 2. Some versions of the PCLT may be directly applied to the asymptotic theory of
rank tests. The asymptotic counterparts of rank tests are generally easier to determine than those of
permutation tests, because distributions induced by statistics on ranks are usually easily determined,
essentially because ranks associated with data and critical values of related tests are fixed numbers.
For more details, see Fraser (1957), Sen (1983, 1985), Hettmansperger (1984), Lehmann (1986),
Hájek and Šidák (1967) and Hájek et al. (1999).

Remark 3. The bootstrap was introduced by Efron as a technique for assessing the statistical
accuracy of estimates, mainly in nonparametric settings. It may also be used to test statistical
hypotheses; see Efron and Tibshirani (1993) and Davison and Hinkley (1988) for a review and
for related results. Specifically, at least in their simpler form, bootstrap inferences are based on
a distribution obtained by giving the same probability mass to elements of a given sample X(n),
say X(n)′ = {X′1, . . . , X′n}, which are randomly drawn with replacement from X(n) (WRE). The
distribution induced by a statistic T is called the bootstrap distribution associated with X(n).
In this sense, permutation tests have a parallel meaning, because random resampling can gen-
erally be interpreted to occur without replacement (WORE) from X(n) (see consequences of
Proposition 2, 2.1.3).

Let Jn(t), t ∈ R1, be the bootstrap distribution induced by the test statistic T , given X(n), which
we wish to consider for testing the null hypothesis H0. Assume that in H0 permutations are equally
likely. That is, we imagine a situation in which both a permutation test and a bootstrap test may
be applied. Recall that for any test statistic T , F(t |X(n)

/X ) and F(t), t ∈ R1, are respectively the
permutation distribution and its limit, which is assumed to exist. Let us assume that the test statistic
T is written as T = n1/2D(P (n), τP (n)), where P (n) ∈ P(n) is the underlying distribution which has
generated X(n), D is a metric measuring distances between members of P(n), and τ is some mapping
characterizing H0 within P(n).

In Romano (1988, 1989, 1990), it is shown that, as n→∞, the following two equations hold:

sup
−∞<t<+∞

|Jn(t)− F(t)| p→ 0
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and

sup
−∞<t<+∞

|Jn(t)− F(t |X(n)
/X )| p→ 0.

As a consequence, the permutation and bootstrap tests, both based on T = n1/2D(P (n), τP (n)),
as n→∞, tend to have the same inferential behaviour. They are asymptotically equivalent also
in terms of power. Most of the test statistics described in the examples in Chapter 2 satisfy this
structure. Similar results are given in Pallini (1992a), when the test statistic T is a suitable function
of covariance matrices in a general multivariate setting.

Remark 4. Bootstrap tests (see Hinkley, 1989) are more flexible than permutation tests, because
they may also be used when H0 is not a hypothesis of invariance, and in particular in some cases
when the exchangeability condition is not satisfied.

However, it should be emphasized that they are data-dependent without being strictly conditional
procedures. In order to reach this conclusion, we may observe that if X and X′ are two sample
points of X with at least one (but not all) common element(s), then two associated bootstrap sample
spaces are not separated, in the sense that their intersection is not empty. Thus, as there are sample
points in X which are members of more than one bootstrap sample space, the set of all bootstrap
sample spaces provides only a covering of X and not a partitioning . Conversely, as each sample
point belongs to only one permutation sample space, the set of all X/X defines a partitioning of X
(see Section 2.1.2). This means that, for finite sample sizes, inferential interpretations of bootstrap
tests are not completely clear, because they are neither conditional nor unconditional procedures,
although they seem closer to unconditional ones.

Hence, bootstrap tests may be effective for exploratory purposes, but are only vaguely useful
for inferential objectives. Moreover, when both are applicable, permutation tests are preferable also
because they are of exact size α and because, being conditional on a set of sufficient statistics,
they enjoy desirable properties which make conditional and unconditional inference interpretations
effective and essentially clear.

3.9 Problems and Exercises

1) With reference to a two-sample problem, discuss the consistency of T when comparing two
means.

2) With reference to a two-sample problem, discuss the consistency of T when comparing two
medians.

3) Extend the validity of Theorem 1, 3.1.1, when the alternative is H1: {� d
< 0}, i.e. show that −T

is significant for large values and is unbiased.

4) Discuss on the validity of Theorem 1, 3.1.1, for two-sided alternatives H1: {δ 	= 0}.
5) With reference to Example 2, 2.7, discuss the consistency of test statistics T = (X̄1 − X̄2

)2
and

W = |X̄1 − X̄2| for two-sided alternatives H1: {δ 	= 0}.
6) According to the ordering property of the permutation distribution established in Theorem
2, 3.1.1, and using the same notation, prove that if δ > δ′> 0, then Pr{T ∗(δ) ≥ T o(δ)|X(δ)} ≤
Pr{T ∗(δ′) ≥ T o(δ′)|X(δ′)} ≤ Pr{T ∗ ≥ T o|X}, that is, the p-values are stochastically ordered (non-
increasingly) with respect to δ.

7) Prove that both conditional and unconditional power functions of the permutation test T above
are monotonically non-decreasing with respect to δ.
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8) In accordance with Problems 6 and 7 above and Section 3.1.2, discuss conditions so that the
permutation distributions of suitable tests for two-sided alternatives are ordered with respect to |δ|.
In particular, establish when |δ|> |δ′|> 0 implies Pr{T ∗(|δ|) ≥ T o(|δ|)|X(|δ|)} ≤ Pr{T ∗(|δ′|) ≥
T o(|δ′|)|X(|δ′|)} ≤ Pr{T ∗ ≥ T o|X}, i.e. permutation p-values are ordered non-increasing with
respect to |δ|.
9) Extend the validity of Theorem 1, 3.1.1, to the so-called individually varying fixed effects
situation, in which δ1i > 0, i = 1, . . . , n1, and δ2i = 0, i = 1, . . . , n2, and show that, within a
conditional inference framework, there is no real distinction between this model and the one with
stochastic effects (see (M.1) in Section 1.10.1).

10) Prove that the non-randomized test φ, that is φ = 1 when T o ≥ Ta and 0 elsewhere, and defined
according to the notation in Section 2.2.2, is unbiased.

11) Express the unconditional and conditional power functions of the test φ of Problem 10 above.

12) Discuss consistency of the test of symmetry in the standardized form K in Section 1.9.4 for
testing H0 : {δ = 0} against H1 : {δ > 0}.
13) With reference to the problem on paired data design (see Section 1.9), prove formally that
if σ 2(X) <∞, then the permutation distribution of K∗ =∑i Xi · S∗i /(

∑
i X

2
i )

1/2, as n tends to
infinity, converges to the distribution of a standard normal variable.

14) Show that the permutation test T ∗ =∑j nj (X̄
∗
j ) in a one-way ANOVA design is consistent

when all sample sizes nj , j = 1, . . . , C, tend to infinity.

15) Adapt arguments in Remarks 3 and 4, 3.4, on permutation likelihood and Bayesian inference
to the paired data design.

16) With reference to Remark 4, 3.4, on Bayesian permutation inference, derive a Bayesian test
procedure in a two-sample problem for simple hypotheses, H0 : {δ1 = 0} against H1 : {δ1 = δa},
where it is presumed that treatment is administered only to the first group, δa is a fixed value, and
the prior distribution is given by π(0) = p and π(δa) = 1− p.

17) With reference to Problem 16 above, derive a Bayesian test procedure in a two-sample problem
for composite hypotheses, H0 : {δ2 ≤ 0} against H1 : {δ2 > 0}, where it is presumed that treatment
is administered only to the second group and the prior density distribution is π(δ).

18) Prove that if, in the two-sample problem, the nonparametric family P, to which P1 and P2

belong, contains only continuous distributions, then X is minimal sufficient in H0.

19) According to the ordering property of permutation distribution established in Theorem 2, 3.1.1,
and using the same notation, discuss conditions so that the permutation distributions of suitable tests
for two-sided alternatives are ordered with respect to δ2. In particular, establish when δ2 >δ′2 > 0
implies Pr{T ∗(δ) ≥ T o(δ)|X(δ)} ≤ Pr{T ∗(δ′) ≥ T o(δ′)|X(δ′)} ≤ Pr{T ∗ ≥ T o|X}, that is, the per-
mutation p-values are non-increasingly stochastically ordered with respect to δ2.

20) Prove that both conditional and unconditional power functions of the permutation test T above
are monotonically non-decreasing with respect to δ.

21) Prove the unbiasedness of the non-randomized test φ, defined according to the notation in
Section 2.1.2.

22) Write the algorithm for the unconditional and conditional power functions of the
non-randomized test φ of Problem 21 above.

23) Discuss on the unbiasedness of the test statistic T for the one-way ANOVA, defined in Section
1.11.2, when the response model is {Xji = µ+�ji + σ · Zji , i = 1, . . . , nj , j = 1, . . . , C}, where
�ji = δj + σ� ·Dji represent the stochastic effects with mean value δj , Dji represent random
errors of effects, the distributions of which are not dependent on treatment levels, and σ� is a
scale parameter not dependent on treatment levels. (Note that random errors D to some extent may
depend on errors Z. Note also that, for the sake of simplicity, the unknown nuisance quantity µ
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may be defined in such a way that
∑

ji �ji = 0; hence, the stochastic effects represent deviates
from µ.)

24) Discuss on the unbiasedness of the test statistic T , defined above, for the generalized one-
way ANOVA, so that H0 : {X1

d= . . .
d= XC} against H1: {H0 not true}, with the restriction that, for

any pair (i 	= j , i, j = 1, . . . , C), the corresponding response variables are pairwise stochastically

ordered according to either Xi

d
>Xj or Xi

d
< Xj , that is, ∀x ∈ R1, so that the CDFs are related

according to Fi(x) ≤ Fj (x) or Fi(x) ≥ Fj (x).

25) With reference to Example 3, 2.7, prove that

T ∗AD =
k−1∑
i=1

(
F̂ ∗1 (h)− F̂ ∗2 (h)

)
{F̂ (h)[1− F̂ (h)]}1/2

is unbiased for testing H0 : {X1
d= X2} against H1 : {X1

d
>X2}. It may be useful to represent the

observable categorical variables Xj as monotonic, non-decreasing and non-continuous transforma-
tions of an underlying continuous variable Y , e.g. Xj = ϕ(Y + δj ), with δ1 = 0 and δ2 > 0, and to
proceed according to the proof of Theorem 1, 3.1.1.

26) Following the same idea as Problem 25 above, find conditions such that T ∗2
AD , as defined in

Example 4, 2.7, is unbiased for testing H0 : {X1
d= X2} against H1 : {X1

d

	= X2}.
27) Prove that the two tests T ∗AD and T ∗2

AD defined in Problems 24 and 25 above are consistent for
proper alternatives.

28) Prove the unbiasedness of the test TR for repeated measurements according to the problem in
Section 2.6.1, also discussed in Example 9, 2.7.

29) Prove the consistency of TR of Problem 28 above.

30) Write the algorithm for the conditional and unconditional power functions of TR of Problem
28 above.

31) With reference to the two-sample design, prove that the condition of non-negativity with proba-
bility one of random effects � implies that two CDFs satisfy the dominance relation F1(x) ≥ F2(x),
∀x ∈ R1, and vice versa.

32) Give a formal proof of the statement in Remark 1, 3.2.1.

33) According to Remark 6, 2.7 and the related response model, prove that the permutation structure
(see Remark 1, 2.7 for its definition) in the two-way ANOVA layout without interaction is not
dependent on block effects bi and so the resulting permutation test is exact.

34) Write an algorithm similar to that of Section 3.2.1 for evaluating the conditional power of any
test T in the one-sample problem.

35) Write an algorithm similar to that of Section 3.2.1 for evaluating the conditional power of any
test T in the one-way ANOVA problem.

36) With reference to the two-sample problem for comparison of locations, prove that, when testing
H0 : {δ = 0} against H1 : {δ > 0}, the test statistic T ∗ = X̃∗1 − X̃∗2 based on sample medians is
unbiased.

37) With reference to the two-sample problem for comparison of locations, prove that, when testing
H0 : {δ = 0} against H1 : {δ > 0}, the test statistic T ∗ = X̄∗1b − X̄∗2b, based on trimmed sample
means of order b, where X̄∗jb =

∑
b<i<nj−b X

∗
j (i)/(nj − 2b), 0 ≤ b ≤ (nj − 1)/2, j = 1, 2, and

where X∗j (i) are the increasing order statistics associated with the j th group X∗j , is unbiased.

38) Prove that the permutation solution for a two-way ANOVA without interactions maintains
its validity even when the underlying response model is Xji = µi + δj + Zji, i = 1, . . . , n, j =
1, . . . , k.
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39) With reference to Theorem 1, 3.1.1, show that for fixed effects �
p= δ the relationship

DS(Z∗1, δ
∗
1 )−DS(Z∗2, δ

∗
2) ≤ DS(Z1, δ1) is pointwise satisfied, instead of merely in permutation

distribution, also for non-associative statistics T = S1(X1)− S2(X2) which satisfy conditions (a)
and (b) of Section 3.1.1.

40) Give a formal proof of Proposition 1, 3.1.1, i.e. prove that a conditionally unbiased test for
every data set X ∈ Xn is also unconditionally unbiased. Also prove that conditional unbiasedness
is sufficient but not necessary for unconditional unbiasedness.

41) Show that in a standard two-sample design for one-sided alternatives, if random effects � are
such that Pr{� ≥ 0} = 1 and Pr{� = 0}> 0, i.e. if treatment is ineffective with some units, the test
statistic T ∗ =∑i X

∗
1i is unbiased.

42) With reference to a standard two-sample design, prove that permutation tests such as T ∗ =∑
i X

∗
1i with random effects � and with individually varying fixed effects δi , provided that �1i

d=
δ1i , i = 1, . . . , n1, give rise to the same conditional power function but not in general to the same
unconditional power function.



4
The Nonparametric Combination
Methodology

4.1 Introduction

4.1.1 General Aspects

In previous chapters we have discussed a number of useful solutions to some typical univariate
permutation testing problems. Some of them were heuristically motivated, others more ratio-
nally justified. Moreover, some theory within the framework of conditionality and sufficiency
principles has also been developed. In the present chapter we present a natural extension of per-
mutation testing to a variety of rather complex multivariate problems. In particular, we introduce
and discuss the method of nonparametric combination methodology (NPC) of a finite number
of dependent permutation tests as a general tool for multivariate testing problems when a set of
quite mild conditions holds. In Section 4.5 we will see an extension of the NPC up to count-
able number of dependent permutation tests. Of course when, as in many V -dimensional prob-
lems (V ≥ 2) for continuous or categorical variables, one single appropriate overall test statistic
T : RV → R1 is available (e.g. of the chi-square or Hotelling’s T 2 type), then in terms of computa-
tional complexity related permutation solutions become equivalent to simple univariate procedures;
for the use of statistics of this kind in some standard multivariate problems (see Barton and David,
1961; Mantel and Valand, 1970; Good, 2000). A similar simplicity is also encountered when there
are suitable data transformations ϕ : RV → R1 of the V -dimensional into univariate derived data
Y = ϕ(X1, . . . , XV ) (examples are given by Reboussin and DeMets, 1996; Hoh and Ott, 2000;
Mielke and Berry, 2007; see also (h) in Section 4.2.4; a typical example occurs, for instance, when
in repeated measurements the so-called area under the curve (AUC) is considered). In this and the
subsequent chapters we shall mostly be interested in more complex problems for which such kinds
of single overall tests are not directly available, or not easy to find, or too difficult to justify.

Often in testing for complex hypotheses, when many response variables are involved or
many different aspects are of interest (see Chapters 5–12 for several multivariate problems;
Examples 3–8, 4.6, for jointly testing for many different aspects and for a form of monotonic
testing in univariate problems), to some extent it is natural, convenient and often easier for the
interpretation of results, to firstly process data using a finite set of k > 1 different partial tests (note
that the number k of sub-problems is not necessarily equal to the dimensionality V of responses).
Such partial tests, possibly after adjustment for multiplicity (see Westfall and Young, 1993; Basso
et al., 2009a), may be useful for marginal or separate inferences. But if they are jointly considered,
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they provide information on a general overall (i.e. global) hypothesis, which typically constitutes
the objective of most multivariate testing problems.

In order to motivate the necessity and usefulness of the NPC method, let us consider, for instance,
a two-sample bivariate problem in which one variable is ordered categorical, the other quantitative,
and two variables are dependent. Moreover, let us assume that a symbolic treatment may influ-
ence both variables, for instance by ‘positive increments’, so that the distribution is shifted towards
higher values on both components (the so-called componentwise stochastic dominance). Let us also
assume that the alternatives of interest are restricted to positive increments, that is they are both
one-sided. Due to its complexity, such a problem is usually solved by two separate partial tests,
one for the quantitative and one for the ordered categorical variable, and analysis tends to dwell
separately on each sub-problem. However, for the general testing problem, both are jointly infor-
mative regarding the possible presence of non-null effects. Thus, the necessity of taking account of
all available information through the combination of two tests in one combined test naturally arises.

When partial tests are stochastically independent, this combination is easily obtained (for a review
of combination of one-sided independent tests, see Folks, 1984, and references therein). But in the
great majority of situations it is impossible to invoke such a complete independence among partial
tests both because they are functions of the same data set X and because component variables in X
are generally not independent. Moreover, the underlying dependence relations among partial tests
are rarely known, except perhaps for some quite simple situations such as the multivariate normal
case where all dependences are pairwise linear, and even when they are known they are often too
difficult to cope with. Therefore, this combination must be done nonparametrically, especially with
regard to the underlying dependence relations (why this combination is nonparametric is discussed
in Section 4.2.5).

In addition, when testing for restricted alternatives, only quite difficult solutions in a few specific
situations are provided in a parametric setting, even in cases of multivariate normality (for solutions
and references see Kudo, 1963; Nüesch, 1966; Shorack, 1967; Barlow et al. 1972; Chatterjee,
1984; Robertson et al. 1988; El Barmi and Dykstra, 1995; Perlman and Wu, 1998; Silvapulle
and Sen, 2005). Difficulties generally increase when dealing with categorical responses (Wang,
1996; Basso et al., 2009a). In this context, on the one hand asymptotic null distributions of related
maximum likelihood ratio tests depend on unknown multinomial parameters. On the other, Cohen
and Sackrowitz (1998) have given an example where the power of a test for restricted alternatives
based on the likelihood ratio is suspected not to be monotonically related to treatment effects.
These two undesirable properties of likelihood ratio solutions are difficult to accept. There are also
problems with repeated measurements in which underlying parametric models are not identifiable,
for example when there are many more measurements within each unit than there are units in the
study, so that most of the related testing problems are unsolvable in the parametric context (see
Crowder and Hand, 1990; Higgins and Noble, 1993; Diggle et al., 2002). However, we shall see
that in a set of mild, simple and easy-to-check conditions, a general and effective solution may be
found via the NPC of k dependent permutation tests.

4.1.2 Bibliographic Notes

In the literature there are a relatively small number of references on the combination of dependent
tests. Chung and Fraser (1958) suggest using the sum of k partial tests in testing for multivariate
location when k is larger than the total sample size (providing a sort of direct NPC; see (h) in
Section 4.2.4 for a brief discussion). Boyett and Shuster (1977), Mukerjee et al. (1986), Higgins
and Noble (1993) and Blair et al. (1994) discuss the ‘max t test’ in some cases of nonparametric
one-sided multivariate testing. Berk and Jones (1978) discuss how the Bahadur asymptotic relative
efficiency relates to a Tippett combination procedure in the case of dependence of partial tests, but
they do not provide any practical solutions. Wei and Johnson (1985) consider a locally optimal
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combination of dependent tests based on asymptotic arguments. Westberg (1986) considers some
cases of robustness with respect to the dependence of an adaptive Tippett type combination pro-
cedure. Edgington (1995), in connection with some multivariate permutation problems, suggests
using the sum of ‘homogeneous tests’.

Conservative solutions may be found via the Bonferroni inequality (see Kounias and Soti-
rakoglou, 1989; Kounias, 1995; Galambos and Simonelli, 1996), by analogy with multiple com-
parison methods (Zanella, 1973; Miller, 1981; Shuster and Boyett, 1979; Petrondas and Gabriel,
1983; Hochberg and Tamhane, 1987; Westfall and Young, 1993; Hsu, 1996; Basso et al., 2009a).
The conservativeness of solutions obtained via the Bonferroni inequality is often unacceptable, for
both theoretical and practical purposes. Moreover, it is worth noting that multiple comparison pro-
cedures have their starting points in an overall test and look for significant tests on partial contrasts.
Conversely, combination procedures start with a set of partial tests , each appropriate for a partial
aspect, and look for joint analyses leading to global inferences.

Major results for the problem of NPC of dependent permutation tests have been obtained by
Ballin and Pesarin (1990), Fattorini (1996), Giraldo and Pesarin (1992, 1993), Pallini (1990, 1991,
1992a, 1992b, 1992c), Pallini and Pesarin (1990, 1992a, 1994), Pesarin (1988, 1989, 1990a, 1990b,
1990c, 1991a, 1991b, 1992, 1993, 1994, 1995, 1996a, 1996b, 1996c, 1997a, 1997b, 1999a, 1999b,
2001), Pesarin and Salmaso (1998a, 1998b, 1999, 2000a, 2000b), and Celant et al. (2000a, 2000b).
Additional references may be found in Arboretti et al. (2000a, 2005a, 2005b, 2007a, 2007b, 2007c,
2007d, 2007e, 2007f, 2007g, 2008a, 2008b, 2009b, 2009c, 2009d), Celant et al. (2009a, 2000b),
Dalla Valle et al. (2000, 2003), Abbate et al. (2001, 2004), Mazzaro et al. (2001), Corain et al. (2002,
2009a, 2009b), Pesarin and Salmaso (2002, 2006, 2009), Arboretti and Salmaso (2003), Salmaso
(2003, 2005), Corain and Salmaso (2003, 2004, 2007a, 2007b, 2009a, 2009b), Basso et al. (2004,
2007a, 2007b, 2007c, 2008, 2009a, 2009b), Filippini et al. (2004), Finos and Salmaso (2004, 2005,
2006, 2007), Bonnini et al. (2005, 2006a, 2006b, 2009), Fava et al. (2005), Salmaso and Solari
(2005, 2006), Basso and Salmaso (2006, 2007, 2009a, 2009b), Berti et al. (2006), Marozzi and
Salmaso (2006), Bassi et al. (2007), Finos et al. (2007, 2008, 2009), Guarda-Nardini et al. (2007,
2008), Arboretti and Bonnini (2008, 2009), Brombin and Salmaso (2008, 2009), Klingenberg et al.
(2008), Manfredini et al. (2008), Solari et al. (2008), Bertoluzzo et al. (2009) and Brombin et al.
(2009). In these papers, the main theory of NPC and many applications to rather complex testing
problems are discussed. Among the many applications referred to, we may mention: the one-way
MANOVA, where some of the variables are quantitative and others categorical; analysis of repeated
measures with dependent random effects and dependent errors; analysis of multivariate restricted
alternatives; analysis of testing problems where some data are missing and the underlying missing
process is not ignorable; some goodness-of-fit problems with multivariate ordered categorical data;
the multivariate Behrens–Fisher problem; some multivariate stochastic dominance problems; exact
testing for interactions in the two-way ANOVA; a multivariate extension of McNemar’s test; a
multivariate extension of Fisher’s exact probability test; problems of isotonic inference; and multi-
aspect testing problems, where treatment may act on more than one aspect of interest.

These rather difficult testing problems, which are not adequately taken into consideration in
the literature, in spite of the fact that they are very frequently encountered in a great variety
of practical applications, emphasize the versatility and effectiveness of the NPC methodology. It
should also be emphasized that, as permutation tests are conditional on a set of sufficient statistics,
in very mild conditions the NPC methodology frees the researcher from the need to model the
dependence relations among responses. This aspect is particularly relevant in many contexts, such
as multivariate categorical responses, in which dependence relations are generally too difficult to
define and to model (see Joe, 1997). Furthermore, several Monte Carlo experiments show that the
unconditional power behaviour of combined tests is generally close to that of their best parametric
counterparts, in the conditions for the latter. In this chapter, we shall review the theory of NPC of
dependent tests, including some specific asymptotic aspects. Chapters 5–12 discuss a number of
application problems, the solutions of which are obtained through NPC.
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4.1.3 Main Assumptions and Notation

Let us introduce the notation and main assumptions regarding the data structure, set of partial tests,
and hypotheses being tested in NPC contexts. For the sake of clarity and without loss of generality,
let us refer to a one-way MANOVA design. To this end:

(i) With obvious notation, let us denote a V -dimensional data set by X = {Xj , j = 1, . . . , C} =
{Xji , i = 1, . . . , nj , j = 1, . . . , C} = {Xhji , i = 1, . . . , nj , j = 1, . . . , C, h = 1, . . . , V }.
As usual, we represent the data set and V -dimensional response using the same symbol X,
the meaning generally being clear from the context. The response X takes its values on the
V -dimensional sample space X, for which a σ -algebra A and a (possibly unspecified) nonpara-
metric family P of non-degenerate distributions are assumed to exist. The data set X consists
of C ≥ 2 samples or groups of size nj ≥ 2, with n =∑j nj ; the groups are presumed to be
related to C levels of a treatment and the data Xj are supposed i.i.d. with distributions Pj ∈
P, j = 1, . . . , C (in place of independence, exchangeability may generally suffice; see Sections
1.2 and 2.1.2). Of course, if covariates are available, it is straightforward to refer to a one-way
MANCOVA design. Again, for easier computer handling, it is useful to express data sets with
the unit-by-unit representation X = {X(i), i = 1, . . . , n; n1, . . . , nC}, in which it is assumed
that the first n1 data vectors belong to the first group, the next n2 to the second, and so on.

(ii) The null hypothesis refers to equality of multivariate distributions of responses on C groups:

H0 : {P1 = . . . = PC} =
{

X1
d= . . .

d= XC

}
.

Let us suppose that, related to the specific problem at hand, a set of side-assumptions holds,
so that H0 may be properly and equivalently broken down into a finite set of sub-hypotheses
H0i , i = 1, . . . , k, each appropriate for a partial aspect of interest. Therefore, H0 is true if all
the H0i are jointly true; and so it may be written as

{⋂k
i=1 H0i

}
. In this sense, H0 is also

called the global or overall null hypothesis . Note that the dimensionality V of responses is
not necessarily related to that of the sub-hypotheses, although for most multivariate location
problems we have k = V . Also note that H0 implies that the V -dimensional data vectors in X
are exchangeable with respect to C groups.

(iii) In the same set of side-assumptions as for point (ii), the alternative hypothesis states that at
least one of the null sub-hypotheses H0i is not true. Hence, the alternative may be represented
by the union of k sub-alternatives,

H1 :

{
k⋃

i=1

H1i

}
,

stating that H1 is true when at least one sub-alternative is true. In this context, H1 is called the
global or overall alternative.

(iv) T = T(X) represents a k-dimensional vector of test statistics, in which the ith component
Ti = Ti(X), i = 1, . . . , k, represents the non-degenerate ith partial test which is assumed to
be appropriate for testing sub-hypothesis H0i against H1i . Without loss of generality, in the
NPC context all partial tests are assumed to be marginally unbiased, consistent and significant
for large values (see Section 4.2.1 for the concepts of marginal unbiasedness and consistency).

Remark 1. It should be emphasized that partial or componentwise testing may also be useful in a
marginal sense, which can be separately tested, possibly after p-value adjustment due to multiplic-
ity (see Chapter 5). Thus, on the one hand, partial tests may provide marginal information for each
specific sub-hypothesis; on the other, they jointly provide information on the global hypothesis
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H0. It should also be emphasized that, if we may presume that the set of proper side-assumptions
holds, the breakdown into k sub-hypotheses allows us to express overall hypotheses in equivalent
forms. Thus, this approach is essentially a procedural technique in which problems always remain
multidimensional (see Section 4.2.3). Substantially, this approach corresponds to a method of anal-
ysis carried out in two successive phases, the first focusing on k partial aspects, and the second on
their combination.

Remark 2. For the sake of simplicity, in this presentation we refer to a typical multivariate
C-sample problem, such as the one-way MANOVA. Of course, in general and in a straightfor-
ward way, we may also refer to other multivariate data designs. Several relevant examples are
discussed in Section 4.6 and from Chapter 5 onwards.

Remark 3. For component tests Ti, i = 1, . . . , k, we prefer to use the term partial tests in place of
marginal tests , because the latter may lead to misunderstandings when multivariate permutations are
being used. In multivariate testing, in order to preserve all underlying dependence relations among
variables, permutations must always be carried out on individual data vectors, so that all component
variables and partial tests must be jointly analysed (see Section 4.2.3). The notion of marginal tests
may sometimes wrongly lead us to think that we are allowed to consider even independent and
separate permutations for each component test, so that multivariate dependence relations may not
be preserved. It is therefore important to distinguish between partial and marginal tests, although
they are often coincident. In Remark 1, 4.3.2, we shall see partial tests which are not marginal
tests, and marginal tests which are not partial tests.

Remark 4. The requirement for partial tests to be significant for large values is not restrictive (see
point (iv) above), because in general we may refer to permutationally invariant transformations in
order to satisfy this requirement. In Sections 6.7, in connection with some problems of isotonic
inference, and in Examples 4 and 5, 4.6, we shall see an extension of this condition, in which
significance for either large or small values is required.

4.1.4 Some Comments

The side-assumptions allowing us to break down the hypotheses into a finite set of equivalent
sub-hypotheses are generally quite natural and easy to justify. The most common situation relates
to multivariate testing on locations where each sub-hypothesis concerns one component variable,
or a subset of them. Moreover, the set of sub-hypotheses and related partial tests are quite general
and may occur in many complex ways. The variable X may be continuous, discrete or mixed. For
this reason, the NPC method may be usefully applied to a great variety of situations.

Although it is generally possible to think of more direct and exact solutions, the NPC problem
is tackled here through a CMC procedure, because the associated algorithm makes it easy to justify
and properly interpret the related inferential results. However, it must be emphasized that the NPC
of dependent tests is a tool which leads to exact solutions when all conditions in points (i)–(iv) in
Section 4.1.3 are jointly satisfied. In particular, it is important to emphasize that:

(a) the null hypothesis must take the form H0 : {P1 = . . . = PC} = {X1
d= . . .

d= XC}, which
implies the exchangeability of individual data vectors with respect to groups, so that the
permutation multivariate testing principle is properly applicable;

(b) based on a set of side-assumptions, hypotheses H0 and H1 must be broken down respectively
into {⋂i H0i} and {⋃i H1i};

(c) a set of appropriate partial tests significant for large values is available;
(d) all k partial tests are jointly analysed.



122 Permutation Tests for Complex Data

If anything in these conditions is not satisfied, something in the solution may be wrong. In
particular, when some of the side-assumptions are violated, leading to an improper breakdown of
the hypotheses, then we may produce solutions to testing problems which are far from what is
desired. Failures in the permutation principle, due for example to lack of exchangeability in H0,
may cause conclusions without any control of inferential errors, or may introduce approximations
which must be carefully analysed – Example 8, 4.6, and Chapters 7 and 9 present some cases of
violations leading to approximate solutions; for permutation testing in the presence of nuisance
entities, see also Tsui and Weerhandi (1989) and Commenges (1996). If some partial tests are not
appropriate for specific sub-hypotheses, then the overall testing solution may become improper.

4.2 The Nonparametric Combination Methodology

4.2.1 Assumptions on Partial Tests

This section specifies the assumptions regarding the set of partial tests T = {Ti, i = 1, . . . , k}
which are needed for NPC:

(A.1) All permutation partial tests Ti are marginally unbiased and significant for large values, so
that they are both conditionally and unconditionally stochastically larger in H1 than in H0.

(A.2) All permutation partial tests Ti are marginally consistent, i.e. as sample sizes tend to infinity
Pr{Ti ≥ Tiα|H1i} → 1, ∀α > 0, where Tiα , which is assumed to be finite, is the critical value
of Ti at level α.

Remark 1. Assumption (A.1) formally implies that

Pr{Ti ≥ Tiα|X/X,H1i} ≥ α, ∀α > 0, i = 1, . . . , k,

and, for all z ∈ R1,

Pr{Ti ≤ z|X/X, H0i} = Pr
{
Ti ≤ z|X/X,H0i ∩H

†
i

}
≥ Pr{Ti ≤ z|X/X,H1i}
= Pr

{
Ti ≤ z|X/X,H1i ∩H

†
i

}
, i = 1, . . . , k,

where irrelevance with respect to the complementary set of hypotheses H
†
i :
{⋃

j 	=i (H0j ∪H1j )
}

means that it does not matter which among H0j and H1j , j 	= i, is true when testing for the
ith sub-hypothesis. Similarly, assumption (A.2) implies that if sub-alternative H1i is true, then
Pr{Ti ≥ Tiα|X/X, H1i ∩H

†
i } → 1, ∀α > 0, independently of H

†
i .

Assumption (A.2) can sometimes be relaxed because what is really required is that at least one
partial test for which the sub-alternative is true must be consistent. To be specific, suppose there are
values h ∈ (1, . . . , k) such that the sub-alternative H1h is true and define H

(true)
1 =⋃h H1h the set

of true sub-alternatives for that problem, then it is required that at least one partial test Th must be
consistent, that is, as sample sizes diverge, Pr{T ∗h ≥ T o

h |X/X} weakly converges to 0 for at least one
h such that H1h ∈ H

(true)
1 . Suppose, for instance, that in a two-sample one-dimensional problem

the alternative is either H1< : {X1
d
< X2} or H1> : {X1

d
>X2} and that partial tests are T ∗< = X̄∗2

and T ∗> = X̄∗1 , respectively. Then in the alternative only one of two partial tests is consistent (see
Example 4, 4.6). However, the combined test is consistent (see Theorem 2, 4.3.1).

Assumption (A.1) implies that the set of p-values λ1, . . . , λk , associated with the partial tests in
T, are positively dependent in the alternative (see Lehmann, 1986, p. 176; see also Dharmadhikari
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and Joag-Dev, 1988, for the concept, analysis and consequences of positive dependence on random
variables), and this irrespective of dependence relations among component variables in X.

Sometimes marginal unbiasedness, which is a sufficient condition for NPC (see Remark 1, 4.3.2),
is only approximately satisfied. One important example occurs when H01 and H02 are respectively
related to locations and scale coefficients in a two-sample testing problem where symbolic treatment
may influence both and two CDFs are not ordered so that they can cross (see Example 8, 4.6). One
more important example occurs with two-sided alternatives with fixed effects. In this framework, as
the effect δ is either positive or negative, of two partial tests, T ∗> = X̄∗1 for δ > 0 and T ∗< = X̄∗2 for
δ < 0, only one is marginally unbiased and so their combination for two-sided alternatives cannot
be claimed to be unbiased (see Example 4, 4.6). Therefore, for the marginal unbiasedness to be
satisfied, on the one hand T1 must be unbiased for H01 against H11, irrespective of whether H02

is true or not; on the other T2 must be unbiased for H02 against H12, irrespective of whether H01

is true or not. But, with statistics comparing locations, as in the Behrens–Fisher problem, and the
ratio of scale indicators for testing on scale coefficients (see Examples 3 and 8, 4.6, for a NPC
solution when the treatment may act on the first two moments), the marginal unbiasedness of T1 is
only approximately satisfied, unless we know in advance that H02 is true. The same happens for
T2, which is marginally unbiased only if it is known that H01 is true. Hence, in these situations
marginal unbiasedness is satisfied only approximately.

Remark 2. When partial tests are separately referred to component variables in X and these
are related by monotonic regressions, assumption (A.1) is naturally satisfied. However, it should
be noted that we generally do not need to assume that regression relationships on component
variables in X are monotonic. We only require that permutation partial tests do satisfy (A.1) as, for
instance, in multi-aspect testing (see Example 3, 4.6). Thus, the condition of monotonic regression
relationships on p-values of partial tests, being only a sufficient condition for the validity of NPC,
is weaker and more generally satisfied than monotonic regressions among the V components in
X (see Remark 1, 4.3.2).

4.2.2 Desirable Properties of Combining Functions

For the sake of simplicity and uniformity of analysis, but without loss of generality, we only refer
to combining functions applied to p-values associated with partial tests. Because of assumption
(A.1), 4.2.1, and Theorem 1, 2.4, partial tests are permutationally equivalent to their p-values:
Ti ≈ Pr{T ∗i ≥ T o

i |X/X} = λi, i = 1, . . . , k. Of course, this is a direct consequence of the monotonic
non-increasing behaviour with respect to t of significance level functions Li(t) = Pr{T ∗i ≥ t |X/X}
or L

(2)
i (t) = 1− ∣∣2 · Pr{T ∗i ≥ t |X/X} − 1

∣∣ for one-sided and two-sided alternatives, respectively.
Thus, the NPC in one second-order test

T ′′ = ψ(λ1, . . . , λk)

is achieved by a continuous, non-increasing, univariate, measurable and non-degenerate real function
ψ : (0, 1)k → R1.

Note that the continuity of ψ is required because it has to be defined irrespective of the cardinality
of (�1, . . . , �k). Moreover, the measurability property of ψ is required because it is used as a test
statistic which then must induce a probability distribution on which inferential conclusions are
necessarily based.

In order to be suitable for test combination (see Pesarin, 1992, 1999b, 2001; see also Goutis et
al., 1996), all combining functions ψ must satisfy at least the following reasonable properties:

(P.1) A combining function ψ must be non-increasing in each argument, ψ(. . . , λi, . . .) ≥
ψ(. . . , λ′i , . . .) if λi < λ′i , i ∈ {1, . . . , k}. Also, it is generally desirable that ψ is
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symmetric i.e. invariant with respect to rearrangements of the input arguments:
ψ(λu1 , . . . , λuk ) = ψ(λ1, . . . , λk) where (u1, . . . , uk) is any permutation of (1, . . . , k).

(P.2) Every combining function ψ must attain its supremum value ψ̄ , possibly not finite, even
when only one argument attains zero: ψ(. . . , λi, . . .)→ ψ̄ if λi → 0, i ∈ {1, . . . , k}.

(P.3) For all α > 0, the critical value T ′′α of every ψ is assumed to be finite and strictly smaller
than ψ̄ : T ′′α < ψ̄ .

These properties are quite reasonable and intuitive, and are generally easy to justify. Property
(P.1) agrees with the notion that large values are significant; it is also related to the unbiasedness of
combined tests. It means that if, for instance, ψ(. . . , λ′i , . . .) is rejected, then ψ(. . . , λi, . . .) must
also be rejected because it better agrees with the alternative. Moreover, symmetry is required to
obtain inferences independent of the order partial tests enter the analysis. Properties (P.2) and (P.3)
are related to consistency.

It should be noted that properties (P.1)–(P.3) define a class C of combining functions, which
contains the well-known functions of Fisher, Lancaster, Liptak, Tippett, etc. (for a review of the
combination of independent tests, see Oosterhoff, 1969; see also Littell and Folks, 1971, 1973;
Folks, 1984). C also contains the Mahalanobis quadratic form for invariant testing against alter-
natives lying at the same quadratic distance from H0. In addition, according to Birnbaum (1954,
1955), C contains the class CA of admissible combining functions of independent tests characterized
by convex acceptance regions, when these are expressed in terms of p-values. In this respect, since
the acceptance region does not depend on how partial tests are dependent, admissibility of the
sub-class of C characterized by convex acceptance regions holds even for dependent partial tests.
In Section 4.2.6 we will see a sufficient condition for admissibility of ψ . Admissibility of a test,
although weak, is quite an important property as it says that no other test exists which is uniformly
better than it in terms of unconditional power. And so, when choosing a way to combine, if we stay
within CA we are sure that no other choice is uniformly better. Class C in particular contains all
combining functions which take account nonparametrically of the underlying dependence relations
among p-values λi, i = 1, . . . , k (for some examples, see Section 4.2.4).

C is much larger than it appears at first sight: it contains all continuous and strictly increasing
transformations of its members. For example, if η : R1 → R1 is one of these transformations, then
two combining functions ψ and η ◦ ψ are permutationally equivalent (see Problem 18, 4.2.7).

One problem naturally arises: how to construct, for any given testing problem, a good combining
function in C. Finding a best solution appears to be impossible in the case of finite sample sizes
without any further restrictions because the admissible class CA has more than one member. At the
moment only ‘asymptotic optimal combinations’ can sometimes be obtained. An example of an
asymptotic argument for establishing a locally optimal combination is given in Wei and Johnson
(1985). Section 4.4 presents some arguments on this. Moreover, if ηi = ηi(Ti), i = 1, . . . , k, where
ηi are continuous and monotonically increasing transformations of partial tests, then ∀ψ ∈ C, T ′′η =
ψ(λη1, . . . , ληk) is permutationally equivalent to ψ(λ1, . . . , λk) = T ′′, because the p-values are
invariant under continuous monotonic increasing transformations of statistics. Some practical guide-
lines for reasonable selection of a combining function are reported in Remarks 4 and 5, 4.2.4.

Remark 1. If permutation partial tests are all exact, then the combined test T ′′ψ is exact for every
combining function ψ ∈ C (see Problem 13, 6.2.6).

Remark 2. In accordance with Problem 10, 4.3.4 (see also Sections 2.7.1 and 4.2.6), in the
permutation context it is possible (see Section 4.3.5) to define conditional multivariate confidence
regions on functionals δi = E(Ti), i = 1, . . . , k.
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4.2.3 A Two-Phase Algorithm for Nonparametric Combination

This subsection deals with a two-phase algorithm used to obtain a conditional Monte Carlo (CMC)
estimate of the permutation distribution of combined tests.

The first phase is concerned with the estimate of the k-variate distribution of T, and the second
finds the estimate of the permutation distribution of the combined test T ′′ψ by using the same CMC
results of the first phase. Note that when it is clear from the context which combining function ψ

has been used, in place of T ′′ψ we simply write T ′′.
In this multivariate and multi-aspect setting, simulations from the permutation sample space X/X

by a CMC method are carried out in analogy with the algorithm discussed in Section 2.2.5 for
univariate problems.

The first phase of the algorithm for estimating the k-variate distribution of T includes the fol-
lowing steps:

(S.ak) Calculate the vector of the observed values of tests T : To = T(X).
(S.bk) Consider a random permutation X∗ ∈ X/X of X and the values of vector statistics

T∗ = T(X∗). According to Remark 1, 2.1.2, it is worth noting that in multivariate
situations the permutation X∗ is obtained by first taking a random permuta-
tion (u∗1, . . . , u

∗
n) of (1, . . . , n) and then by assignment of related individual

data vectors to the proper group; thus, by using the unit-by-unit representation,
X∗ = {X(u∗i ) = [X1(u

∗
i ), . . . , XV (u

∗
i )], i = 1, . . . , n; n1, . . . , nC} (see Table 4.1).

(S.ck) Carry out B independent repetitions of step (S.bk). The set of CMC results {T∗b, b =
1, . . . , B} is thus a random sampling from the permutation k-variate distribution of vector
test statistics T.

(S.dk) The k-variate EDF

F̂ (t|X/X) =
[ 1

2 +
∑

b I(T∗b ≤ t)
]

B + 1
, ∀t ∈ Rk,

gives a consistent estimate of the corresponding k-dimensional permutation CDF F(t|X/X)

of T. Moreover, the ESFs

L̂i(t |X/X) =
[ 1

2 +
∑

b I(T ∗ib ≥ t)
]

B + 1
, i = 1, . . . , k,

give consistent estimates ∀t ∈ R1 of the k marginal permutation SLF Li(t |X/X) = Pr{T ∗i ≥
t |X/X}. Thus L̂i(T

o
i |X/X) = λ̂i gives a consistent estimate of the marginal p-value λi =

Pr{T ∗i ≥ T o
i |X/X}, relative to test Ti .

Table 4.1 summarizes the observed data set and one V -variate permutation in a two-sample
design. Table 4.2 summarizes the CMC procedure. It should be emphasized that in multivariate
problems, as the multivariate permutation sample space X/X is obtained by permuting individ-
ual data vectors (see Remark 1, 2.1.2), the CMC operates accordingly, so that X∗ = {X(u∗i ),
i = 1, . . . , n; n1, . . . , nC}, as is explicitly displayed in the second part of Table 4.1. Thus, all
underlying dependence relations which are in the component variables are preserved. From this
point of view, CMC is properly a multivariate procedure (see Remark 4, 4.1.3).

Note that with respect to traditional EDF estimators, 1/2 and 1 have been added respectively to the
numerators and denominators of equations in step (S.dk). This is done in order to obtain estimated
values of the CDF F(t|X/X) and of SLF L(t|X/X) in the open interval (0,1), so that transformations
by inverse CDF of continuous distributions, such as− log(λ) or �−1(1− λ), where � is the standard
normal CDF (see also Section 4.2.4), are continuous and so are always well defined. However, since
B is generally large, this minor alteration is substantially irrelevant because it does not modify test
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Table 4.1 Representation of a two-sample multivariate permutation

X1(1) X1(n1) X1(1 + n1) X1(n) T1
o

Tk
oXV (n)XV (1 + n1)XV (n1)XV (1)

X1(u*
1) X1(u*

n1
) X1(u*

1 + n1
) X1(u*

n)

XV (u*
n)XV (u*

1 + n1
)XV (u*

n1
)XV (u*

1)

T1
*

Tk
*

Table 4.2 Representation of the CMC
method in multivariate tests

X X*
1 X*

b X*
B

To
1 T1

*
1 T1

*
b T1

*
B

To
k Tk

*
1 Tk

*
b Tk

*
B

behaviour and consequent inferences, both for finite sample sizes and asymptotically. In practice,
in place of 1/2 and 1, we may add any positive quantity ε and 2ε, provided that ε is very small
compared to B (see Problem 11, 4.2.7). In particular, Remark 1, 2.1.3, now implies the following
theorem:

Theorem 1. As B tends to infinity , ∀t ∈ Rk, F̂ (t|X/X) and L̂(t|X/X) almost surely converge to
the permutation CDF F(t|X/X) and the permutation SLF L(t|X/X), respectively .

The Glivenko–Cantelli theorem, which may be directly applied because 1/{2(B + 1)} vanishes
as B tends to infinity, gives a straightforward proof of this statement (see: Shorack and Wellner,
1986; Borovkov, 1987).

The second phase of the algorithm for simulating a procedure for NPC should include the
following steps:

(C.a) The k observed p-values are estimated on the data X by λ̂i = L̂i(T
o
i |X/X), where

T o
i = Ti(X), i = 1, . . . , k, represent the observed values of partial tests and L̂i is the ith

marginal ESF, the latter being jointly estimated by the CMC method on the data set X, in
accordance with step 5 of Section 2.2.5 and step (S.dk) above.

(C.b) The combined observed value of the second-order test is evaluated through the same CMC
results as the first phase and is given by:

T ′′o = ψ(λ̂1, . . . , λ̂k).

(C.c) The bth combined value of vector statistics (step (S.dk)) is then calculated by

T ′′∗b = ψ(L̂∗1b, . . . , L̂
∗
kb),

where L̂∗ib = L̂i(T
∗
ib|X/X), i = 1, . . . , k, b = 1, . . . , B.
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Table 4.3 Representation of nonparametric
combination

To
1

To
k

T11

Tk1

T1b

Tkb

T1B

T″o T1″* Tb″* TB″*

TkB

Lk1

l1

lk

L11

Lkb

L1b

LkB

L1B

↓

↓

* * *

* * *

* * *

* * *

(C.d) Hence, the p-value of the combined test T ′′ is estimated as

λ̂′′ψ =
∑

b
I(T ′′∗b ≥ T ′′o)/B.

(C.e) If λ̂′′ψ ≤ α, the global null hypothesis H0 is rejected at significance level α.

Of course, if proper routines for exact calculations were available, then the multivariate distribu-
tion F(t|X/X), the partial p-values (λ1, . . . , λk), the distribution of the combined test Fψ(t |X/X),
and the combined p-value λ′′ψ can be evaluated exactly. Table 4.3 displays the second phase of the
NPC algorithm.

According to Theorem 1, as by assumption k is a fixed finite integer and ψ is continuous,
when B tends to infinity, the combined EDF F̂ψ(t |X/X) =

∑
b I(T ′′∗b ≤ t)/B, for every real t ,

tends to the combined CDF Fψ(t |X/X) = Pr{T ′′∗ ≤ t |X/X}, and the combined p-value λ̂′′ψ tends to
λ′′ψ = Pr{T ′′∗ ≥ T o|X/X}, where both convergences are with probability one. Thus, the CMC gives
unbiased and consistent estimates of both the true permutation distribution Fψ(t |X/X) and the true
p-value λ′′ψ . Straightforward details of these properties are left to the reader.

It may be instructive to analyse how the CMC random errors on estimates of partial p-values
and on partial SLFs influence errors on combined tests. This analysis is also left to the reader.

Remark 1. It is important to note that in NPC methods, for any combining function ψ , all parame-
ters or coefficients, as well as all other functionals which may appear in the permutation distribution
Fψ(t |X/X), are generally not directly related to the similar quantities which define underlying pop-
ulation distributions P , because they are conditional entities which are evaluated only within the
permutation sample space X/X. Thus, this combination is a proper nonparametric method for multi-
variate testing problems (see Section 4.2.5). In fact, it takes into consideration only the entire joint
k-variate permutation distribution F(t|X/X) of T, estimated by the EDF F̂B(t|X/X). In particular, it is
nonparametric with respect to the latent dependence relations in the population distribution P . Some-
times, in very regular situations and when proper evaluating functions are available, CMC allows
us to estimate all dependence coefficients in F(t|X/X). This may yield the derivation of proper
overall tests by standard techniques such as the quadratic form of combination (see Section 4.2.4).

Remark 2. Another feature of NPC methods is that T ′′ is a combination of significance levels. Thus,
it is a combination of integrated permutation likelihoods (see Theorem 2, 3.1.1, and Remark 3, 3.4)
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whereas parametric multivariate tests are generally ‘combinations of likelihood transformations’. In
this sense, we may expect that, when there is a one-to-one relationship between significance levels
and likelihoods, regarded as leading terms of significance level functions, most NPC tests are asymp-
totically equivalent with respect to corresponding likelihood-based counterparts (see Section 4.4 for
a few examples).

Remark 3. The NPC methodology allows for straightforward extension to multiple testing and
multiple comparisons; also straightforward is the closed testing approach (see Chapter 5; Marcus
et al., 1976; Simes, 1986; Westfall et al., 1999). In particular, Tippett’s combining function (see (c)
in Section 4.2.4) can perform step-down procedures which enable computation to be speeded up.
For more detailed discussion we refer to Arboretti et al. (1999, 2000b), Finos et al. (2000a, 2000b)
and Basso et al. (2009b).

4.2.4 Some Useful Combining Functions

This section presents a concise review of some practical examples of combining functions (for
more details on the combination of one-sided independent tests see Birnbaum, 1954; Oosterhoff,
1969; Folks, 1984). Most of these, in particular (a)–(h), are members of the admissible sub-class
CA (see Section 4.2.6).

(a) The Fisher omnibus combining function is based on the statistic

T ′′F = −2 ·
∑

i
log(λi).

It is well known that if the k partial test statistics are independent and continuous, then in
the null hypothesis T ′′F follows a central χ2 distribution with 2k degrees of freedom. T ′′F is
the most popular combining function and corresponds to the so-called multiplicative rule. In a
permutation framework, due to Theorem 1, 2.4, the constant 2 may be omitted.

(b) The Liptak combining function is based on the statistic

T ′′L =
∑

i
�−1(1− λi),

where � is the standard normal CDF. Of course, if the k partial tests were independent and
continuous, then in the null hypothesis T ′′L would be normally distributed with mean 0 and
variance k (see Liptak, 1958).
A version of the Liptak function is based on logistic transformation type of the λi : T ′′P =∑

i log[(1− λi)/λi].
More generally, if G is the CDF of a continuous variable, the generalized Liptak function is
T ′′G =

∑
i G

−1(1− λi). Of course, within the independent case, the use of T ′′G is made easier if
G is provided with the reproductive property with respect to the sum of summands.

(c) The Tippett combining function is given by

T ′′T = max
1≤i≤k

(1− λi),

significant for large values (the equivalent form T ′′T = min(λi) is significant for small values).
Its null distribution, if the k tests are independent and continuous, behaves according to the
largest (smallest) of k random values from the uniform distribution in the open interval (0,1).
Tippett’s T ′′T was the first combining function reported in the literature. For dependent partial
tests it allows for bounds on the rejection probability according to the Bonferroni inequality.
Special cases of Tippett’s combining functions are the ‘max t test’ and the ‘max chi-square’
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1
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Figure 4.1 Critical regions of three combined tests

(see Chung and Fraser, 1958; Hirotsu, 1986, 1998a). Problem 7, 4.3.6, suggests using Tippett’s
combining function to test composite null hypotheses H0 :

{⋂
1≤i≤k(δi ≤ 0)

}
against composite

alternatives H1 :
{⋃

1≤i≤k(δi > 0)
}
.

Figure 4.1 describes the critical regions of the Fisher, Liptak and Tippett combining functions
in the very simple situation where k = 2 and two partial tests are independent. Note that three
critical regions contain the entire lower border in the (λ1, λ2) representation (see Remark 1, 4.3.2).
In particular, since λ′′ ≤ α implies that the global null hypothesis is rejected, the two points (0,1)
and (1,0) of Liptak’s solution lie in the rejection region, although the asymptotic probability of this
event is always zero. Also note that, according to Birnbaum (1954), the three acceptance regions
are convex (see Section 4.2.6).

A simple analysis of Figure 4.1 shows that Tippett’s solution has a good power behaviour when
one or a few, but not all, of the sub-alternatives are true; Liptak’s is good when possibly all sub-
alternatives are jointly true (see Remark 4, 4.4.2); Fisher’s behaviour lies between the other two
and so is to be preferred when no specific kind of sub-alternative is expected.

(d) The Lancaster combining solutions are based on statistics such as

T ′′� =
∑

i
�−1
r,a (1− λi),

where �r,a represents the CDF of a central gamma distribution with known scale parameter a

and r degrees of freedom. Of course, T ′′� is a particular case of T ′′G. If the k partial tests are
independent, then the null distribution of T ′′� is central gamma with scale parameter a and rk

degrees of freedom. Of course, any inverse CDF transformation may be used in place of the
inverse CDF of a gamma distribution. In particular, if �−1

1,1/2 is the inverse CDF of a central
χ2 with 1 degree of freedom, then T ′′� is distributed as a central χ2 with k degrees of freedom.
Another particular case of Lancaster’s solution is connected with the following. Let us assume
that all sub-alternatives H1i are two-sided and related partial tests Ti are significant for either
large or small values. In this setting, �−1(1− λi) is standard normally distributed in H0i . Thus,
a combining function is

T ′′2 =
∑

i

[
�−1(1− λi)

]2
,
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which, if the partial tests are independent and continuous, is distributed as a central chi-square
with k degrees of freedom in H0. A special case of T ′′2 is the ‘cumulative chi-square’ suggested
by Hirotsu (1986).

(e) Again, if all sub-alternatives H1i are unrestricted (two-sided), so that all partial tests Ti are
significant for either large or small values, and if we are looking for power-invariant testing
with respect to alternatives lying at the same quadratic distance from H0, we may regard as a
natural combining function the Mahalanobis quadratic form

T ′′Q = U� · (R∗U)−1 · U,

where U� = [�−1(1− λ1), . . . , �
−1(1− λk)]� and R∗U = {Cov(U∗

j , U
∗
i ), j, i = 1, . . . , k} is

the correlation matrix of the U transformations of permutation p-values λ∗ (of course, the
permutation correlation matrix R∗U is assumed to be positive definite; see also Theorem 6, 4.4.2).
It should be emphasized that T ′′Q does not assume normality of responses or of permutation
partial tests because only normality of U transformations is required. This property is based, at
least asymptotically, on the uniform distribution of p-values λ in H0 (see Proposition 1, 2.1.3).
Therefore, the invariance testing property is related to alternatives lying at the same quadratic
distance from H0 measured on the space of inverse normal transformations of permutation
p-values, that is, in terms of normal probability distances . It is also important to underline
that R∗U corresponds to the permutation covariance matrix on U transformations, and that
it is conditional on the data set X. From this point of view, Cov(U∗

j , U
∗
i ) is estimated by∑

b U
∗
jb · U∗

ib/B, because Cov(U∗
j , U

∗
i ) = limB→∞

∑
b≤B U∗

jb · U∗
ib/B.

Remark 1. Most traditional multivariate tests may be viewed as particular cases of combination
functions in suitable parametric frameworks, in which the dependence coefficients are either
known or unconditionally estimated directly from the data set X within the assumed underlying
family P. In the NPC framework, conditional dependence coefficients are evaluated either
from X, when proper evaluating functions are available, or from simulation results {T∗b, b =
1, . . . , B}. From this point of view we may think of NPC procedures as effective extensions
of traditional multivariate testing procedures within the conditionality principle of inference.
Lancaster’s T ′′2 in (d) above may be viewed as a particular case of quadratic combination in
which dependence coefficients are omitted (see Example 2, 4.6, for a comparative discussion).
Table 4.4 shows a pattern for the quadratic form of combination.

Table 4.4 Quadratic form of combination

Uo
1

Uo
k

L11

Lk1

L1b

Lkb

L1B

TQ″o T″* T″* TQB″*

LkB

Uk1

l1

lk

U11

Ukb

U1b

UkB

U1B

↓

↓
Q1 Qb

* * *

* * *

* * *

* * *
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In the NPC framework it appears that the number k of partial tests should not exceed the
cardinality of X/X in order for the correlation matrix to be of full rank. However, in Section 4.5
we will see that this limitation does not apply since k ∈ N can diverge to infinity.

(f) Many other combining functions may be conveniently defined and used. Sometimes, confronted
with specific problems, especially when the sub-hypotheses have different degrees of importance
assigned to them, we need to use non-negative weights wi ≥ 0, i = 1, . . . , k, where null
weights imply discarding the corresponding partial tests from the combination process.
Weighting partial tests may have important applications in quality control and clinical tri-
als when component variables have different degrees of importance with respect to specific
inferential purposes. For instance, Fisher’s weighted combining function becomes

T ′′ = −
∑

i
wi · log(λi),

while a rather general weighted combining function is

T ′′w =
∑

i
wi · ϕ(λi),

where ϕ is any positive, continuous, non-increasing and right-unbounded score function.
It should be noted that the null distribution of the Fisher weighted combined test may be difficult
to obtain outside a permutation framework, even in very simple situations. It should also be
noted that, in parametric approaches, it is practically impossible to incorporate weights into
testing contexts, especially if they are based on the likelihood ratio principle. Thus, from this
point of view, the NPC method is much more flexible than ordinary parametric counterparts.
A numerical example concerned with weighting partial tests is discussed in Section 7.11.

(g) When possible, one effective way to find combining functions in class C is by looking at their
asymptotic behaviour under known circumstances. In particular, this approach can be adopted
especially when, at least in principle, a parametric counterpart is available (see Theorems 5–,
4.4.2; see also the solution to the Behrens–Fisher problem in Example 8, 4.6). In fact, when
the parametric unconditional estimation of underlying dependence coefficients is made asymp-
totically, for example, by consistent estimators, we may use the same parametric expression as
a nonparametric combining function. In this case, for large sample sizes, the NPC is expected
to behave very similarly to its parametric counterparts (see the discussion of question (a) in
Section 2.5).

(h) An interesting subset of C is the set CD of so-called direct nonparametric combining functions .
When all partial test statistics are homogeneous, so that they share exactly the same asymptotic
permutation distribution (e.g. they are all standard normal distributed, or of the chi-square
type with the same degrees of freedom, and so on) and if their common asymptotic support
is at least unbounded on the right (see Section 4.3.2), then we can take into consideration
combining functions of the form T ′′D =

∑
i Ti , T ′′oD =∑i T

o
i and T ′′∗Db =

∑
i T

∗
ib, b = 1, . . . , B

for the combined test, observed, and permutation values, respectively. Hence, according to (C.d)
in Section 4.2.3, the combined p-value is given by λ̂′′ =∑b I(T ′′∗Db ≥ T ′′oD )/B.
Observe that the permutation distributions of all partial tests can only be the same for quite
large sample sizes. Thus, for finite sample sizes, this condition can be approximately satis-
fied because permutation distributions are essentially dependent on observed data. Therefore,
quite large sample sizes are needed for effective use of the direct combination procedure,
although expressing partial tests in standardized forms is often satisfactory, providing for
good approximations.
In this book, this form of NPC is particularly used for combinations of statistics as in the
complete two-way ANOVA, the complete analysis of 2k replicated factorial designs, according
to Hadamard’s combination of statistics (see Pesarin 2001), the Behrens–Fisher problem, and
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several other ‘homogeneous’ situations (e.g. most of the solutions in examples of Sections 2.6
and 2.7 related to the Anderson–Darling goodness-of-fit for ordered categorical variables fall
within this procedure).
This kind of combination was first suggested by Chung and Fraser (1958) in connection with
solving multivariate testing problems when the number of observed variables is larger than the
number of units. Peto and Peto (1972) also use it without homoscedastic variables. Blair et al.
(1994) study a direct combination solution and compare it with Hotelling’s T 2. Edgington and
Onghena (2007) also mention a sort of direct combination of partial tests for some multivari-
ate testing problems. However, in these references, the discussion and analysis appear to be
essentially heuristic and without the development of a proper theory.

Remark 2. The direct combination function allows us to avoid the quite intensive calculations
involved in steps (S.bk) and (C.a)–(C.c) of Section 4.2.3. In addition, although the direct com-
bination function appears to operate as in univariate cases, it is essentially an NPC because:
the testing problem is equivalently broken down into k sub-problems; one overall test statis-
tic, T : Rk → R1, is not directly available; and the dependence relations among partial tests are
implicitly ‘captured’ by the combining procedure. A typical example occurs in repeated measure-
ments when for instance homoscedastic data are X = {Xhji, i = 1, . . . , nj , j = 1, 2, h = 1, . . . , k},
the hypotheses are H0 : {Xh1

d= Xh2, h = 1, . . . , k} against for instance the stochastic dominance

alternative H1 :
{⋃

h(Xh1
d
>Xh2)

}
, the k partial tests are T ∗h =

∑
i X

∗
h1i/n1, h = 1, . . . , k, and the

direct combination T ′′D =
∑

h T
∗
h . In such a case, since T ′′D =

∑
i

[∑
h X

∗
h1i

]
/n1, the derived quan-

tity Y1i =
∑

h X
∗
h1i may be considered similar to the so-called area under the curve for the ith

individual. It is exactly equivalent to the AUC when equal spacings are between time observations.

(i) As mentioned in Section 4.1, we sometimes encounter two kinds of simple multivariate prob-
lems. The first assumes that the dependence coefficients among the k partial tests are either
known or unconditionally estimated from the data set X. For instance, in Hotelling’s two-sample
statistic, as well as in many other relatively simple problems in which data are assumed nor-
mally distributed, we have the form T 2

H = T� ·�−1 · T, where the partial tests are Ti = (X̄1i −
X̄2i ), i = 1, . . . , V , and the positive definite covariance matrix � is directly estimated from X.
Therefore, for each permutation X∗ we may use test statistics such as T ∗H = T∗� · �−1 · T∗ or
T ∗∗H = T∗� · (�∗)−1 · T∗, where of course �∗ is the covariance matrix evaluated on each per-
muted data set X∗. Consequently, we may act in accordance with univariate situations. These
simple multivariate situations may be referred to as pseudo-parametric combination problems.
The second kind of relatively simple problem considers one derived univariate transformation of
data for each unit, such as Yi = ϕ(X1i , . . . , XV i), i = 1, . . . , n. In general, this kind of transfor-
mation is used when it has a precise physical interpretation with respect to the specific inferential
problem at hand. Thus the testing problem, which should be expressed by statements related
to the derived variable Y , simply becomes univariate in its own right. Therefore, its solution
becomes properly univariate. This kind of simple multivariate problem may be called combina-
tion by derived variable. Examples of combination by derived variable for quite special problems
are given in Reboussin and DeMets (1996), Hoh and Ott (2000) and Mielke and Berry (2007).
Of course, if several different aspects useful for physical interpretation are to be used, so that k
different derived variables {Yhi = ϕh(X1i , . . . , XV i), i = 1, . . . , n, h = 1, . . . , k} are used for
the analysis, then the problem remains multivariate and multi-aspect as in Example 3, 4.6.

Remark 3. When, in place of normality of responses, we assume that the permutation distribution
of standardized partial tests T, at least approximately, is k-variate normal with positive definite
correlation matrix R∗, then we may consider a test expression of the form

T ′′H = T� · (R∗)−1 · T,
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Table 4.5 The iterated combination
algorithm

yo
1

yo
s

y*
11

y*
s1

y*
1b

y*
sb

y*
1B

Tl″′o Tl1″′* Tlb″′* TlB″′*

y*
sB

l1″

ls″

L″*

↓

↓

11

L″*
s1

L″*
1b

L″*
sb

L″*
1B

L″*
sB

where the jith member of R∗ is

ρ∗ji = Cov(T ∗j , T
∗
i ) =

∑
b≤B

(T ∗jb − τ ∗j )(T
∗
ib − τ ∗i )/B,

and where τ ∗j =
∑

b≤B T ∗jb/B, j, i = 1, . . . , k, are the permutation means of partial tests. Note
that, in H1, τ ∗j are non-null functions of treatment effects, whereas under the multivariate additive
model (extension of (M.i), 1.10.1) ρ∗ji are not.

Remark 4. For any given data set X, different combining functions due to different rejection
regions may of course give slightly different overall p-values, although, due to their consistency (see
Section 4.3.1), they are asymptotically equivalent in the alternative. However, in order to reduce this
influence, we may iterate the combination procedure by applying more than one combining function
ψ1, . . . , ψs, 2 ≤ s, to the same partial tests, and then combine the resulting second-order p-values
(λ′′1, . . . , λ

′′
s ) into a third order of combination by means of one combining function, ψl(λ

′′
1, . . . , λ

′′
s ),

say. From a series of Monte Carlo studies, provided that the second-order combination functions
have different rejection regions, we obtained that the third-order p-values λ′′′l are almost invariant
with respect to the choice of ψl within the class C. Of course, this procedure may be iterated into
a fourth order, and so on (examples are given in subsequent chapters). Table 4.5 illustrates the
iterated combination algorithm.

Remark 5. The selection of one combining function ψ in C may appear to be a rather arbitrary
act. However, the following practical guidelines may be useful:

(1) When our knowledge of sub-alternatives is such that we may argue asymptotically, we may
use ‘asymptotic optimal combinations’ in the sense of Section 4.4, or at least in the sense of
local optimality (Wei and Johnson, 1985).

(2) When we expect only one or a few, but not all, sub-alternatives to occur, we suggest using
Tippett’s combining function.

(3) When we expect all sub-alternatives to be jointly true, use of Liptak’s or the direct combinations
is generally justified; sometimes they are also asymptotically optimal (see Theorem 5, 4.4.2).

(4) When any such specific knowledge is available, we suggest using Fisher’s combining func-
tion, because its behaviour is generally intermediate between those of Tippett and Liptak (see
comments on Figure 4.1).
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(5) When our preference is for a neutral form of combination, in accordance with Remark 4 above,
we suggest iterating the combining procedure with different functions, until the final p-value
becomes reasonably ψ-invariant.

4.2.5 Why Combination is Nonparametric

To justify the use of the adjective nonparametric for the combination procedures, especially with
regard to underlying dependence coefficients, let us first consider the combination of two tests T1

and T2, with Liptak’s rule. More specifically, let us suppose that sample sizes are sufficiently large,
the underlying population distributions are sufficiently regular, and the whole permutation space
X/X is examined so that in practice both supports T1 and T2 are almost continuous and the trans-
formation (U1 = �−1(1− λ1), U2 = �−1(1− λ2)) in the alternative is well approximated by the
bivariate normal distribution (U1, U2) ∼ N2[(δ1, δ2);R], where δ1 and δ2 are the fixed shift effects

on the U transformations, and R =
[

1 ρ

ρ 1

]
is the correlation matrix. Note that since p-values

(λ1, λ2) are positively dependent, the correlation coefficient ρ = ρ(U1, U2) in R is non-negative.
Suppose also that there are two statisticians: the first is supposed to know that the permutation
distribution is bivariate normal N2[(δ1, δ2);R], the second is without this knowledge. In such
conditions, the first decides to take his/her knowledge into account, including the dependence coef-
ficient, and uses the combined statistic T ′′N = (U1 + U2)/

√
2(1+ ρ), whose reference distribution

is N1[(δ1 + δ2)/
√

2(1+ ρ), 1], which in the null hypothesis becomes N1(0, 1). In this way he/she
knows that the related p-value is λN = Pr{T ′′∗N ≥ T ′′oN |X/X} = 1−�(T ′′oN ). The second decides to
use Liptak’s combination without explicitly taking the dependence coefficient into account, the value
of which he/she ignores, and simply uses T ′′L = U1 + U2. Of course, he/she is unaware that the dis-
tribution of T ′′L is N1[δ1 + δ2, 2(1+ ρ)], which in H0 becomes N1[0, 2(1+ ρ)], and so refers to the
p-value λL =

∑
X/X

I[T ′′∗L ≥ T ′′oL ]/M(n) he/she knows numerically. However, it is worth noting
that both come to exactly the same inferential conclusion, since T ′′N and T ′′L being one-to-
one related, T ′′N = T ′′L/

√
2(1+ ρ) say, are permutationally equivalent and so λN = λL =

1−�(T ′′oL /
√

2(1+ ρ)).
On the one hand, it is worth noting that in the NPC the correlation coefficient is taken into

consideration implicitly by obtaining exactly the same distribution as we would have if the
true correlation coefficient were used explicitly. On the other, the standardized non-centrality of
T ′′L , (δ1 + δ2)/

√
2(1+ ρ) say, shows that its power is maximal when ρ = 0, corresponding to

independent partial tests, and is minimal when ρ = 1, that is when two partial tests are linearly
related with probability one. Extending these notions to the k-dimensional case, we see that if the
vector of transformed statistics U = (U1, . . . , Uk) is (approximately) k-variate normally distributed,
U ∼ Nk(β,R) say, then (approximately) T ′′L ∼ N1(η, σ

2), where η =∑i ηi and σ 2 =∑ji σji .
Thus, all dependence coefficients enter the distribution of T ′′L without being explicitly evaluated
and processed.

Accordingly, we may observe that when multivariate normality cannot be assumed, the combining
procedure provides for the exact permutation distribution of T ′′L , and in general of T ′′ψ , ψ ∈ C, which
contains all the unknown dependence coefficients – coefficients which in general are specific to the
actual data set X (so that they may vary as X varies in Xn). Therefore, on the one hand, their
number is indefinite, since they may be related to twofold, threefold, fourfold, . . . partial tests; on
the other, their associated regression forms are also indefinite (linear, quadratic, exponential, general
monotonic, . . .). Therefore, the nonparametric combining strategy is sufficiently general to cover
almost all real situations of practical interest, without the necessity of properly defining a distribution
model for the set of partial tests, especially with respect to their dependence structure. Thus, it is
to be emphasized that the adjective nonparametric presumes that the number, and related values,
of underlying dependence coefficients could be indefinite (see Section 1.2.1), while the reference
null permutation distribution induced by combined statistic ψ is, in any case, the true one.
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4.2.6 On Admissible Combining Functions

Birnbaum (1954, 1955) showed that in order for combined tests to be admissible, that is, if there
is no other test which is at least as powerful as it is against some alternatives in H1 and more
powerful against all other alternatives, their rejection regions must be convex. Here we would like
to provide a sufficient condition so that the combining function ψ , expressed in terms of p-values,
satisfies such a requirement. Let us consider combining functions T ′′G =

∑k
i=1 G

−1(1− λi), where
G−1 is the inverse CDF of a continuous random variable (see Problem 2, 4.2.7). This defines a
family of combining functions which, among many others, contains Fisher’s T ′′F , Liptak’s T ′′L , and
Lancaster’s T ′′� . Let us now find properties of G so that the related rejection region is convex for
any α, and so T ′′G is admissible, that is, T ′′G ∈ CA (see Section 4.2.2).

To this end, let us consider the case of two partial tests, that is, T ′′G = G−1(x)+G−1(y), where
x = 1− λ1, and y = 1− λ2. Suppose also that, since we are arguing independently of any specific
finite case, p-values λ1 and λ2 are at least approximately continuous and that T ′′G(x, y) is differen-
tiable in x and y. Let us fix a value for α ∈ (0, 1) and call T ′′Gα the critical value of T ′′G given X.
Consider the set of points {(x, y)Gα} such that G−1(x)+G−1(y) = T ′′Gα , that is, the set of points
which lie in the critical curve separating rejection from acceptance regions. This curve is implicitly
defined as y(x) = G[T ′′Gα −G−1(x)]. A useful characterization for the convexity of y(x) in the
unit interval is that its derivative with respect to x is monotonically non-decreasing in that inter-
val. Actually, we have dy(x)

dx
= −g[T ′′Gα −G−1(x)]/g[G−1(x)], where g is the density associated

with G with respect to the real line. Thus, all CDFs G such that dy(x)

dx
≤ dy(x′)

dx′ , with x ′>x and
y(x ′) = G[T ′′Gα −G−1(x ′)], give rise to convex rejection regions. This condition seems to exclude
all G whose density g is not unimodal; however, normal (Liptak), exponential (Fisher), gamma
(Lancaster), etc. do satisfy it. Convexity of the Tippett combining function can easily be proved
directly (see Problem 20, 4.2.7). This proof and that for multivariate extension (see Problem 23,
4.2.7) are left to the reader as exercises. It is worth noting that the additive rule (see Section 4.3.3),
although provided with a convex rejection region, is not a consistent test. This suggests that admis-
sibility without unbiasedness and/or consistency is not a very useful property for a test.

4.2.7 Problems and Exercises

1) Find transformations ϕ1(λ) and ϕ2(λ) of p-values λ for restricted and unrestricted alternatives
respectively, in such a way that, when partial tests are independent, for large sample sizes the two
combined tests T ′′1 =

∑
i ϕ1(λi) and T ′′2 =

∑
i ϕ2(λi) are both distributed in H0 as a central χ2

with k degrees of freedom.

2) Prove that if G is the CDF associated with any given continuous univariate random variable,
unbounded on the right, then T ′′G =

∑
i G

−1(1− λi) is a combined test belonging to class C and
may be useful for NPC.
3) With reference to Problem 2 above, discuss what happens if G is the CDF of a discrete random
variable.
4) Prove that the direct combination procedure, as described in (h) in Section 4.2.4, is in accordance
with the general NPC, i.e. it is a member of C.
5) With reference to (h) in Section 4.2.4, prove that T ′′ϕ =

∑
i ϕ(λi) is a direct combining procedure

if the p-value transformations are such that ϕ = L−1
T , where LT is the common permutation SLF

of all partial tests (note that, at least asymptotically, Ti = L−1
T ◦ Li(Ti), because LT is one-to-one

and Li converges to LT , by assumption).
6) Discuss the direct combination procedure when sample sizes are small. Prove that the resulting
combination implies a sort of implicit weighted combination, where weights are data-dependent
quantities.
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7) Write an algorithm for the direct combination procedure.

8) Write an algorithm for the two kinds of simple combination: pseudo-parametric and derived
variable, as outlined in (i) in Section 4.2.4.

9) Prove that the function T̃ =∑i exp{1− λi} is not a member of class C; as a consequence, it is
not a suitable combining function (see also Section 4.3.3).

10) Consider a standard two-sample bivariate testing problem, where the null hypoth-
esis is H0 : {(µ11 = µ12)

⋂
(µ21 = µ22)} against restricted alternatives of the form

H1 : {(µ11 >µ12)
⋃

(µ21 >µ22)}, response variables are continuous and homoscedastic, and
µhj = E(Xhj ) is the finite expectation of the hth component variable in the j th group. Prove that:

(a) tests Th =
∑

i Xh1i , h = 1, 2, are permutationally equivalent to T̄h = (X̄h1 − X̄h2)/{
∑

ji

(Xhji − X̄hj )
2}1/2;

(b) T ′′ = T̄1 + T̄2 is a nonparametric combined test;
(c) T ′ = T1 + T2 is not in general a nonparametric combined test (give a counterexample).

11) Prove that, when B goes to infinity and if the SLF of (S.dk) in Section 4.2.3 is defined by

L̂∗i (z, ε) =
[
ε +∑r I(T ∗ir ≥ z)

]
B + 2ε

, i = 1, . . . , k, 0 < ε < 1,

then all associated inferential conclusions are permutationally invariant with respect to ε, provided
that the NPC function assumes the form T ′′ =∑i ϕ[L̂∗i (T

o, ε)], where ϕ is a continuous function,
unbounded on the right and strictly decreasing.

12) Show that if, for instance, the hypotheses are H0 :
{⋂

1≤i≤k(µi ≤ µ0i )
}

against H1 :
{⋃

1≤i≤k
(µi >µ0i )

}
, i.e. if the multivariate hypotheses are broken down into a set of composite sub-

hypotheses, the Tippett combining function gives correct solutions, provided that all partial tests
are marginally unbiased and consistent.

13) Prove that if all partial tests are permutationally exact (see Remark 1, 2.2.4 and Proposition 2,
3.1.1), then their NPC is exact for whatever ψ ∈ C.

14) Prove that if ϕ is a monotonically decreasing score function bounded on the right, so that
limϕ(λ) = ϕ̄ <∞, as λ→ 0, then T ′′ϕ =

∑
i ϕ(λi) is not a member of C (see property (P.2),

Section 4.2.2); thus T ′′ϕ cannot be adopted as a combining function.

15) With reference to Problem 14 above, prove that if ϕ is a monotonically decreasing score
function which is unbounded on the right, so that limϕ(λ) = ∞, as λ→ 0, then T ′′ϕ =

∑
i ϕ(λi) is

a member of C (see property (P.2), Section 4.2.2); thus T ′′ϕ may be adopted as a combining function.

16) With reference to point (e) in Section 4.2.4, show that T ′′S = T 2
1 + T 2

2 and T ′′Q are not permuta-
tionally equivalent (although for any given data set X, ρ∗ is a permutationally invariant quantity,
and there is no one-to-one relation between T ′′S and T ′′Q).

17) With reference to point (e) in Section 4.2.4, show that T ′′S = T 2
1 + T 2

2 and T ′′Q become asymp-
totically coincident when lim |ρ| = 1.

18) Prove that C contains all continuous and strictly increasing transformations of its members.
That is, if η : R1 → R1 is one such transformation, then the combining functions ψ and η ◦ ψ are
permutationally equivalent (see Section 2.4 for permutation equivalence of test statistics).

19) Find at least one member of the class C which is not a symmetric combining function (e.g. try
with weights depending on observed p-values).

20) Prove that Tippett’s combining function is admissible, i.e. its rejection region is convex.

21) Prove that Liptak’s combining function is admissible, i.e. its rejection region is convex.

22) Prove that Fisher’s combining function is admissible, i.e. its rejection region is convex.

23) With reference to Section 4.2.6 on admissible combining functions, extend the convexity prop-
erty of rejection regions to more than two partial tests.
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24) Discuss conditions such that Liptak’s and Direct combining functions are asymptotically
equivalent.
25) Prove that the direct combining functions are not members of class C, unless the asymptotic
common support of partial tests is unbounded on the right (see Problems 14 and 15 above).

4.3 Consistency, Unbiasedness and Power of Combined Tests

4.3.1 Consistency

This section examines aspects of the basic behaviour of NPC tests. We suppose here that assump-
tions (A.1) and (A.2) of Section 4.2.1 and properties (P.1)–(P.3) of Section 4.2.2 are satisfied.
Theorems and other statements from Chapters 2 and 3 are also generally implicitly assumed.

In order to examine the unbiasedness and consistency of NPC tests T ′′, let us also assume that:

(a) when n goes to infinity, then so also do sample sizes of all groups, that is, n→∞ implies
minj (nj )→∞;

(b) the number B of CMC iterations goes to infinity;
(c) k and α are fixed.

Note that as the CMC method produces strongly consistent estimates, the role of B →∞ is
identical to considering true exact permutation quantities in place of their estimates. Moreover, in
dealing with consistency, we may assume that the cardinality M(n) of X/X and number B of CMC
iterations are so large that all approximation errors arising from substitution of discrete distributions
with their continuous images are sufficiently small as to be negligible.

Theorem 2. If partial permutation tests Ti, i = 1, . . . , k, are marginally unbiased and at least
one is strongly consistent for respectively H0i against H1i , then T ′′ = ψ(λ1, . . . , λk), ∀ψ ∈ C, is
a strongly consistent combined test for H0 :

{⋂
i H0i

}
against H1 :

{⋃
i H1i

}
.

Proof. To be strongly consistent, a combined test must reach its critical region with probability
one if at least one sub-alternative H1i , i = 1, . . . , k, is true. Suppose that (see assumption (A.2)
of Section 4.2.1) H1i is true; then λi → 0 with probability one as n→∞. Thus, by Theorem 1,
4.2.3, and properties (P.2) and (P.3), 4.2.2, T ′′ → ψ̄ > T ′′α with probability one, ∀α > 0. Marginal
unbiasedness is required to prevent from compensations as it occurs for instance in two-test problems
with λ1 = 1− λ2 (only one is unbiased, as in Example 4, 4.6) and T ′′G =

∑
i G

−1(1− λi) with G

the CDF of a symmetric distribution, where it is T ′′G
d= 0.

For the weak consistency property of T ′′, see Problem 6, 4.3.6.

4.3.2 Unbiasedness

In order to achieve the unbiasedness of combined tests T ′′ψ, ∀ψ ∈ C, first let us consider the
following lemma.

Lemma 1. Let Y and W be two random variables defined on the same univariate probability space.
If Y is stochastically larger than W , so that their CDFs satisfy FY (t) ≤ FW (t), ∀t ∈ R1, and if
ϕ is a non-decreasing measurable real function, then ϕ(Y ) is stochastically larger than ϕ(W).

The proof of this lemma is based on the following straightforward relationships:

Pr{ϕ(Y ) ≤ ϕ(t)} = FY (t) ≤ FW(t) = Pr{ϕ(W) ≤ ϕ(t)}, ∀t ∈ R1.

Note that the measurability of ϕ is relevant in order for the above probability statements to be
well defined.
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Theorem 3. If, given a data set X and any α > 0, partial permutation tests T = {Ti, i = 1, . . . , k}
are all marginally unbiased for respectively H0i against H1i , i = 1, . . . , k, so that their associated
p-values λi, i = 1, . . . , k , are positively dependent, then T ′′ψ = ψ(λ1, . . . , λk), ∀ψ ∈ C, is an
unbiased combined test for H0 :

{⋂
i H0i

}
against H1 :

{⋃
i H1i

}
.

Proof. The marginal unbiasedness and positive dependence properties of partial tests Ti imply, with
obvious notation, that Pr{λi ≤ z|X/X(0)} ≤ Pr{λi ≤ z|X/X(�)}, ∀z ∈ (0, 1), i = 1, . . . , k, because
p-values λi(X(�)) are stochastically smaller than λi(X(0)) (see Sections 3.1.1 and 3.2.5). Thus, by
the non-decreasing property of combination function ψ (see (P.1) in Section 4.2.2) and Lemma 1
above, ψ(. . . , λi(X(�)), . . .) is stochastically larger than ψ(. . . , λi(X(0)), . . .). Hence, by iterating
from i = 1 to k, the unbiasedness of T ′′ψ is achieved.

Remark 1. The marginal unbiasedness of partial tests, as stated in assumption (A.1)
in Section 4.2.1, is only a sufficient condition for the unbiasedness of combined tests.
In order to see this let us consider a counterexample. Suppose that, as is quite famil-
iar in univariate one-way ANOVA, we decompose the overall hypotheses into the set of

pairwise sub-hypotheses
{⋂

j > s(Xj
d= Xs)

} = {⋂j > s H0js} against
{⋃

j > s(Xj

d

	= Xs)
}
.

To test these global hypotheses, let us consider the natural partial pairwise statistics
T ∗js = nj (X̄

∗
j )

2 + ns(X̄
∗
s )

2, j > s = 1, . . . , C − 1, followed by the direct combination
T ′′D =

∑
j > s T

∗
js = (C − 1)

∑
j≥1 nj (X̄

∗
j )

2. We note that T ′′D is permutationally equivalent
to the overall test discussed in Section 1.11 and Example 6, 2.7. However, as partial statistics T ∗js
are jointly processed, so that overall permutations are considered, they are not marginal tests for
separately testing H0js against H1js , because in X/X there are points X∗ in which the coordinates
(X∗j

⊎
X∗s ) related to the j th and sth groups have no data from (Xj

⊎
Xs ). Thus, T ∗js do not

satisfy the requirements of marginal testing. In particular, they are not marginally unbiased (see
Chapter 5 on multiple testing). Finding necessary and sufficient conditions seems to be rather
more difficult. However, this search is beyond the scope of this book and is left to the reader.

Remark 2. An important consequence of Theorem 3 is that, if all partial tests are marginally
unbiased for all α > 0, so that they are ordered with respect to treatment effects (see Theorem
2, 3.1.1), then all nonparametric combined tests are also stochastically ordered with respect to
treatment effects. To this end, without loss of generality, let us suppose that partial effects 0 ≤
�i, i = 1, . . . , k, are non-negative and that {�i

p≤ �′i , i = 1, . . . , k} are two sets of stochastically
ordered effects, where at least one inequality is strict. Thus, since all partial tests satisfy the relations

λi(0)
d≥ λi(�i)

d≥ λi(�
′
i ), i = 1, . . . , k, due to the non-decreasing property of ψ, p-values of

combined tests satisfy λ′′ψ(0)
d≥ λ′′ψ(�)

d≥ λ′′ψ(�
′), ∀ψ ∈ C (see Problem 15, 4.3.6).

Remark 3. The ordering property of nonparametric combined tests implies that the power function
is monotonic non-decreasing with respect to increasing treatment effects (see Problem 16, 4.3.6).

Remark 4. To see another nice consequence of Theorem 3 and the remarks above, let us suppose
the inclusion of a further informative partial test in the NPC analysis. With obvious notation, assum-
ing its effect is �k+1 > 0, a further partial test Tk+1 is informative if the associated p-value is such

that λ′′k+1(�1, . . . ,�k;�k+1)
d≤ λ′′k+1(�1, . . . , �k; 0). The problem is to find conditions so that the

inclusion of Tk+1 improves the power of the new combined test ψk+1 = ψ(λ1, . . . , λk; λk+1) with
respect to �k = ψ(λ1, . . . , λk). We can easily obtain a solution to this within the Liptak combina-
tion and with large data sets. To this end, T ′′L,k =

∑k
i �

−1(1− λi) ∼ N1

(∑k
i �i,

∑k
ji ρji

)
, with

ρii = 1, and T ′′L,k+1 =
∑k+1

i �−1(1− λi) ∼ N1

(∑k+1
i �i,

∑k+1
ji ρji

)
. In this setting, the power of

T ′′L,k+1 is larger than that of T ′′L,k if
∑k

i �i/
(∑k

ji ρji

)1/2 d≤∑k+1
i �i/

(∑k+1
ji ρji

)1/2
. For instance,

with k = 1 and independent partial tests, this condition implies that if �2
d≥ �1(

√
2− 1) then there

is power improvement. Further details are left to the reader (see Problem 17, 4.3.6).
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4.3.3 A Non-consistent Combining Function

It should be noted that all combining functions based on convex linear functions of bounded scores
are not consistent. Indeed, they violate property (P.2) of Section 4.2.2, in the sense that, as sample
size goes to infinity, the probability of attaining their critical region is smaller than unity when, for
instance, only a subset of k′ < k of the sub-alternatives is true.

This means that combined tests such as
∑

i (1− λi) or
∑

i wi · φ(λi), where weights wi are
finite positive quantities and φ(λi) are positive bounded scores , are not consistent (remember that
wi = 0 is equivalent to removing Ti from the combination process). Hence, they are not members
of class C (see Problems 14 and 15, 4.2.7).

As a relevant example, let us consider the very simple situation related to the so-called additive
combining function , where: (i) k = 2; (ii) tests T1 and T2 are independent, asymptotically con-
tinuous, and at least weakly consistent (independence is assumed here only in order to facilitate
calculations); (iii) the combining function is the additive rule, T ′′ = 2− (λ1 + λ2); (iv) H01 and
H12 are true; (v) B is very large, so that discrete distributions are replaced by their continuous
images.

In this case, as n tends to infinity, λ2 → 0 at least in probability because H12 is true; whereas
λ1 remains uniformly distributed in the open interval (0, 1) because H01 is true (see Proposition
5, 2.2.4). Noting that the critical region of T ′′ has the form represented by the shaded triangle in
the (λ1, λ2) representation of Figure 4.2, we see that limn→∞ Pr{T ′′ ≥ T ′′α |(H01, H12)} = +

√
2α <

1, 0 < α < 1/2. Thus, the so-called additive method of combining probability values – the sum of
partial p-values for the combination of independent partial tests – is not satisfactory. The example,
which plays the role of counterexample, shows that this combining rule gives non-consistent tests
(see also Goutis et al., 1996). Although the resulting test is exact, unbiased, with a monotonically
non-decreasing power function (see Problem 12, 4.3.6), and with convex rejection region, its use
is hard to justify.

Remark 1. In general, all combining functions, the critical regions of which in the (λ1, . . . , λk)

representation do not contain the entire lower border, are not consistent (see Problem 2, 4.3.6),
so that they are not suitable for NPC. It is also worth noting that the additive combining function
leads to a convex rejection region, but since it violates condition (P.2) it cannot be claimed to be
a member of class CA.

4.3.4 Power of Combined Tests

Conditional Power Function

Let us define and give an algorithm for the empirical post-hoc conditional power function first.
To this end let us argue for a two-sample design with two continuous variables and fixed effects;
extensions to more complex cases are straightforward and left to readers as exercises.

With obvious notation, assume that the data set is X(δ) = {(Z11i + δ1, Z21i + δ2), i =
1, . . . , n1; (Z12i , Z22i ), i = 1, . . . , n2} = (Z1 + δ,Z2), where errors Z are such that E(Z) = 0.
Consider the testing for H0 : {(δ1 = 0)

⋂
(δ2 = 0)}, against H1 : {(δ1 > 0)

⋂
(δ2 > 0)} by means of

two partial tests T ∗h = X̄∗h1 − X̄∗h2, h = 1, 2, and the combining function ψ ∈ C. With reference
to the univariate case in Section 3.2.1 and discussion therein, since the bivariate effect δ cannot
be separated from the corresponding errors Z, the following algorithm evaluates the empirical
post-hoc conditional power W [(δ, δ̂, α,T, ψ)|X/X]:

1. Based on a suitable bivariate indicator T, consider the estimate δ̂ = (T o
1 , T

o
2 ) of δ from the

pooled data set X(δ) and the consequent empirical deviates Ẑ = (X1 − δ̂,X2). In accordance
with point (ii) in Remark 2, 2.1.2, empirical deviates Ẑ are exchangeable.
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l1

l21√2a

Figure 4.2 The additive combining function

2. Take a random re-randomization Ẑ†
r = {[Ẑr1(u

†
i ), Ẑr2(u

†
i )], i = 1, . . . , n} of Ẑ, where (u

†
i , i =

1, . . . , n) is a permutation of (1, . . . , n), and for any chosen δ = (δ1, δ2) the corresponding data
set X̂†

r (δ) = (Ẑ†
r1 + δ, Ẑ†

r2).
3. According to the NPC algorithm in Section 4.2.3, based on B CMC iterations, calculate the

p-value λ̂′′ψ(X̂
†
r (δ)) of combined test T ′′ψ .

4. Independently repeat steps 2 and 3 R times.
5. The empirical post-hoc conditional power for δ is then evaluated as Ŵ [(δ, δ̂, α,T, ψ)|X/X] =∑

r I[λ̂′′ψ(X̂
†
r (δ)) ≤ α]/R.

6. To obtain a function in δ and α, repeat steps 2 to 5 for different values of δ and α. With δ = δ̂

we obtain the actual post-hoc conditional power Ŵ [(δ̂, δ̂, α,T, ψ)|X/X].

Similarly to the one dimensional case, the actual post-hoc conditional power may be used to
assess how reliable the testing inference associated with (T, ψ,X) is, in the sense that if by chance
the probability of obtaining the same inference with (T, ψ,X†) as with (T, ψ,X) is greater than
(say) 1/2, then the actual inferential conclusion, given the set of units underlying X, is reproducible
more often than not. Of course, according to Section 3.2.2 it is also easy to define the NPC empirical
conditional ROC curve by the pair

(
α, Ŵ [(δ̂, δ̂, α,T, ψ)|X/X]

)
. Moreover, if δ and Z could be

separately considered it would be possible to evaluate the conditional power W [(δ, α,T, ψ)|X/X]
in a straightforward way.

Unconditional Power Function

Consider now the unconditional power. Similarly to the univariate case, to define it we must consider
the mean value of W [(δ, α,T, ψ)|X/X] with respect to the underlying population distribution Pn:

W(δ, α,T, ψ, P, n) = EX{W [(δ, α,T, ψ)|X/X]}

=
∫
Xn

I
[
λ′′ψ (X(δ)) ≤ α

∣∣X/X
]
dP n(X(δ)).

Note that to properly define the unconditional power W(δ, α,T, ψ, P, n), the underlying pop-
ulation distribution P must be fully specified, that is, defined in its analytical form and all its
parameters. Also note that averaging with respect the whole sample space Xn implies taking



The Nonparametric Combination Methodology 141

the mean over X/X and Xn\X/X as in the algorithm in Section 3.2.3. A practical algorithm for
evaluating the unconditional power can be based on a standard Monte Carlo simulation from P

with MC iterations as follows:

1. Choose a value of δ = (δ1, δ2).
2. From the given population distribution P draw one set of n bivariate deviates Zr , and then add

δ to the first n1 errors to define the data set Xr (δ) = (Zr1 + δ,Zr2).
3. Using the algorithm in Section 4.2.3, based on B CMC iterations, consider the p-value λ̂′′ψ(Xr (δ))

of combined test T ′′ψ .
4. Independently repeat steps 2 and 3 MC times.
5. Evaluate the estimated power as Ŵ (δ, α,T, ψ, P, n) =∑r I[λ̂′′ψ(Xr (δ)) ≤ α]/MC.
6. To obtain a function in δ, α, T, ψ and n, repeat steps 1–5 with different values of δ, α, T, ψ

and n.

Remark 1. Theorem 2, 3.1.1, and property (P.1), 4.2.2, give sufficient conditions for both con-
ditional post-hoc power Ŵ [(δ, δ̂, α,T, ψ)|X/X] and unconditional power W(δ, α,T, ψ, P, n) to be
non-decreasing in δ and in attained α values.

4.3.5 Conditional Multivariate Confidence Region for δ

We may extend results of Section 3.4 related to confidence intervals for univariate cases to
conditional multivariate confidence regions. As a guide, let us consider the two-sample bivari-
ate design in which, with the same symbols as in Section 4.3.4, the data set is represented as
X(δ) = (Z1 + δ,Z2).

The solution to this problem implies determining a bivariate region δ∗α(X(δ)) in such a way
that the permutation coverage probability Pr{δ ∈ δ∗α(X(δ))|X

/X(δ)} = 1− α holds for any given
value of α ∈ (0, 1

2 ), for any unknown δ, for whatever non-degenerate data set X(δ), and of course
independently of the underlying population distribution P . To this end, once again we recall the
rule that a confidence region for δ contains all those values δ◦ for which, by using a given pair of
test statistic T and a combining function ψ ∈ C the null hypothesis H0(δ

◦) : {(X1(δ)− δ◦) d= X2},
against H1(δ

◦) : {(X1(δ)− δ◦)
d

	= X2}, is accepted at level α.
The algorithm in Section 3.4 must be applied iteratively as follows:

1. Determine the sample estimate δ̂2 = X̄21 − X̄22 of effect δ2.
2. Determine the 1− α confidence interval for δ1 with δ2 = δ̂2 at preset error width ε > 0, that

is, δ∗1(X(δ1, δ̂2)) and δ
∗
1(X(δ1, δ̂2)), where the test statistic referred to is T ′′ψ = ψ(λ1, λ2). Note

that the interval [δ∗1(X(δ1, δ̂2)), δ
∗
1(X(δ1, δ̂2))] corresponds to the diameter on the δ2 axis of

confidence region δ∗α(X(δ)).
3. For every δ1 ∈ [δ∗1(X(δ1, δ̂2)), δ

∗
1(X(δ1, δ̂2))] determine the confidence interval for δ2 at level

1− α at preset error width ε > 0, that is, [δ∗2(X(δ1, δ2)), δ
∗
2(X(δ1, δ2))].

In this way, the confidence region becomes

δ∗α(X(δ)) = {[δ∗2(X(δ1, δ2)), δ
∗
2(X(δ1, δ2))], δ1 ∈ [δ∗1(X(δ1, δ̂2)), δ

∗
1(X(δ1, δ̂2))]}

since every pair (δ′1, δ
′
2) outside it is rejected with a probability greater than α.
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4.3.6 Problems and Exercises

1) Provide an algorithm for conditional power on multivariate paired data designs.

2) Prove the statement in Remark 1, 4.3.3, that all combining functions, the critical regions of
which, expressed in the (λ1, . . . , λk) representation, do not contain the entire lower border, are not
consistent.

3) Prove that for every combining function ψ ∈ C, the combined p-value λ′′ψ is not an average
value of partial p-values λ1, . . . , λk , i.e. it does not satisfy the condition min{λ1, . . . , λk} ≤ λ′′ψ ≤
max{λ1, . . . , λk}.
4) Prove that if a combining function ϕ leads to a p-value λ′′ which is an average of partial p-values
λ1, . . . , λk , then it is not a consistent combined test, and hence it is not a member of C.

5) Prove that if T = {Ti, i = 1, . . . , k} are weakly consistent partial permutation tests for H0i

against H1i respectively, then T ′′ψ = ψ(λ1, . . . , λk), ψ ∈ C, is a weakly consistent combined test
for H0 against H1.

6) Prove that if at least one partial permutation test Ti, i = 1, . . . , k, is weakly consistent for H0i

against H1i respectively and all are marginally unbiased, then T ′′ψ = ψ(λ1, . . . , λk), ψ ∈ C, is a
weakly consistent combined test for H0 against H1.

7) With reference to Problem 12, 4.2.7, show that if a two-sample k-dimensional testing problem is
such that H0 :

{⋂
1≤i≤k(µi ≤ µ0i )

}
and H1 :

{⋃
1≤i≤k(µi >µ0i )

}
, so that the multivariate hypothe-

ses are broken down into a set of composite sub-hypotheses, the Tippett combining function, (c)
in Section 4.2.4, provides for unbiased and consistent solutions.

8) Suppose that, in a two-sample k-dimensional testing problem, all partial p-values (λ1, . . . , λk)

in the alternative tend either to 0 or to 1, so that alternatives H1 :
{ [⋃

i (µi >µ0i )
]

XOR[⋃
i (µi < µ0i )

] }
are either dominating or dominated , by an ‘exclusive or relation’, with respect

to H0 :
{⋂

i (µi = µ0i )
}
. Prove that Liptak’s combining function T ′′L =

∑
i �

−1(1− λ1) is
unbiased and consistent (see, in this framework, Example 4, 4.6 and Section 6.7).

9) Prove that if in weighted combining functions T ′′w =
∑

i wi · ϕ(λi), as in (f) in Section 4.2.4,
some but not all of the weights are zero and sub-alternatives to which tests are given zero weight
may be true, then T ′′w may not be consistent.

10) With reference to Remark 2, 4.3.2, give a formal proof of the ordering property of nonpara-
metric combining functions ψ , for all ψ ∈ C, with respect to the vector of partial treatment effects
δ = (δi, i = 1, . . . , k), provided that all partial tests are marginally unbiased for all α > 0.

11) With reference to Remark 3, 4.3.2, give a formal proof of the monotonicity property, with
respect to the vector of partial treatment effects δ = (δi , i = 1, . . . , k), of the power function of
nonparametric combining functions ψ , for all ψ ∈ C, provided that all partial tests are marginally
unbiased for all α > 0.

12) With reference to Section 4.3.3, show that the non-consistent combined test T ′′ =∑i (1− λi),
resulting from the additive rule, is provided with a monotonically non-decreasing power function
which is not convergent to unity.

13) Draw a block diagram for the conditional confidence region δ∗α(X(δ)) for the vector of func-
tionals δ = (δ1, δ2).

14) Extend algorithms of conditional and unconditional power in Section 4.3.4 to the k-dimensional
case.

15) Provide an algorithm for confidence regions δ∗α(X(δ)) for the three-dimensional case.

16) Provide an algorithm for unconditional power in a two-sample design for random effects �.

17) Provide details of statements in Remarks 2 and 4, 4.3.2. In particular, find that for fixed effects,
independent partial tests and large data sets the limiting effect, with respect to k, for which there
is power improvement on NPC is δk+1 > 0.
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4.4 Some Further Asymptotic Properties

4.4.1 General Conditions

This section considers the asymptotic behaviour of some NPC tests and compares them to their
parametric counterparts, in conditions allowing for the application of the latter. Of course, the
consistency of NPC tests, either in strong or weak form, although of great interest, is only one of
the asymptotic properties useful for characterizing them. In order to study some further properties,
together with assumptions (a)–(c) of Section 4.3.1, let us assume the following:

(a) The hypotheses are expressed in terms of fixed treatment effects: H0 : {⋂i (δi = 0)} and H1 :
{⋃i (δi > 0)} or H1 : {⋃i (δi 	= 0)}.

(b) Parametric and permutation partial tests are calculated, except for population coefficients which
may be known for parametric and unknown for permutation tests, by using the same standard-
ized expressions W = {W1, . . . ,Wk} and T = {T1, . . . , Tk}, respectively. All partial tests are
assumed to be significant for large values.

(c) Unless otherwise stated, the asymptotic k-variate distribution of parametric partial tests W is
multivariate normal with (possibly unknown) finite mean vector {a(n)δi/σi , i = 1, . . . , k} and
positive definite correlation matrix R, where a(n) is a known function of sample sizes which
diverges as n goes to infinity.

(d) Unless otherwise stated, the asymptotic k-variate distribution of permutation partial tests T is
multivariate normal with (possibly unknown) finite mean vector {a(n)δi/σ ∗i , i = 1, . . . , k} and
positive definite correlation matrix R∗. It should be emphasized that permutation conditional
quantities σ ∗i = σ ∗i (X), i = 1, . . . , k, and R∗ = R∗(X) are dependent on the data set and may
be evaluated on the given data set or on data permutations.

(e) Conditions for the asymptotic optimality of partial permutation tests (see Sections 3.6–3.8)
are assumed; in particular, as n goes to infinity, R∗ and R∗U = {ρ(U∗

i , U
∗
j ) = Cov[�−1(1−

λ∗i ),�
−1(1− λ∗j )], i, j = 1, . . . , k} both tend strongly to R and each partial permutation test

is asymptotically coincident with its best asymptotic parametric counterpart.

4.4.2 Asymptotic Properties

Under conditions (a)–(e), the statements of the following theorems are presented.

Theorem 4. If, in a given testing problem, permutation partial tests asymptotically follow a mul-
tivariate normal distribution, then the Liptak combined test T ′′L =

∑
i �

−1(1− λi) (see (b) in
Section 4.2.4) is almost surely asymptotically equivalent to T ′′N =

∑
i Ti .

Proof. For large values of n and B, Theorem 1, 4.2.3, implies that λi = L(Ti) = 1− F(Ti |X/X),

i = 1, . . . , k. Thus, by continuity of � and due to the given assumptions, we have �−1(1−
λi) � Ti , because partial tests Ti are standardized. Therefore, as n tends to infinity, almost surely
lim T ′′L = T ′′N.

Remark 1. In this framework, T ′′N is a direct combined test, as illustrated in (h) of Section 4.2.4.
Also note that when permutation partial tests Ti, i = 1, . . . , k, are based on statistics whose per-
mutation means and variances are known functions of the data set X, then T ′′N may be preferred to
T ′′L because it is less time-consuming. This is exactly the case when the Ti are linear functions of
sample means. Also note that when the PCLT applies to all partial tests, the direct combination is
asymptotically equivalent to Liptak’s T ′′L .

Remark 2. A similar result also holds in a straightforward way for the Lancaster combining
function (see (d) in Section 4.2.4), which is suitable when all sub-alternatives H1i are two-sided so
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that partial tests Ti are significant for either large or small values. In this case, we have

T ′′2 =
∑

i

[
�−1(1− λi)

]2
,

and now T ′′2 converges almost surely to T ′′S =
∑

i T
2
i , which is also a direct combining function.

Note that in this setting, the null asymptotic distribution of T ′′L is normal with mean value E(T ′′L ) = 0
and variance V(T ′′L ) =

∑
ij ρ

∗
ij , where ρ∗ij is the correlation coefficient between Ti and Tj , i, j =

1, . . . , k. Calculation of the null asymptotic distribution of T ′′2 presents other difficulties, since it is
the sum of k dependent chi-squares with one degree of freedom each, so that in practice, we may
refer to the CMC estimate.

The following is a consequence of arguments in Section 4.2.5 and Theorem 4.

Corollary 1. If, in a given testing problem, parametric partial tests W are k-variate normally dis-
tributed and if the corresponding permutation partial tests are obtained by using the same computing
expressions, then T ′′L is almost surely asymptotically equivalent to TW =∑i Wi .

According to the stated assumptions and supposing that each partial permutation test is asymp-
totically equivalent to its parametric counterpart and that the sum is a continuous function, the
proof is straightforward.

Remark 3. The asymptotic equivalence of T ′′L and TW is in both H0 and H1, so that they share
the same asymptotic power behaviour.

Theorem 5. If, for the same testing problem as in Theorem 4, the non-centrality parameters are
such that R · γ = δ where γ = (γ, . . . , γ ) is a vector which has all components equal to the same
number γ ≥ 0 , then T ′′N and T ′′L , as defined above, are asymptotically almost surely equivalent to
TW and UMP for testing H0 : {γ = 0} against H1 : {γ > 0}.
Proof. It is sufficient to note that, in the above-mentioned conditions, the likelihood ratio is a
continuous monotonic function of TW . In fact, for large values of n, we have

f1/f0 = exp

{
−δ� · R−1 · δ · a

2
(n)

2
+ γ · TW · a(n)

}
,

so that TW is UMP. Moreover, according to Theorem 4 and Corollary 1, T ′′L and T ′′N are almost
surely asymptotically equivalent to TW ; thus, they are asymptotically UMP too.

Remark 4. Under the stated regularity conditions, leading to an asymptotically optimal parametric
testing form (recall (g) in Section 4.2.4), Theorem 5 means that if all the k alternatives are jointly
true with the same standardized non-centrality parameter (so that, when considered marginally,
all partial tests are equally powerful), then T ′′L and T ′′N are asymptotically equivalent to the best
parametric test. Thus, it should be noted that, within the class C of all combining functions, there
are members which are asymptotically best tests.

Theorem 6. If permutation and parametric partial tests T and W are asymptotically multi-
variate normal, then the (parametric) quadratic form D2 = W� · R−1 ·W, based on the Maha-
lanobis distance and useful for invariance testing of unrestricted k-dimensional alternatives H1 :{⋃

i (δi 	= 0)
}
, is almost surely asymptotically equivalent to T ′′M = U� · (R∗U)−1 · U , where U� =

[�−1(1− λi), i = 1, . . . , k]�. This corresponds to a Mahalanobis quadratic form on the U trans-
formations of p-values .
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Proof. First, by Theorem 1, 4.2.3, the continuity of �, and assumption (e) of Section 4.4.1, the
correlation matrix R∗U tends strongly to R as sample sizes diverge (see Pallini and Pesarin, 1992b).
Secondly, when n and B are large, as observed in Theorem 4, we have Ui � Ti, i = 1, . . . , k. To
complete the proof, note that only continuous transformations are involved.

Remark 5. Under the conditions for which D2 is a best test, T ′′M is also asymptotically almost
surely best.

Corollary 2. Under the same conditions as Theorem 6, when the permutation correlation matrix
R∗ of permutation partial tests T is known, the directly combined test T ′′Q = T� · (R∗)−1 · T is
asymptotically almost surely equivalent to D2.

The proof is straightforward by taking account of Theorem 4.

Remark 6. When permutation partial tests Ti, i = 1, . . . , k, are based on statistics for which the
permutation means and variances are known functions of the data set X (so that we are able to
express these tests in standardized form, before considering B CMC iterations), then we may use
the direct combination form T ′′Q. We observe that T ′′Q can be preferable to T ′′M because it is much
less demanding from a computational point of view. This is definitely the case when all permutation
partial tests Ti are linear functions of sample means.

Remark 7. As a consequence of Theorem 6 and Corollary 2, in a multivariate two-sample problem
under normality, Hotelling’s T 2 and the permutation combined tests T ′′Q and T ′′M are all asymptot-
ically almost surely equivalent with respect to the Mahalanobis D2.

Theorem 7. If ϕ : Rk → R1 is a continuous (measurable) function, then ϕ(T1, . . . , Tk) is asymp-
totically almost surely equivalent to ϕ(U1, . . . , Uk).

The proof is straightforward, since assumptions (a)–(e) of Section 4.4.1 imply that, as B and n

are large, Ti and Ui share the same distribution, together with the assumed continuity of ϕ.

Corollary 3. If ϕ : Rk → R1 is a continuous (measurable) function, then ϕ[W1, . . . ,Wk] is
asymptotically almost surely equivalent to ϕ(U1, . . . , Uk) and to ϕ(T1, . . . , Tk).

The proof is straightforward.

Remark 8. Theorem 7 and Corollary 3 generalize Theorem 4 and Corollary 1 above, res-
pectively.

Theorem 8. If, for testing H0 : {θ = θ0} against a given alternative H1, a parametric test is a
continuous measurable function of partial tests W,�W = �(W1, . . . ,Wk), where W are continu-
ous multivariate but not necessarily normally distributed, and if the asymptotic marginal CDFs of
corresponding permutation partial tests {Ti, i = 1, . . . , k} are {Fi(t), i = 1, . . . , k}, which are con-
tinuous multivariate, then T ′′� = �{F−1

1 [λ1(X)], . . . , F−1
k [λk(X)]}, λi being the permutation partial

p-values, is almost surely asymptotically equivalent to �W , provided that the composite combining
function �(F−1

1 , . . . , F−1
k ) is a member of C.

The proof is again based on the almost sure convergence (by Theorem 1, 4.2.3) of
F−1
i [λi(X)] to Wi, i = 1, . . . , k, and on the assumed continuity of composite combining function

�(F−1
1 , . . . , F−1

k ).
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As a consequence, the following two corollaries hold:

Corollary 4. Under the same conditions as Theorem 8 , �W and T ′′� are both almost surely asymp-
totically equivalent to T ′′�T = �(T1, . . . , Tk).

Corollary 5. Under the same conditions as Theorem 8, if �W is any parametric test, which is in
some sense a best test, then T ′′� and T ′′�T are almost surely asymptotically best in the same sense.

The proofs of these two corollaries are straightforward, as sample size goes to infinity, since
F−1
i [λi(X)] converges almost surely to Ti, i = 1, . . . , k.
Theorems 4–8 and their respective corollaries, especially the latter one, lead to best asymptoti-

cally NPCs, which may also be useful for finite sample sizes, although in this situation they cannot
be regarded as best (recall the discussion in Section 2.5).

However, Tippett’s combining function T ′′T = maxi{1− λ̂i}, for instance, obeys the procedure of
Berk and Jones (1978); thus, it is asymptotically relatively efficient according to the Bahadur defi-
nition under the conditions established by Berk and Jones (see also Littell and Folks, 1971, 1973).

Remark 9. In Pallini (1994) it is stated that, if all permutation partial tests are Bahadur optimal for
their respective sub-hypotheses, then nonparametric combined tests, according to direct, Fisher’s,
Liptak’s or Lancaster’s combining functions, are also Bahadur optimal, irrespective of underlying
monotonic dependence relations. In this sense, within the class C of all combining functions there
are NPCs of optimal partial tests which are as fast as best parametric counterparts in rejecting H1

when it is false.

Remark 10. The previous theorems and corollaries show that, within C, there are members
which are asymptotically equivalent with respect to their best parametric counterparts when: (i)
the conditions for the validity of parametric solutions hold; and (ii) permutation solutions are
obtained by the same statistics of parametric counterparts.

4.5 Finite-Sample Consistency

4.5.1 Introduction

A quite important problem usually occurs in several multidimensional applications when sample
sizes are fixed and the number of variables to be analysed is much larger than the sample sizes
(Goggin, 1986). Typical examples are encountered in longitudinal analysis (Diggle et al., 2002),
microarrays and genomics (Salmaso and Solari, 2005, 2006), brain imaging (Hossein-Zadeh et al.,
2003; Friman and Westin, 2005), shape analysis (Dryden and Mardia, 1998; Bookstein, 1991),
functional data (Bosq, 2000; Ramsay and Silverman, 1997, 2002; Feeraty and Vieu, 2006), finance
data, etc. In Remarks 2, 3.2.1 and 1, 3.2.3 it is shown that, under very mild conditions, the
power function of permutation tests monotonically increases as the related induced non-centrality
functional increases. This is also true for multivariate situations. In particular, for any added variable
the power does not decrease if this variable increases the induced non-centrality (see Remark 4,
4.3.2 and Problem 17, 4.3.6). We will investigate here the behaviour of the rejection rate for
divergent number of variables. NPC method properties were obtained assuming that the number of
partial tests is finite and possibly smaller than the cardinality of the permutation space. Hence the
necessity to look further into the permutation methodology, especially in order to deal with such
important problems. This analysis allows us to introduce the concept of finite-sample consistency
(see Pesarin and Salmaso, 2009). Sufficient conditions are given in order that the rejection rate
converges to one, at any attainable α-value for fixed sample sizes, when the number of variables
diverges, provided that the non-centrality induced by test statistics also diverges.



The Nonparametric Combination Methodology 147

Its application may be appropriate for problems related to discrete or discretized stochastic
processes, as for instance when data are curves or images, for which at most a countable set
of variables are observed or derived by Fourier or wavelet expansions or by functional principal
component data transformations. Hence, the application range is rather broad and we see how
the NPC applies with V variables (with V ∈ N a natural integer). Permutation tests for stochastic
processes may be defined and applied in many cases. To be specific, the process may have stationary
independent increments, or stationary symmetric increments, or be spherically exchangeable or
exchangeable. See Bell et al. (1970) and Basawa and Prakasa-Rao (1980); see also Chapter 7 for
some problems when data are discretized profiles of stochastic processes.

To discuss testing problems for stochastic dominance alternatives as are generated by symbolic
treatments with non-negative V -dimensional random shift effects �, as usual we refer to one-sided
two-sample designs as a guide. Extensions to non-positive, two-sided alternatives, and multi-sample
designs are straightforward. Note that under H0 two-sample data X = {Xhji, i = 1, . . . , nj , j =
1, 2, h = 1, . . . , V } are exchangeable, in accordance with the notion that units are randomized to

treatments. Without loss of generality, we assume that effects in H1 are such that �1 = �
d
>0 and

Pr{�2 = 0} = 1. Thus, the null hypothesis may also be written as H0 : {� d= 0} and the alternative

as H1 : {� d
>0}. We also assume that the n-sized V -dimensional data set is modelled as X(�) =

{Z1 +�,Z2}, where � = (�11, . . . ,�1n1) and where Z1,Z2 have the role of random deviates the
distribution PZ of which is generally unknown. Of course, X(0) = {Z1,Z2} represents data in H0.

4.5.2 Finite-Sample Consistency

We investigate here the rejection behaviour of the permutation test T (X) = S1(X1)− S2(X2) (see
Remarks 2, 3.2.1 and 1, 3.2.3) when for any reason, especially for divergent number V of variables,
the random effect � can diverge to infinity. Examples 1–5, 4.5.3, give some hints as to the
application of this notion. Any test statistic is a mapping from the sample space to the real line,
T : Xn → R1, and we investigate T by comparing its behaviour in H0, T (X(0)), to its behaviour
in H1, T (X(�)). It will be perfectly clear that such a comparison, together with the respective
asymptotic behaviours, belongs within the permutation framework if we are able to write the
related random variables in the form T (X(�)) = T (X(0))+DT (�,X(0)), where the induced non-
centrality DT (�,X(0)) is a random function which may diverge in probability, that is, such that
lim�↑∞ Pr{DT > t} = 1, for any real t . To this end, in Lemma 2 we investigate the behaviour of
the conditional (permutation) rejection rate when sample sizes (n1, n2) and non-degenerate one-
dimensional random deviates Z = (Z1,Z2) are held fixed as the fixed effect δ goes to infinity,
according to some monotonic sequence {δv, v ≥ 1}. Then in Theorems 9 and 10 we investigate
the unconditional (population) rejection rate when the set of i.i.d. random deviates Z vary in Xn

according to the distribution PZ. The extension from fixed to random effects occurs in Theorem 11.
Finally, using the equipower property of permutation tests, in Theorem 12 we extend the finite-
sample consistency to the conventional notion, as is obtained for divergent sample sizes.

Since the main inferential conclusions associated with permutation tests are concerned with the
observed data set X for the given set of n individuals, the notion of consistency that is most useful is
the weak (or in probability) form which essentially states that for divergent values of non-centrality
functional induced by the test statistic, the limit rejection probability of test T is one for any
fixed α > 0. This means that, for fixed sample sizes and large values of induced non-centrality,
the rejection probability of T approaches one. We think that the almost sure version (strong or
with probability one), although of great mathematical importance, is of limited relevance in the
permutation context.

In Chapter 3 it is stated that neither conditional nor unconditional power functions of any asso-
ciative or non-associative test statistic T for one-sided alternatives decrease as the effect increases.
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That is, if δ < δ′, then for any attainable α-value, and with obvious notation,

Pr
{
λ(X(δ)) ≤ α|Xn

/X(δ)

}
≤ Pr

{
λ(X(δ′)) ≤ α|Xn

/X(δ′)

}
and

EP

[
Pr
{
λ(X(δ)) ≤ α|Xn

/X(δ)

}]
≤ EP

[
Pr
{
λ(X(δ′)) ≤ α|Xn

/X(δ′)

}]
respectively, where EP (·) =

∫
Xn (·)dP (n) is the mean value of (·) with respect to P (n). Similar

relations also hold for random effects �.

Lemma 2. (Conditional finite-sample consistency of T ). Suppose that:

(i) T is any associative or non-associative test statistic for one-sided hypotheses ;
(ii) the sample sizes (n1, n2) and the set of real deviates Z = {Z1,Z2} ∈ Xn are fixed ;

(iii) the data set is X(δ) = (Z1 + δ,Z2), where (Z1,Z2) ∈ Xn are i.i.d. measurable real ran-
dom deviates whose parent distribution is PZ(t) = Pr {Z ≤ t} and δ = (δ, . . . , δ) is the n1-
dimensional vector of non-negative fixed effects ;

(iv) fixed effects δ diverge to infinity according to some monotonic sequence{δv, v ≥ 1}, the elements
of which are such that δv ≤ δv′ for any pair v < v′.

If conditions (i)–(iv) are satisfied, then the permutation (conditional) rejection rate of T converges
to 1 for all α-values not smaller than the minimum attainable αa ; thus , T is conditional finite-sample
consistent .

Proof. For any chosen δ > 0, let us consider the observed data set X(δ) = (Z1 + δ,Z2). The
permutation support induced by the test statistic T when applied to the data set X(δ) is TX(δ) =
{T ∗(δ) = T (X∗(δ)) : X∗(δ) ∈ Xn

/X(δ)}. Depending on Z, in the sequence {δv, v ≥ 1} there is a value
δZ of δ such that the related observed value T o(X(δZ)) is right-extremal for the induced per-
mutation support TX(δZ), that is, T o(X(δZ)) = maxTX(δZ)

{T ∗(δZ) : X∗(δZ) ∈ Xn
/X(δZ)

}. This δZ can
be determined by observing that a sufficient condition for right-extremal property of T o is that
minn1(Z1i + δZ)>maxn2(Z2i ), thus

δZ = arg min
δν

[min
i
(Z1i + δv)>max

i
(Z2i )].

Indeed, as the functions S are non-decreasing, we necessarily have that S1(Z1 + δZ)>S2(Z2) and so
T o(X(δZ)) is right-extremal because for all permutations X∗(δZ) 	= X(δZ) we have T o(X∗(δZ)) <

T o(X(δZ)). Then the rejection rate relative to the minimum attainable α-value αa , which for one-
sided (two-sided) alternatives is 1/

(
n
n1

)
(2/
(
n
n1

)
), due to the monotonic behaviour with respect

to δ, attains 1 for all δ > δZ, hence, due to the monotonicity property with respect to α, it is
also 1 for all α-values greater than αa . Actually, the conditional power function of T , that is,
Pr{λ(X(δ)) ≤ α|Xn

/X(δ)}, is 1 for all δ ≥ δZ and α ≥ αa , and so it is also 1 in the limit.

On the one hand, the result of Lemma 2 may be seen as essentially trivial, as it says nothing
unexpected. On the other hand, however, as this result depends on the fact that for any fixed set
of real deviates Z there exists a value δZ such that T (X(δZ)) is right-extreme for the induced
permutation support TX(δZ), there is the difficulty of obtaining a result that is not only valid for
almost all Z ∈ Xn, but also unconditionally valid. This implies considering the rejection behaviour
of T irrespective of δZ, which in turn varies as Z varies in Xn. The necessity of obtaining an
unconditionally valid result arises from the fact that it is natural to require that the probability of
rejecting H0 when it is false and the non-centrality is large must be close to 1 independently of the
observed units. We have the following theorem.
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Theorem 9. (Weak unconditional finite-sample consistency of T ). Suppose that:

(i) T is any test statistic for one-sided hypotheses ;
(ii) the sample sizes (n1, n2) are fixed and finite;

(iii) the data set is X(δ) = (Z1 + δ,Z2), where (Z1,Z2) ∈ Xn are i.i.d. measurable real ran-
dom deviates whose parent distribution isPZ(t) = Pr {Z ≤ t} and δ = (δ, . . . , δ) is the n1-
dimensional vector of non-negative fixed effects ;

(iv) the fixed effects δ diverge to infinity according to the monotonic sequence {δv, v ≥ 1} as in
Lemma 2 above.

If conditions (i)–(iv) are satisfied, then the permutation unconditional rejection rate of test T

converges to 1 for all α-values not smaller than the minimum attainable αa ; thus , T is weak
unconditional finite-sample consistent .

Proof. Observe that measurability of random deviates Z implies that limt↓−∞ Pr(Z ≤ t) = 0 and
limt↑+∞ Pr(Z ≤ t) = 1. Also observe that, according to Lemma 2 above, a sufficient condition for
the observed value T o(X(δ)) to be right-extremal in the induced permutation support TX(δ) is that
minn1(Z1i + δ)>maxn2(Z2i ). The probability of this event, as random deviates in Z are i.i.d., is

Pr

{
min
n1

(Z1i + δ)>max
n2

(Z2i)

}
=
∫
X

{
[1− PZ(t − δ)]n1

}
d [PZ(t)]

n2 ,

the limit of which, as δ goes to infinity according to the given sequence {δv, v ≥ 1}, is 1 since
(n1, n2) are fixed and finite and because, by the Lebesgue monotone convergence theorem (see
Parthasarathy, 1977) according to which the limit of an integral is the integral of the limit, the
associated sequence of probability measures {PZ(t − δv), v ≥ 1} converges to zero monotonically
for any t .

An interpretation of this is that the probability of finding a set Z ∈Xn for which there does not
exist a finite value of δZ ∈ {δv, v ≥ 1} such that minn1(Z1i + δZ)>maxn2(Z2i), converges to zero
monotonically as δ diverges. Taking Lemma 2 into account, this implies that the unconditional
rejection rate

Wα(δ) =
∫
X

Pr{λ(X(δ)) ≤ α|Xn
/X(δ)} dPZ(z),

where PZ is the multivariate distribution of vector Z, as δ tends to infinity, converges to 1 for all
α-values not smaller than αa .

It is to be emphasized that the notion of unconditional finite-sample consistency, defined for
divergent fixed effects δ, is different from the conventional notion of (unconditional) consistency
of a test, which in turn relates to the behaviour of the rejection rate for given δ when min(n1, n2)

diverges. It is known that, in order to attain permutation unconditional consistency, random deviates
Z must at least possess finite second moment (Sections 3.3 and 3.7; see also Hoeffding, 1952;
Romano, 1990). Here we only require that T is measurable in H0, so that in this respect it is to
be emphasized that random deviates Z need not be provided with finite moments of any positive
order. For instance, they can be distributed as Cauchy Cy(0, σ ) or Pareto Pa(θ, σ ) with shape
parameter 0 < θ ≤ 1 and finite scale coefficients σ > 0. Note, however, that to investigate the
conventional notion of consistency it is required that, with obvious notation, the sequence of
test statistics {Tn; n ∈ N} can be written in the form {T (Xn(δ)) = T (Xn(0))+DT (δ,Zn); n ∈ N},
where DT (δ,Zn) diverges and T (Xn(0)) is measurable in the limit. Thus, in one sense, the two
notions may be seen as complementary to each other (see Theorem 12 for a parallel between the
two notions).

Let us now consider the following theorem.
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Theorem 10. Suppose that random deviates Z and effects δ are such that:

(i) there exists a function ρ(δ)> 0 of effects δ the limit of which is 0 as δ goes to infinity ;
(ii) T is any test statistic, as above;

(iii) the data set is obtained by the transformation Y(δ) = ρ(δ)X(δ);
(iv) limδ↑∞ δρ(δ) = δ̃ > 0, and limδ↑∞ Pr {ρ(δ) · |Z|>ε} = 0, ∀ε > 0;
(v) conditions(iii) and (iv) of Theorem 9 hold .

If conditions (i)–(v) hold then the unconditional rejection rate converges to 1 for all α-values not
smaller than the minimum attainable αa ; thus, T is weak unconditional finite-sample consistent .

Proof. Let us observe first that the data Y(δ) = ρ(δ)[Z1 + δ,Z2], as δ goes to infinity,
collapse in distribution towards [δ̃, 0]. Also observe that, for any fixed set of random
deviates (Z1,Z2), T (Y(δ)) is right-extreme in the induced permutation support when
minn1 [(Z1i + δ)ρ(δ)] >maxn2 [Z2iρ(δ)]. Since ρ(δ) is positive, the event defined by this relation
is equivalent to minn1 [Z1i + δ]>maxn2 [Z2i], in the sense that the latter is true if and only if the
former is true. Thus, by taking account of proof of Theorem 9, we have that

Pr

{
min
n1

[(Z1i + δ)ρ(δ)]>max
n2

[Z2iρ(δ)]

}
= Pr

{
min
n1

[Z1i + δ]>max
n2

[Z2i]

}
=
∫
X

{
[1− PZ(t − δ)]n1

}
d [PZ(t)]

n2 ,

the limit of which, as δ goes to infinity, is 1 because the associated sequence of probabilities {PZ[t −
δv], v ≥ 1} monotonically converges to zero and (n1, n2) are fixed and finite. Thus, according to
Theorem 9, the related rejection rate converges to 1 for all α-values not smaller than αa ; and so,
T is weak unconditional finite-sample consistent.

Theorem 10 says that when, for divergent δ, the data distribution of {ρ(δv)Z, v ≥ 1} collapses
towards zero while {δvρ(δv), v ≥ 1} is positive, then any permutation test statistic T applied to
the transformed data set Y(δ) = ρ(δ)[Z1 + δ,Z2] is unconditionally finite-sample consistent (see
Example 2, 4.5.3).

Theorem 11. (Weak unconditional finite-sample consistency for random effects). The results of
Lemma 2 and Theorems 9 and 10 can be extended to divergent random effects � according to some

sequence {�v, v ≥ 1} whose elements are stochastically non-decreasing, that is , �v

d≤ �v+1,∀v ≥
1, and provided that limv↑∞ Pr{�v >u} → 1 for every finite u.

Proof. Actually, in order for the Lebesgue monotone convergence theorem to be applicable it
suffices that PZ(t −�′′ ≤ u) is stochastically dominated by PZ(t −�′ ≤ u) for every u, when-

ever �′
d≤ �′′, so that the associated sequence of probabilities {PZ[t −�v], v ≥ 1} monotonically

converges to zero.

Let us now examine a close parallel between finite-sample and conventional notions of consis-
tency. To this end, let us assume that we have i.i.d. data from a one-dimensional variable and that
sample sizes diverge.

Theorem 12. (Weak unconditional consistency of T ). Suppose that a typical two-sample problem,
for one-sided alternatives with the data set X(δ) = (δ + σZ1, σZ2) as above, is such that :

(i) the permutation test statistic T =∑i≤n1
X1i(δ)/n1 is assumed to be weak unconditional finite-

sample consistent ;
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(ii) the conditions stated in Theorems 9–11 above are satisfied ;
(iii) the one-dimensional random deviates Z have zero mean, that is , E(Z) = 0;
(iv) the two-sample sizes (n1, n2) satisfy the relation (n1 = vm1, n2 = vm2), so that they can

diverge according to the sequence {(vm1, vm2), v ≥ 1}.

Then for any given δ > 0 the unconditional rejection probability of T converges to 1 , ∀α ≥ αa ,
as v goes to infinity; thus , T is weak unconditional consistent in accordance with the conventional
notion of consistency .

Proof. Let us observe that the fixed effect δ is now an unknown constant and that sam-
ple sizes diverge, so that the conventional notion of consistency may be applied to T .
For any integer v ≥ 1, let us arrange the one-dimensional data sets X1(δ) = (δ + σZ1) =
{δ + σZ1i , i = 1, . . . , n1} and X2 = σZ2 = {σZ2i , i = 1, . . . , n2} into respectively the
v -dimensional sets Y1(δ) = {Y11i = X1i , Y21i = X1,m1+i , . . . , Yv1i = X1,m1(v−1)+i , i = 1, . . . , m1}
and Y2 = {Y12i = X2i , Y22i = X2,m2+i , . . . , Yv2i = X2,m2(v−1)+i , i = 1, . . . , m2}, where (n1, n2) =
(vm1, vm2). Thus the data vector X(δ), with one column and n = n1 + n2 rows, is organized
into a matrix Y(δ) with v columns and m = m1 +m2 rows. Of course, as v diverges, so does
min(n1, n2). The test statistic T , when applied to the data set Y(δ), as in Example 3, 4.5.3, is
unconditionally finite-sample consistent, because the conditions of Theorem 10 are satisfied by
assumption. Let us now observe that, for any v ≥ 1, the observed value of T applied to Y(δ) is
T (Y(δ)) =∑i≤m1

∑
h≤v Yh1i (δ)/vm1 and applied to X(δ) is T (X(δ)) =∑i≤n1

X1i (δ)/n1, and of
course T (Y(δ)) = T (X(δ)). Moreover, we may also write T (X(δ)) = T (X(0))+ δ/σ = T (Y(δ)),
stressing that two forms have the same null distribution and the same non-centrality functional
which does not vary as v diverges, whereas the null component T (X(0)) as v diverges collapses
almost surely towards zero by the strong law of large numbers because, by assumption, the random
deviates Z admits finite first moment and are i.i.d. Thus, by virtue of Theorem 10 the rejection
probability for both ways converges to 1, for all δ > 0. And so weak unconditional finite-sample
consistency implies weak unconditional (conventional) consistency for all α ≥ αa .

Using the same arguments, it is straightforward to extend the results of Theorem 12 to any
associative test statistic of Section 2.3. It is worth noting that the permutation sample space, when
processing the n-row one-dimensional data set X(δ), that is, X/X(δ), has

(
n

n1

)
distinct elements, and

when processing the data rearranged according to the m-row v-dimensional data set Y(δ), that
is, X/Y(δ), it has

(
m

m1

)
elements. The two ways looking at permutation testing, having the same

non-centrality and exactly the same likelihood, have the same unconditional power and so both
are consistent for all α-values not smaller than the minimum attainable αa = 1/

(
m

m1

)
. However,

the two ways are not completely equivalent in inferential terms. In order to prove their complete
equivalence, we have to prove that both are consistent for all α > 0 and that convergence should
be obtained for any kind of sequences such that min(n1, n2) diverges. What has been proved
here is that an unconditional finite-sample consistent test for associative T is also uncondition-
ally consistent in the conventional sense for all α ≥ αa when the sequence of sample sizes is
{(vm1, vm2), v ≥ 1}. In practice, if we require consistency at least for α greater than a given value
α◦, and sample sizes are according to {(vm1, vm2), v ≥ 1}, then we may find a pair of sample sizes
(m1, m2) such that α◦> 1/

(
m

m1

)
so that the two ways are equivalent at least for all α ≥ α◦. Since for

any arbitrarily chosen α◦ we may find a pair (m1,m2) such that α◦>αa , then we may conclude that
unconditional inferential conclusions associated with the two ways are always coincident, provided
that sample sizes follow the sequence {(vm1, vm2), v ≥ 1}. This can be seen as a proof that, if
deviates Z have zero mean, then any unconditional finite-sample consistent associative test statistic
is unconditionally consistent at any α-value at least when sample sizes diverge according to the
sequence {(vm1, vm2), v ≥ 1}. In this respect, however, we can at the moment only conjecture that
the test statistic T is weak unconditional consistent for α > 0 if and only if it is weak unconditional
finite-sample consistent.
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Theorems 9–12 can clearly be extended to a sequence of nominal and/or ordered categorical
and/or discrete and/or real variables by using the NPC. They can also be extended to multidimen-
sional variables.

4.5.3 Some Applications of Finite-Sample Consistency

We consider a (countably) large set of variables analysed by means of test statistics according
to the so-called direct combination of several partial tests (see (h) in Section 4.2.4). The direct
method of combination is chosen here mainly because proofs are easier to obtain. Extensions to
other combining functions are essentially straightforward and left to the reader as exercises.

Example 1. By way of a typical situation, let us consider a two-sample design with V ≥ 1
homoscedastic variables X = (X1, . . . , XV ), in which the observed data set is X(δ) = {δh + Zh1i ,

i = 1, . . . , n1;Zh2i , i = 1, . . . , n2;h = 1, . . . , V }, and the hypotheses are H0 : {X1
d= X2} = {δ =

0} against H1 : {X1
d
>X2} = {δ ≥ 0}, where δ is the vector of fixed effects, δ = (δ1, . . . , δV ), in

which δh is the effect for the hth variable and 0 is the vector with V null components. Suppose
that the permutation test statistic has the form

T ∗(δ) = ψ(V )
∑

h≤V [X̄∗h1(δh)− X̄∗h2(δh)],

the observed value of which is T o(δ) = ψ(V )
∑

h≤V [X̄h1(δh)− X̄h2(0)], where ψ(V ) is such
that the statistic T (X(0)) is measurable as V diverges, so that limt↑∞ Pr{T (X(0)) ≤ t;PZ} = 1,
and X̄∗hj (δh) =

∑
i≤nj X

∗
hji(δh)/nj , j = 1, 2, are permutation sample means of the hth variable.

In other terms, the statistic T is a measurable sum of V partial tests. Suppose now that the
non-centrality induced by the test statistic, that is, the global effect δ̄V = ψ(V )

∑
h≤V δh, diverges

as V diverges. To see the unconditional finite-sample consistency of T , let us consider the
permutationally equivalent form of the test statistics

T ∗(δ) = ψ(V )
∑
h≤V

∑
i≤n1

X∗h1i(δh) = ψ(V )
∑
i≤n1

∑
h≤V

X∗h1i (δh)

=
∑
i≤n1

Y ∗1i (δ) = T ∗(0)+ n1δ̄
∗
V ,

where the Y1i(δ) = ψ(V )
∑

h≤V Xh1i (δh), i = 1, . . . , n1, are univariate data transformations
which summarize the whole set of information on effects δ collected by the V variables,
δ̄∗V = ψ(V )

∑
h≤V δ∗h, T ∗(0) is the null permutation value of T which is a function only of random

deviates Z∗1 ∈ Z, and where, of course, the vectors X·i = (X1·i , . . . , XV ·i ) relative to the n units are
permuted. The right-hand side expression shows that a multivariate test statistic is reduced to a sin-
gle one-dimensional quantity. Thus conditions of Theorem 9 are satisfied because, by assumption,
T ∗(0) is measurable and δ̄V diverges. And so T is unconditionally finite-sample consistent.

A particular case occurs when all component variables Xh(δh), h = 1, . . . , V , are provided
with finite mean value, E [|Xh(δh)|] <∞, h = 1, . . . , V . Then we may set ψ(V ) = 1/V . By the
strong law of large numbers, T (X(0)) strongly converges to zero. If assumptions are such that
δ̄V =

∑
h≤V δh/V is positive in the limit, we may apply Theorem 10 to achieve finite-sample

consistency (see also Examples 3–5 below). We guess that in this case the unconditional finite-
sample consistency is strong or with probability one.

Example 2. Let us suppose that the heteroscedastic data set is X(δ) = (δh + σhZh1i , i = 1, . . . , n1,

σhZh2i , i = 1, . . . , n2;h = 1, . . . , V ) for the hypotheses H0 : {X1
d= X2} = {δ = 0} against
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H1 : {X1
d
>X2} = {δ ≥ 0}, where δh and σh are the fixed effect and the scale coefficient of the hth

variable. Suppose also that the test statistic has the form

T ∗(δ) = ψ(V )
∑
h≤V

[X̄∗h1i (δh)− X̄∗h2(δh)]/Sh,

with observed value T o(δ) = ψ(V )
∑

h≤V [X̄h1(δh)− X̄h2(0)]/Sh, where Sh is a permutation invari-
ant statistic for the hth scale coefficient σh, that is, a function S[Xhji(δh), i = 1, . . . , nj , j = 1, 2]
of pooled data, so that both conditional and unconditional distributions of [X̄h1(δh)− X̄h2(0)]/Sh
are invariant with respect to scale σh, h = 1, . . . , V , and ψ(V ) is such that the statistic T ∗(0) is
measurable as V diverges. Therefore, the statistic T is a measurable sum of V scale-invariant par-
tial tests. Since Sh is a function of random data, and thus is a random quantity, the scale-invariant
non-centrality functional ψ(V )

∑
h≤V δh/Sh becomes a random quantity which we may denote by

�̄V . Also, we may write the tests statistic as T (�̄V ). Suppose now that the associated sequence
of random effects {�̄V , V ≥ 1}, being the sum of V non-negative random quantities, diverges as V
diverges.

To see the finite-sample consistency of T (�̄V ), let us consider the permutationally equivalent
form of the test statistics

T ∗(�̄V ) = ψ(V )
∑
h≤V

∑
i≤n1

X∗h1i (δh)/Sh = ψ(V )
∑
i≤n1

∑
h≤V

X∗h1i (δh)/Sh

=
∑
i≤n1

Y ∗1i (δ̄) = T ∗(0)+ n1�̄
∗
V ,

where the Y1i (δ̄), i = 1, . . . , n1, are univariate data transformations which summarize the whole
set of information on effects δ collected by the V variables and �̄∗V = ψ(V )

∑
h≤V δ∗h/Sh. The

right-hand-side expression shows that a multivariate test statistic is reduced to one univariate.
In order for Theorem 11 to be applicable, it is worth noting that in the example we do not

require that the δh are all positive; what is important is that �̄V diverges at least in probability as V
diverges while T ∗(0) is measurable. Therefore, T is unconditional finite-sample consistent at least
in the weak form. It is also emphasized that the V variables need not be independent – they can be
dependent in any way – because their dependences are nonparametrically taken into consideration
by the NPC procedure. What is important is that the distribution induced by T (X(0)) is measurable
and that induced by T (X(δ)) diverges at least in probability.

Remark 1. With reference to Example 2, it is worth observing that, since the statistics Sh
are functions of the data, the resulting random effects �V , being data dependent, are not
independent of random deviates Z (see Section 2.1.1). We can see another way of dealing
with random effects. Suppose the data are as in Example 2 and that the test statistic is
T =∑hi ϕ(Xh1i ), where ϕ is a suitable non-degenerate measurable non-decreasing function such
that E[ϕ(Xh)] is finite for 1 ≤ h ≤ V . Thus the data X(δ) are transformed to Y(δ̄) = ϕ(X(δ̄)) =
[ϕ(δh + σhZh1i ), i = 1, . . . , n1, ϕ(σhZh2i ), i = 1, . . . , n2;h = 1, . . . , V ]. In such a case, by
denoting ϕ(σhZh2i ) = Yh2i (0), we may write ϕ(δh + σhZh1i ) = Yh1i (0)+�ϕ(δh, σhZh1i), where
Yh1i (0) = ϕ(σhZh1i). Thus the resulting effects �ϕ(δh, σhZh1i) = ϕ(δh + σhZh1i)− Yh1i(0),
containing random elements are random quantities which in turn are dependent on deviates Z.

Example 3. Let us consider a case where all V variables have null first moments and finite scale
coefficients, {E(Zh) = 0, 0 < σh <∞, h = 1, . . . , V }, and have finite positive effects (δh > 0, h =
1, . . . , V ). For the same hypotheses as Examples 1 and 2, consider the test statistic

T ∗(δ) = (n1)
−1
∑
i≤n1

∑
h≤V

X∗h1i (δh)/V = (n1)
−1
∑
i≤n1

Y ∗1i (δ̄V )
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where the Y1i(δ̄V ) =
∑

h≤V σhZh1i/V +
∑

h≤V δh/V , the mean value of which is 0+ δ̄V . As V
diverges, provided that conditions for the weak law of large numbers for non-i.i.d. variables holds,
we may state that T o(δ) =∑i≤n1

Y1i(δ̄V )/n1 converges in probability to limV↑∞ δ̄V > 0. Thus,

since limV↑∞
∑

h≤V σhZh1i/V
p= 0, so that the whole null distribution collapses towards 0 in prob-

ability, we have that for every α-value not smaller than the minimum attainable αa , the limit critical
point of T is zero, and then in the limit T o(δ) falls in the critical region in probability.

In order for Theorem 9 to be applicable, it is worth noting that we do not require the effects δh
to be all positive; what is important is that δ̄V diverges as V diverges while T ∗(0) is measurable.
Actually, on the one hand, we can ignore a finite number of variables and related effects without
compromising the divergence of the sequence {δ̄V , V ≥ 1}; on the other hand, to fit its conditions we
could extract from {δ̄V , V ≥ 1} one monotonically divergent subsequence {δ̄v, v ≥ 1} by discarding
any finite number of its elements. Note also that we do not require the V variables to be independent.
As a matter of fact they can be dependent in any way. What is important is that the distribution
induced by T (X(0)) is measurable and that induced by T (X(δ)) diverges at least in probability. In
such a case unconditional finite-sample consistency is at least in accordance with the weak form.
Of course, similar reasoning is applicable to Theorem 10.

Example 4. We now turn to a situation in which conditions of Theorem 10 do not occur. Consider
a two-sample design where the data belong to a V -variate Cauchy distribution with independent
homoscedastic components, with constant fixed effects and constant scale coefficients (δh = δ, σh =
σ, h = 1, . . . , V ), and where the test statistic and hypotheses are as in Example 3 above. In such
a case, since a permutationally equivalent test statistic has the form

T ∗(δ̄V ) = (n1)
−1
∑
i≤n1

∑
h≤V

X∗h1i(δ)/V = (n1)
−1
∑
i≤n1

Y ∗1i (δ̄V ),

which shows that, due to the well-known property of the Cauchy distribution (whereby the Y1i

being the arithmetic means of V i.i.d. components are Cauchy with location δ and scale σ ), T ∗(0)
is Cauchy located at 0 and the global effect δ̄V = δ does not diverge as V diverges. Thus, in such
a case this test, although unbiased, is not unconditionally finite-sample consistent for fixed sample
sizes. In this case, since

∑
h≤V Xh1i (δ)/V =∑h≤V (σZh1i + δ)/V =∑h≤V σZh1i/V + V δ/V ,

we have that there does not exist a function ρ(δ) such that Zρ(δ) collapses in probability towards
zero whereas δρ(δ) is positive. The same result applies to deviates Z with Pareto distribution
Pa(θ, σ ), with shape parameter 0 < θ ≤ 1.

It is, however, to be emphasized that for fixed (n1, n2) and δ divergent, with random deviates
distributed according to either Cauchy Cy(0, σ ) or Pareto Pa(θ, σ ), the latter with shape parameter
0 < θ ≤ 1, are conditional and unconditional finite-sample consistent. Whereas, when δ is fixed
and V diverges both are not consistent, because in this case the law of large numbers does not
apply.

Example 5. The results of Examples 1–4 can be generalized to variables which do not possess
finite means, that is, the number of variables such that E(Zh) does not exist as V diverges. Let us
argue within a two-sample design and suppose that V homoscedastic deviates Z = (Z1, . . . , ZV )

have finite unique medians, that is, Md(Zh) = ηh, h = 1, . . . , V . Suppose also that the observed
data set is X(δ) = {δh + σhZh1i , i = 1, . . . , n1, Zh2i , i = 1, . . . , n2; h = 1, . . . , V }, and the
hypotheses are H0 : {δ = 0} against H1 : {δ > 0}, where δ = (δ1, . . . , δV ). In this setting, consider
the test statistic

T ∗Md(δ̃V ) =
1

n1

∑
i≤n1

Ỹ ∗1i (δ̃V )−
1

n2

∑
i≤n2

Ỹ ∗2i (δ̃V ),
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where Ỹ ∗ji(δ̃V ) = Md[X∗hji(δ)/SMh, h = 1, . . . V ], i = 1, . . . , nj , j = 1, 2, is the median of V

scale-free individual variables and SMh = MADh = Md[|Xhji − X̃h|, i = 1, . . . , nj , j = 1, 2] is
the median of absolute deviations from the median specific to the hth variable. As V diverges
1
n1

∑∗
i≤n1

Ỹ1i (δ̄V ) and 1
n2

∑
i≤n2

Ỹ2i , weakly converge to Md(Y1(δ̃V )) > 0 and 0, respectively. Thus,

Theorem 10 applies and so T ∗Md(δ̃V ) is unconditional finite-sample consistent without requiring the
existence of any positive moment for V variables.

The same problem can also be solved, for instance, by combining V Mann–Whitney’s statistics
(direct combination). To this end (see Section 2.4.1) let us consider the statistic

T ∗MW(δ̈V ) = 1

V n1

∑
h≤V

∑
i≤n1

F̄h[X∗h1i (δ)] =
1

n1

∑
i≤n1

F̈ [X∗h1i(δ)],

where F̄h(t) =
∑n

i=1 I(Xh·i ≤ t)/n is the pooled EDF for the hth variable and F̈ is the average
EDF which is finite because all F̄hs are finite. It is thus possible to apply the law of large numbers
for non-i.i.d. variables to show that T ∗MW(0) converges to 0 and T ∗MW(δ̈V ) converges to a positive
number. Thus, as the conditions of Theorem 10 are satisfied, T ∗MW(δ̈V ) is finite-sample consistent.

Remark 2. It is straightforward to prove that T ∗MW is also appropriate for stochastic effects �

and when some of the variables are ordered categorical and others numeric. If some variables are
nominal and others ordered categorical or numeric, a proper strategy is as follows: (i) separately
combine the nominal variable with T ∗1 ; (ii) combine the others with T ∗2 ; (iii) and then combine the
former two with T ′′′ = ψ(λ1, λ2).

Remark 3. As an application of Theorem 12 above, let us consider the unconditional permutation
power of a test statistic T for fixed sample sizes, with V ≥ 2 i.i.d. variables and fixed effect δ,
calculated in two ways: (i) by considering two V -dimensional samples sized m1 and m2 respectively;
and (ii) by considering two unidimensional samples sized n1 = Vm1 and n2 = Vm2. Since the
unconditional power essentially depends on the non-centrality induced by T , and two ways produce
exactly the same non-centrality and the same underlying likelihood, we expect them to have the
same power, at least approximately. Indeed, due to the discreteness of permutation distributions
and consequent conservativeness of related tests, if sample sizes (m1,m2) are not too small, so
that both permutation distributions are practically almost continuous and share about the same
p-value support (i.e. �

(n)
X(0) = �

(m)
X(0)), then the two ways have approximately the same power.

Thus, we can call this the equipower property of permutation tests. To give evidence of this, we
report in Table 4.6 some Monte Carlo estimates of rejection rates for a two-sample design and
one-sided alternatives, δ > 0, of the test statistics T ∗1 (δ) =

∑
i≤n1

X∗1i (δ) and T ∗V =
∑

i≤m1
Y ∗1i (δ),

where Y ∗1i (δ) =
∑

h≤V X∗h1i (δ), with n1 = n2 = 50, at α = (0.01, 0.05, 0.10), with MC = 4000
Monte Carlo experiments, B = 4000 random inspections of permutation space, and data coming
from population distributions Cauchy Cy(0, 1) with no mean and infinite variance, Student’s t with
2 degrees of freedom St (2) with finite mean and infinite variance, Exponential Ex(1) with finite
mean and variance, and Normal N(0, 1).

The results of this simple Monte Carlo study confirm our thoughts about the approximate
equipower property of permutation tests. The approximation seems to be better if the V -dimensional
sample sizes (m1,m2) are not too small. For instance, the apparent power reduction of rejection
rates for V = 10 with respect to those for V = 1 is substantially due to the fact that the true
attained α-values are (0.00794, 0.0477, 0.0993) instead of the nominal values (0.01, 0.05, 0.10),
respectively (in accordance with this, the rejection rates for the univariate N(0, 1) are 0.498, 0.781,
and 0.875 instead of 0.553, 0.791, and 0.881).

There is, however, a difference in computing time between the two ways, because permuting
B times n = n1 + n2 elements takes longer than permuting m = m1 +m2 = n/V elements. Thus,
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Table 4.6 Monte Carlo estimates of rejection rates for a
two-sample design and one-sided alternatives

V

Distributions α 1 2 5 10

0.01 0.085 0.084 0.076 0.055

Cy(0, 1), δ = 1 0.05 0.187 0.188 0.186 0.175

0.10 0.270 0.273 0.273 0.271

0.01 0.263 0.269 0.218 0.159

St (2), δ = 0.5 0.05 0.484 0.488 0.452 0.424

0.10 0.596 0.600 0.580 0.571

0.01 0.573 0.559 0.537 0.336

Ex(1), δ = 0.5 0.05 0.801 0.795 0.789 0.733

0.10 0.889 0.878 0.884 0.854

0.01 0.553 0.538 0.511 0.332

N(0, 1), δ = 0.5 0.05 0.791 0.790 0.782 0.720

0.10 0.881 0.882 0.875 0.847

from the computing point of view, when possible it would be convenient to process V -dimensional
data according to the design outlined in Theorem 12 above. When transforming a one-dimensional
data set into a V -dimensional equivalent we need to randomly associate V observed data with each
of m pseudo units – a process which implies a sort of auxiliary randomization in which respect
there are known questionable problems connected with the possibility of introducing some non-
objective elements: two statisticians may obtain different conclusions even though starting with the
same data set (see Scheffé, 1944; Pesarin, 1984; Lehmann, 1986).

4.6 Some Examples of Nonparametric Combination
In this section we discuss some typical examples. The main aim of this discussion is to illustrate the
potential, flexibility, utility and effectiveness of NPC methods. Example 1 shows that NPC methods
really do take into account the underlying dependence relations among partial tests, making it unnec-
essary to specify them. Example 2 shows that the quadratic combination form converges to its para-
metric unconditional counterpart under the conditions for the latter. Examples 3–6 discuss multi-
aspect testing problems, which are appropriate when specific side-assumptions allow us to hypothe-
size that treatments may influence more than one aspect of the underlying distributions. Example 7
deals with testing problems related to aspects of monotonic stochastic ordering; Example 8 refers
to the so-called Behrens–Fisher problem. The section concludes with a real research example.

Example 1. An artificial example.
In order to appreciate that the NPC method does actually take into account the underlying depen-
dence relations among partial tests, let us consider a somewhat artificial example. Table 4.7 gives
data from Pollard (1977) on lengths of worms, also shown in Table 1.4; for the sake of simplicity
only two groups, the first and the third, are analysed here. We wish to test whether the mean length
of worms, variable X, is the same in both groups, against the alternative that group 3 is stochas-
tically greater than group 1. Together with variable X, which is the only one actually observed,
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Table 4.7 Lengths of worms in groups 1 and 3

Group 1 Group 3
X1 Y1 W1 X3 Y3 W3

10.2 3.19 2.98 9.2 3.03 3.00
8.2 2.86 2.86 10.5 3.24 3.03
8.9 2.98 3.19 9.2 3.03 2.95
8.0 2.83 2.88 8.7 2.95 3.24
8.3 2.88 2.83 9.0 3.00 3.03
8.0 2.83 2.83

let us consider two more artificial variables: Y = +√X and W which, within each group, displays
the same Y values except that they are assigned to different units, so that Y and W share the same
sample means and variances as well as partial p-values λY = λW , but are differently associated
with X. Thus, the problem becomes artificially multivariate.

Observe that Y is simply a nonlinear monotonic transformation of X and therefore, in light of
the concurrent multi-aspect testing problem, it may contain only a small amount of further relevant
information on the distributional diversity of the two groups, especially if the assumption of additive
effects is at least approximately satisfied (see also Example 3 below). Moreover, although within
the two groups W has the same sample means as Y , it is differently associated with X, so it contains
(essentially artificial) information on the distributional diversity between the two groups (it is well
known that in multivariate problems information on distributional diversity is partially contained
in the dependence relations).

Let us consider the following analyses:

(a) H0a : {(X1, Y1)
d= (X3, Y3)} = {(X1

d= X3)
⋂

(Y1
d= Y3)} against H1a : {(X1

d
< X3)

⋃
(Y1

d
<

Y3)};
(b) H0b : {(X1,W1)

d= (X3,W3)} = {(X1
d= X3)

⋂
(W1

d= W3)} against H1b : {(X1
d
< X3)

⋃
(W1

d
<

W3)}.

It should be noted that all alternatives are restricted, so that parametric solutions are notoriously dif-
ficult. By using B = 4000 CMC iterations, we obtain estimated partial p-values λ̂X = 0.096, λ̂Y =
0.084 and λ̂W = 0.082.

Combination by Liptak’s combining function gives the combined estimates λ̂′′a = 0.084 and
λ̂′′b = 0.043, respectively. Of course, at α = 0.05, the latter is significant while the former is not.
We observe that in practice Y makes only a small contribution to the discrimination of the two
groups. The small difference between the two p-values λ̂X and λ̂Y may be attributed to the possibly
better discrimination effectiveness of Y with respect to X because the square root transformation
seems to produce a sort of symmetrization on the resulting distribution, so that an additive effect
model may fit Y better than X with the present data; the very small difference between λ̂Y and λ̂W

is exclusively due to the CMC accuracy.
Although W gives exactly the same partial p-value as Y , due to being almost independent of X, it

appears to contain artificial information useful for discrimination. Indeed, it plays the role of a com-
plementary variable, and we know that if the monotonic dependence between X and W is ‘small’, the
information increment furnished by W over that contained in X is ‘higher’ than if this dependence
were almost sure, as occurs for Y . Actually, the minimal increment of information occurs when
two variables are one-to-one, and the maximal when they are independent. However, it is important
to stress that the NPC method does actually take into account the underlying dependence among
all partial tests, without the necessity of explicitly incorporating any coefficient in the analysis.
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Example 2. Two quadratic combining functions .
As a second example, let us consider the standard problem of the Mahalanobis D2 in a two-sample
bivariate normal situation. It is well known that the null distribution of

D2 = W 2
1 +W 2

2 − 2ρW1W2

1− ρ2

is a central chi-square with 2 d.f.; here

Wj =
(
X̄j1 − X̄j2

) √n1n2/(n1 + n2)

σj
, j = 1, 2,

are the standardized marginal normal tests, where the correlation coefficient ρ and σj , j = 1, 2,
are population parameters,

As a competitor, let us consider the permutation solution provided by a quadratic combination
(see (e) in Section 4.2.4) given by

T ′′H =
T ∗2

1 + T ∗2
2 − 2ρ∗T ∗1 T

∗
2

1− ρ∗2
,

where the permutation partial tests are

T ∗j = (X̄∗j1 − X̄∗j2)

√
n1n2/(n1 + n2)

σ ∗j
, j = 1, 2,

which have the same form as the corresponding marginal tests in D2, except that σ ∗j are now
calculated on the permutation data set X∗ (see Remark 3, 4.2.4), and the correlation coefficient is
ρ∗ = Cov(T ∗1 , T

∗
2 ).

Note that both bivariate tests D2 and T ′′H are based on quadratic forms and are appropriate for
invariant testing with respect to alternatives lying at the same distance from H0 and so they are
comparable, at least asymptotically. In particular, it is worth noting that D2 is a UMPU invariant
test and that T ′′H is based only on permutation quantities. Recalling that as sample sizes go to
infinity, the permutation correlation coefficient ρ∗ almost surely converges to ρ and the observed
values T o

j almost surely converge to Wj, j = 1, 2, the permutation statistic T ′′H (see Theorem 6
and Remark 7, 4.4.2) almost surely converges to D2, so that they are asymptotically equivalent.
On the one hand, however, parametric solutions generally look for statistics presenting known
reference null distributions, at least for large sample sizes. Thus, in their expressions they must
incorporate all dependence coefficients present in P , where these coefficients must be either known
or unconditionally estimated from the given data set X, within the underlying nonparametric family
P. This is a task which may occur in quite simple situations. In practice, it can be attained when all
underlying dependence relations are linear, and for invariance testing with respect to alternatives
lying at the same quadratic distance from H0, where this distance is a metric defined in the parameter
space and expressed in terms of response values X. On the other hand, NPC procedures look for
simple expressions of test statistics and leave the task of providing the related reference distributions
to the CMC procedure by taking account, in a nonparametric way, of all underlying dependences,
including situations in which these are parametrically intractable.

Remark 1. In defining T ′′Q (see (e) in Section 4.2.4) we need not assume normality of responses
or partial tests, so that the invariance testing property is assumed for alternatives lying at the
same quadratic distance from H0 and measured on the space of inverse normal transformations of
permutation p-values, that is, in terms of normal probability distances .
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Remark 2. In a permutation context, instead of T ′′Q we may use the simpler direct combining
solution T ′′D = T ∗2

1 + T ∗2
2 as a competitor of D2. Of course, T ′′Q and T ′′D are not permutationally

equivalent irrespective of ρ∗ (see Problem 16, 4.2.7), although a set of Monte Carlo experiments
shows that their unconditional power functions are very close to each other in all conditions (the
maximum difference is for ρ∗ = 1/2, whereas they coincide exactly when ρ∗ = 0 and lim |ρ∗| = 1;
see Problem 17, 4.2.7). However, it should be noted that the amount of computation required by
T ′′D is much less than that of T ′′Q, so that for practical purposes it may be regarded as an interesting
competitor for unrestricted alternatives and for quasi-invariant testing.

Example 3. Multi-aspect testing .
As a third example, let us consider a two-sample dominance problem on positive univariate variables
where, as usual, dominance means that in the alternative we have two CDFs related, for instance,
by F1(x) ≤ F2(x), x ∈ R1. Let the side-assumptions for the problem be that the treatment may
act on the first two moments of responses belonging to the first group. Moreover, and without
loss of generality, let us assume that the data set and response model behave as X1i = µ+�1i +
Z1i , X2i = µ+ Z2i , i = 1, . . . , nj , j = 1, 2, where µ is a population nuisance constant, Zji are
exchangeable random errors such that µ+ Zji > 0 in probability, and �1i ≥ 0 are non-negative
stochastic effects which may depend on µ+ Z1i and in addition satisfy the second-order condition
(µ+�1i + Z1i )

2 ≥ (µ+ Z1i )
2, i = 1, . . . , n1.

Suppose that the hypotheses are H0 : {X1
d= X2} against H1 : {X1

d
>X2} = {X1 −�

d= X2},
and that, focusing on the assumed side-conditions, we are essentially interested in the first
two moments, so that the hypotheses become equivalent to H0 :

{
(µ11 = µ12)

⋂
(µ21 = µ22)

}
and H1 :

{
(µ11 >µ12)

⋃
(µ21 >µ22)

}
, where µrj = E(Xr

j ) is the rth moment of the j th
variable.

In order to deal with this typical multi-aspect testingproblem (see also Fisher, 1935), we may
first apply one partial permutation test to each concurrent aspect, T ∗1 =

∑
i X

∗
1i and T ∗2 =

∑
i X

∗2
1i ,

followed by their NPC. By analysis of two permutation structures (see Remark 1, 2.7), it is easy
to show that, in the null hypothesis, the joint distribution of two partial tests depends only on
exchangeable errors, so that partial and combined permutation tests are all exact. Furthermore,
the same analysis shows that two partial tests are marginally unbiased because both marginal
distributions are ordered with respect to treatment effect. In order to see this, let us focus on
one permutation in which ν∗ elements are randomly exchanged between two groups, so that, in
accordance with the pointwise representation and with obvious notation, we jointly have

T ∗1 (�) =
∑
i

(µ+�∗1i + Z∗1i) ≥ T ∗1 (0) =
∑
i

(µ+ Z∗1i)

and

T ∗2 (�) =
∑
i

(µ+�∗1i + Z∗1i)
2 ≥ T ∗2 (0) =

∑
i

(µ+ Z∗1i )
2,

because in both statistics there are ν∗ elements where �∗1i = 0 and n1 − ν∗ where �∗1i ≥ 0.
Thus, the NPC gives a proper solution. Note that if in Example 1 above we only consider

two variables Y = +√X and Y 2 = X, we may have one simple example of the present problem.
Other examples will be presented in later chapters. One important application is related to the
exact solutions of the univariate Behrens–Fisher problems in experimental situations, in which
the null hypothesis assumes that data are exchangeable between groups (see Example 8). One
more application is to approximate testing for joint equality of locations and scale coefficients (see
Remarks 11 and 12).
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Remark 3. Side-assumptions for multi-aspect testing in problems like those described above
may reflect situations in which treatment is presumed to influence the first two moments in such
a way that the two functionals µ1 and µ2 contain all the information on the effect. This condi-
tion may be appropriate when, in the alternative, all other aspects (moments or functionals) of
the response distribution may be expressed in terms of the first two moments only, as when the
rth moment µr(�) = µr [µ1(�), µ2(�)], for all integers such that µr(�) is finite. This situation
may occur when stochastic effects follow a model such as 0 ≤ � = δ + σ�(δ) ·W , where random
quantities W may depend on errors Z, δ > 0 is the average effect, and σ�(δ) is a scale coefficient
expressed as a function of δ, which satisfies the additional condition σ�(0) = 0. A very partic-
ular case occurs when responses are X1i = µ+ δ + σ · (1+ δσ�) · Z1i , X2i = µ+ σ · Z2i , i =
1, . . . , nj , j = 1, 2, where the scale coefficient on the first group is assumed to be linearly related
to the location fixed effect.

Note that, in this context, all elements which characterize underlying distributions P and that
are not functions of (µ1, µ2) are assumed to be unaffected by treatment. It is also worth noting
that multi-aspect testing does not provide separate tests on effects δ and σ�(δ) since these are
confounded in two partial tests.

Remark 4. The NPC solution discussed can easily be extended to C-sample problems if, together
with the same assumptions for unbiasedness in one-way ANOVA (see Section 1.11), we may
also assume that: (a) response variables are positive; (b) stochastic effects are non-negative and
may act on the first two moments; (c) in the alternative, for every pair j 	= h, j, h = 1, . . . , C,

stochastic effects are pairwise ordered with probability one, so that either �j

d
< �h or �j

d
>�h, and

so, for every x ∈ R1 and pair h 	= j = 1, . . . , C, corresponding CDFs obey either Fj (x) ≤ Fh(x)

or Fj (x) ≥ Fh(x); (d) for every i = 1, . . . , nj and j = 1, . . . , C, responses satisfy the second-

order condition (µ+�ji + Zji)
2 ≥ (µ+ Zji)

2. Under these conditions, the hypotheses H0 : {X1
d=

. . .
d= XC} against H1 : {H0 is not true} become H0 :

{
(µ11 = . . . = µ1C)

⋂
(µ21 = . . . = µ2C)

}
and H1 : {At least one equality is not true}.

In order to deal with this problem, we may first consider the two permutation partial tests,

T ∗1 =
∑

j nj ·
(
X̄∗j
)2

and T ∗2 =
∑

j nj ·
[∑

i

(
X∗ji
)2 /

nj

]2

, followed by their NPC (for marginal

unbiasedness of two partial tests see Problem 20, 4.2.7, and for unbiasedness of the combined
solution see Theorem 3, 4.3.2). Note that T ∗2 corresponds to a one-way ANOVA test on squared
data transformations, Yji = (Xji)

2.

Multivariate extensions to this problem are straightforward.
Let us extend the solution for two-sample dominance problems on positive univariate variables to

k general aspects of interest by means of a multi-aspect strategy . To this end, suppose that the side-
assumptions for the problem are that effects of symbolic treatment may act on k ≥ 2 functionals
ηrj = E[ηr(Xj )], j = 1, 2, r = 1, . . . , k, where ηr are monotonic functions with finite expectation
and none of them is a function of any other. Without loss of generality, let us again assume that
the response model is X1i = µ+�1i + Z1i , X2i = µ+ Z2i , i = 1, . . . , nj , j = 1, 2, where Zji

are exchangeable random errors so that µ+ Zji > 0 in probability, and �1i ≥ 0 are non-negative
stochastic effects which satisfy the additional conditions ηr(µ+�1i + Z1i ) ≥ ηr(µ+ Z1i ), i =
1, . . . , n1, r = 1, . . . , k.

Suppose that the hypotheses to test are H0 : {X1
d= X2} against H1 : {X1

d
>X2} = {X1 −�

d=
X2}. Let us now assume that the set of 2k functionals {ηrj , j = 1, 2, r = 1, . . . , k} contains all
the information on the treatment effect; in particular, we note once again that, in this context, all
elements which characterize underlying distributions P and that are not functions of {ηrj , j =
1, 2, r = 1, . . . , k} are assumed to be unaffected by treatment. Thus, with obvious notation, the
hypotheses become H0 :

{⋂
r (ηr1 = ηr2)

}
and H1 :

{⋃
r (ηr1 >ηr2)

}
, respectively. In order to deal

with this problem, we may first apply k partial permutation tests T ∗r =
∑

i ηr (X
∗
1i ), r = 1, . . . , k,
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followed by their NPC. By analysis of k permutation structures (see Remark 1, 2.7), it is easy
to show that, in the null hypothesis, as the joint distribution of k partial tests depends only
on exchangeable errors, combined and partial tests are all exact; moreover, all partial tests are
marginally unbiased, because related marginal distributions are ordered with respect to treatment
effect. Thus, the NPC gives a proper unbiased solution. This solution may be useful in the case of
multivariate derived variables (see point (i) in Section 4.2.4).

Remark 5. The multi-aspect approach may be applied to multivariate derived variable problems
when, due to the necessity of physical interpretation, we consider two (or more) derived variables
(or functionals) from the entire set of observed responses (see (i) in Section 4.2.4). What is needed
is that partial tests are marginally unbiased. Extension to symmetry testing on one-sample problems,
including paired data (see Example 1, 2.6), is straightforward. A multivariate extension of the latter
is straightforward within the NPC methodology.

It is worth observing that multi-aspect testing and related solutions may be seen as essentially
intermediate between the comparison of two locations and the goodness-of-fit for equality of two
distributions (see Examples 2–4, 2.7). If treatment effects are assumed to act on a finite number k
of functionals, we generally expect multi-aspect tests, solved through NPC, to be more appropriate
and efficient than other nonparametric competitors, especially those based only on goodness-of-fit
methods. In practice, we may see goodness-of-fit procedures as multi-aspect tests in which an
infinite number of aspects are involved, the great majority of effects being of little importance.

In order to illustrate how the multi-aspect procedure works, we turn to the study discussed in
Massaro and Blair (2003) in which the number of breeding yellow-eyed penguin (Megadyptes
antipodes) pairs on Stewart Island (New Zealand), where cats are present, and on adjacent cat-free
islands was compared. They found 79 pairs of yellow-eyed penguins breeding in n = 19 discrete
locations on Stewart Island (4.2 average pairs per location), and 99 pairs breeding in n = 10 discrete
locations on cat-free islands (9.9 average pairs per location). This study suggested that feral cats
can pose a serious threat to penguin offspring on Stewart Island. Data are shown in Table 4.8
(178 pairs and 29 locations/colonies in total).

To compare the numbers of breeding yellow-eyed penguin pairs from the two groups, the authors
performed a bootstrap test using the raw difference of sample means as a test statistic and obtained
a significant result (p = 0.009). However, in this study, there was not only an empirical difference
between the two means, but also between the standard deviations, since the variance was found to be
much smaller on Stewart Island (Neuhäuser, 2007). Here we wish to analyse the same data using
the NPC methodology (instead of the bootstrap test) and applying the multi-aspect procedure,
in order to jointly evaluate location (T ∗µ ) and scatter (T ∗

σ2 ) aspects, which are supposed to be

responsible for the difference between the two groups. The null hypothesis H0 : Y1
d= Y2 implies

the event {E[Y1] = E[Y2]} ∩ {E[Y 2
1 ] = E[Y 2

2 ]
}
. In particular, we have examined the location aspect

by means of a standard t-test on the raw data and the scatter aspect using transformed data (second
moments of Y ). Note that this solution is exact because H0 : Y1

d= Y2, stating the irrelevance of feral

Table 4.8 Observed colony sizes according to
Massaro and Blair (2003, p. 110)

Group (X) Colony sizes (Y )

Stewart Island 7 3 3 7 3 7 3 10 1 7 4 1 3 2 1 2 9 4 2
Cat-free islands 15 32 1 13 14 11 1 3 2 7
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Table 4.9 Location, scatter and global
p-values (Massaro and Blair, 2003, p. 110)

Aspect p-values

T ∗µ 0.01240
T ∗
σ2 0.00345

Global, Tippett (GT ) 0.00623
Global, Liptak (GL) 0.00071
Global, Fisher (GF ) 0.00095
Global G 0.00122

cats, and so the permutation testing principle applies. The main property of the present solution is
that, under the alternative, two aspects are taken into consideration and this entails a gain in power.
It is to be emphasized that this multi-aspect solution provides an exact solution to the well-known
Behrens–Fisher problem when treatment effect, if any, is presumed to act not only on location but
also on dispersion. The Tippett, Fisher and Liptak combining functions were selected in that order.
For details on iterated combinations, see Salmaso and Solari (2006). Results are shown in Table 4.9.
Both the location and scatter aspects are significant, along with all the global tests obtained after
combining the two partial tests related to the aspects (GT , GL, GF ), and the global test G obtained
after combining all the previously combined global tests.

The following MATLAB code was used to carry out the analysis:

B=10000;

[D,data,code]=xlsimport(‘massaroBLAIR’);

reminD(D)

stats={‘t’,‘:Y. ˆ 2’};
[P, T] = NP_2s_MA(‘Y’,‘group’,100000,stats,‘T’,1,1);

pT=P(:,:,3);

pL=NPC(P(:,:,1:2),‘L’,1);

pF=NPC(P(:,:,1:2),‘F’,1);

pT=NPC(P(:,:,1:2),‘T’,1);

globalP=NPC([pT pL pF],‘T’,1);

Below we also provide R code for the same analysis. As stated, this is an example of a two-
sample problem, where two aspects are jointly taken into account: location and scale parameters.
We then use two test statistics related to the first and second moments of data Y :

T ∗µ = Ȳ ∗1 − Ȳ ∗2 , T ∗
σ2 =

1

n1

n1∑
i=1

Y ∗2
i1 −

1

n2

n2∑
i=1

Y ∗2
i2 .

We could also use T ∗
σ2 = s∗2

1 /s∗2
2 , the ratio of permutation variances, as the test statistic, but in R the

computation of the p-value will be done by applying the t2p function, intended for linear statistics
only. Note that the null hypothesis might be rejected when at least one of the aspects considered
is in conflict with the related null hypothesis (not necessarily that on locations), therefore this is
not necessarily a Behrens–Fisher problem (see Example 8 below). The matrix T contains the null
distribution of Tµ (first column) and Tσ2 (second column); ID is the vector of group labels. We use
B = 5000 random permutations.
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setwd("C:/path") ; source(t2p.r)

data<-read.csv("massaroBLAIR.csv",header=TRUE)

B=5000 ; ID = group

T=array(0,dim=c((B+1),2))

T[1,1] = mean(Y[ID==1])-mean(Y[ID==2])

T[1,2] = mean(Y[ID==1] ˆ 2)-mean(Y[ID==2] ˆ 2)

for(bb in 2:(B+1)){

y.star=sample(Y)

T[bb,1] = mean(y.star[ID==1])-mean(y.star[ID==2])

T[bb,2] = mean(y.star[ID==1] ˆ 2)-mean(y.star[ID==2] ˆ 2)
}

P = t2p(abs(T)) ; P[1,]

[1] 0.0136 0.0042

The partial p-values reported above allow us to evaluate the strength of the evidence against the
null hypotheses concerned: here we see that both p-values are significant, but there is more evidence
of discrepancy between the two groups on the second moments (p = 0.0042). In order to obtain a
global p-value, we first apply Fisher’s combining function and then call the t2p function again:

T1 = apply(P,1,function(x){-2*log(prod(x))})

t2p(T1)[1]

[1] 0.0078

The data set and the corresponding software codes are available from the massaro_blair folder
on the book’s website.

Example 4. Testing two-sided alternatives separately .
Within the multi-aspect context one can go somewhat further than traditional two-sided testing by
using the NPC of two one-sided tests. That is, with obvious notation, by employing the following
fourfold procedure:

(i) Let H1 be a global alternative, i.e. H1 : {H+
1

⋃
H−

1 }, where the two sub-alternatives are
H+

1 : {�> 0} and H−
1 : {� < 0}. Of course, it is to be emphasized that in the traditional

two-sided setting one and only one of H+
1 and H−

1 is active.
(ii) The two related partial test statistics are T ∗+ = S1(X∗1)− S2(X∗2), and T ∗− = S2(X∗2)− S1(X∗1),

for the sub-alternatives H+
1 and H−

1 , respectively, where the Sj , j = 1, 2, are proper symmetric
statistics (see Section 2.3).

(iii) Let us use an NPC method on the associated p-values λ+ = Pr{T ∗+ ≥ T o+|X/X} and λ− =
Pr{T ∗− ≥ T o

−|X/X}, such as Tippett’s or Fisher’s.
(iv) Then, according to the theory of multiple testing and closed testing procedures (see Section 5.4),

once H0 is rejected, it is possible to make an inference on which sub-alternative is active, where
it is to be emphasized that the associated error rates such as the FWE are exactly controlled.

Of course, in this framework, a third type of error might occur due to the false acceptance of
one sub-alternative when the other is actually active. In any case, it is worth noting that the
inferential conclusion becomes rather more rich than that offered by a simple two-sided testing
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as in Section 3.1.2. However, it is also worth noting that, since one of these partial tests is not
unbiased, their NPC does not provide this procedure with two-sided unbiasedness.

Example 5. Testing for multi-sided alternatives .
Suppose that for some units in a two-sample design the random effect � is negative and for oth-
ers it is positive, so that Pr {� < 0}> 0 and Pr {�> 0}> 0. On the one hand, such a situation is
essentially different from that of Example 4, in that now two or three sub-hypotheses can be jointly
true in the alternative. Actually, the hypotheses are H0 : {Pr[� = 0] = 1} against H1 : {[(� <

0)
⋃
(�> 0)] and Pr[(� ≤ 0)

⋂
(� ≥ 0)]> 0}, where it is to be emphasized that the two sub-

alternatives H−
1 : {� < 0} and H+

1 : {�> 0} can be jointly active. On the other hand, this situation
may occur, for instance, when a drug treatment can have genetic interaction, in that it is active with
positive effects on some individuals, negative effects on others, and ineffective on the rest. Thus,
starting for instance from an underlying unimodal distribution in H0, the response distribution in
the alternative may become bi- or trimodal. In order to deal with such an unusual situation, we may
first apply two goodness-of-fit tests such as the Kolmogorov–Smirnov T ∗KS+ = maxi≤n[F̂ ∗2 (Xi)−
F̂ ∗1 (Xi)] and T ∗KS− = maxi≤n[F̂ ∗1 (Xi)− F̂ ∗2 (Xi)] and then proceed with their NPC.

In this framework, when working with paired data designs, we guess that it is also possible,
by using a data-driven classification tool, to indicate which units had negative effects and which
had positive. It is worth noting that in multi-sided testing more than two traditional errors may
occur: (i) by rejecting H0 when it is true; (ii) by accepting H0 when is false; (iii) by rejecting
H−

1 : {(� < 0)} when is true; (iv) by rejecting H+
1 : {[(�> 0)} when is true. Error types (ii), (iii)

and (iv) may occur jointly.

Example 6. Testing for non-inferiority .
By using the results in Theorem 2, 3.1.1, it is possible to deal with problems which are quite
common in clinical trials, experimental pharmacology, industrial experimentation, and so on, such

as H0 : {X1
d= X2} against H+

1 : {X1
d
>X2 + δ+}, that is, X1 is superior to X2 by a pre-established

quantity δ+> 0, and if H+
1 is accepted against H−′

1 : {X1
d
>X2 − δ−}, for some pre-established

quantity δ′> 0, that is, X1 is non-inferior to X2 − δ−. The latter, which can easily be extended to
vector variables, generalizes the well-known testing problem of non-inferiority (see Hung et al.,
2003).

Example 7. Testing for monotonic stochastic ordering .
In this example we consider a C-sample univariate problem concerning an experiment
where units are randomly assigned to C groups which are defined according to increasing
levels of a treatment. Moreover, let us assume that responses are quantitative or ordered
categorical, and the related model is {Xji = µ+�ji + Zji, i = 1, . . . , nj , j = 1, . . . , C},
where µ is a population constant, Z are exchangeable random errors with finite mean
value, and �j are the stochastic effects on the j th group. In addition, assume that effects

satisfy the monotonic stochastic ordering condition �1
d≤ . . .

d≤ �C , so that the result-
ing CDFs satisfy F1(t) ≥ . . . ≥ FC(t), ∀t ∈ R1. Testing H0 : {X1

d= . . .
d= XC} = {�1

d=
. . .

d= �C
d= 0} against the alternative with monotonic order restriction H1 : {X1

d≤ . . .
d≤

XC} = {�1
d≤ . . .

d≤ �C}, with at least one strict inequality, is a rather difficult problem. A
parametric exact solution is difficult enough, especially when C > 2, and becomes very difficult, if
not impossible, in multivariate situations. Note that these hypotheses define a problem of isotonic
inference (see Hirotsu, 1998b). A nonparametric rank solution of this kind of problem is given by
the Jonckheere–Terpstra test (see Randles and Wolfe, 1979; Hollander and Wolfe, 1999; see also
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Shorack, 1967; Mansouri, 1990; Nelson, 1992). In the permutation context, this problem can be
tackled in at least two ways.

(i) Let us suppose that responses are quantitative, errors Z have finite mean, E(|Z|) <∞, and
that the design is balanced: nj = n, j = 1, . . . , C. Consider all pairwise comparisons, T ∗jh =
X̄∗j − X̄∗h, j >h = 1, . . . , C − 1, all unbiased for testing the respective partial hypotheses H0jh :

{Xj
d= Xh} against H1jh : {Xj

d
>Xh}; in fact, we may write H0 : {⋂jh H0jh} and H1 : {⋃jh H1jh}.

Application of the direct combining function gives T ∗′′D =∑jh T
∗
jh =

∑
j (2j − C − 1)X̄∗j , which

is nothing other than the covariance between the group ordering j and the related mean X̄∗j . Of

course, it is assumed that the permutations are with respect to the pooled data set X =⊎C
j=1 Xj .

Since all partial tests in H0 are exact, unbiased and consistent, T ∗′′D is exact, unbiased and consistent.
This solution can easily be extended to unbalanced designs. In this context, within homoscedastic-
ity of individual responses and by pairwise comparison of standardized partial tests, we get T ∗′′D =∑

j (2j − C − 1)X̄∗j
√
nj . Its proof and extension to ordered categorical multivariate responses, and

to different combining functions, are left to the reader as exercises.

(ii) Let us imagine that for any j ∈ {1, . . . , C − 1}, the whole data set is split into two pooled
pseudo-groups, where the first is obtained by pooling together data of the first j ordered groups
and the second by pooling the rest. To be more specific, we define first pooled pseudo-group as
Y1(j) = X1

⊎
. . .
⊎

Xj and the second as Y2(j) = Xj+1
⊎

. . .
⊎

XC, j = 1, . . . , C − 1, where
⊎

is the symbol for pooling data into one pseudo-group and Xj = {Xji, i = 1, . . . , nj } is the data
set in the j th group.

In the null hypothesis, data from every pair of pseudo-groups are exchangeable because related
pooled variables satisfy the relationships Y1(j)

d= Y2(j), j = 1, . . . , C − 1. In the alternative we see

that Y1(j)
d≤ Y2(j), which corresponds to the monotonic stochastic ordering (dominance) between

any pair of pseudo-groups. This suggests that we express the hypotheses in the equivalent form

H0 :
{⋂

j (Y1(j)
d= Y2(j))

}
and H1 :

{⋃
j (Y1(j)

d≤ Y2(j))
}
, emphasizing a breakdown into a set of

sub-hypotheses.

Consider the j th sub-hypotheses H0j : {Y1(j)
d= Y2(j)} and H1j : {Y1(j)

d≤ Y2(j)}. We note that the
related sub-problem corresponds to a two-sample comparison for restricted alternatives, a problem
which has an exact and unbiased permutation solution (see Section 3.1). This solution is based on
the test statistics T ∗j =

∑
1≤i≤N2(j)

Y ∗2(j)i , where N2(j) =
∑

r > j nr is the sample size of Y2(j).
Thus, a set of suitable partial tests for the problem is {T ∗j , j = 1, . . . , C − 1}. Therefore, since

these partial tests are all exact, marginally unbiased and consistent, their NPC provides for an exact
overall solution. It is worth noting that partial tests T ∗j , j = 1, . . . , C − 1, generally do not play the
role of marginal tests because permutations are on the whole pooled data set X. Some application
examples are discussed in Chapter 8.

Remark 6. If we may assume that stochastic effects act on the first two moments of the underlying
distributions and our inferential interest is in both aspects, then we may also calculate partial
tests on second moments, T ∗2j =

∑
1≤i≤N2(j)

[Y ∗2(j)i]
2, j = 1, . . . , C − 1, and combine all 2(C − 1)

partial tests (see Example 3 above). This problem may be seen as one of multi-aspect monotonic
inference.

Remark 7. The problem of monotonic inference may be extended to V -dimensional situations
in a straightforward way. Let us suppose that the responses and related model are now {Xhji =
µh +�hji + Zhji, i = 1, . . . , nj , j = 1, . . . , C, h = 1, . . . , V }, where �hj are random effects on
the hth variable of the j th group and Z are V -dimensional exchangeable errors.

Let us assume that random effects satisfy the V -dimensional ordering condition: �1
d≤ . . .

d≤
�C . This means that for any pair 1 ≤ j < r ≤ C, �j

d≤ �r implies (�hj

d≤ �hr, h = 1, . . . , V ).
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We may call this the componentwise ordering (see Sampson and Whitaker, 1989). Again, let
us imagine that the whole data set is split into two pseudo-groups: Y1(j) = X1

⊎
. . .
⊎

Xj and
Y2(j) = Xj+1

⊎
. . .
⊎

XC, j = 1, . . . , C − 1. Note that data vectors of these two pseudo-groups
are exchangeable in the null hypothesis. This suggests breaking the hypotheses down into H0 :

{⋂j [
⋂

h Yh1(j)
d= Yh2(j)]} and H1 : {⋃j [

⋃
h Yh1(j)

d≤ Yh1(j)]}.
In order to deal with this problem, let us consider the V (C − 1) partial tests

T ∗hj =
∑

1≤i≤N2(j)
Y ∗h2(j)i , j = 1, . . . , C − 1, h = 1, . . . , V . Since all these partial tests are

exact and marginally unbiased and consistent, their NPC provides the required solution.
Note that the parametric solution of this multivariate isotonic inference is much more difficult

than in the univariate case and no such solution is yet available in the literature.
A discussion of a similar problem, in a context of multivariate ordered categorical responses,

is presented in Section 6.5. Two more applications are suggested in Example 8 in the context of
an exact solution for the restricted multivariate Behrens–Fisher problem, and in Chapter 7 in the
context of testing for stochastic ordering with repeated measurements.

Remark 8. An extension to so-called umbrella alternatives is discussed in Section 8.2.

Example 8. Testing for the Behrens–Fisher problem .
The well-known Behrens–Fisher problem is concerned with the comparison of locations of two
distributions irrespective of scale coefficients, H0 : {µ1 = µ2} against H1 : {µ1 < (or 	= or >)µ2}.
Within the general family of Behrens–Fisher problems we may distinguish two main sub-families.
The first contains problems for which we may assume that in the null hypothesis data are exchange-
able with respect to two groups but are non-homoscedastic in the alternative. Most experimental
designs in which units are randomly assigned to treatments and the effect may be assumed to be not
only on locations but also on scale coefficients or on other functionals, fall within this sub-family
(see Section 2.1.1). The second contains all other problems, especially those for which variances
may differ in the null hypothesis. For instance, responses in some observational studies may fall
within this sub-family. We may call these two sub-families of problems the restricted and the
generalized Behrens–Fisher , respectively.

It is well known that when responses are normally distributed there exists no exact parametric
solution for the general problem; in particular, no solutions based on the similarity property are
possible (see Pfanzagl, 1974), except for that given by Scheffé (1943c) which uses an auxiliary
randomization approach. However, for experimental designs producing stochastic dominance in the
alternative, so that they belong to the restricted sub-family, we may consider that treatments have
influence not only on locations but also on scale coefficients or on other functionals. Thus if multi-
aspect testing is applied, we can obtain exact and effective permutation solutions using the NPC
method (see Example 3 above). In this sense and from a pragmatic point of view the restricted sub-
family covers the most important practical situations. The general sub-family, which admits only
approximate solutions, appears somewhat academic and of interest only when the exchangeability
of data with respect to groups cannot be assumed in H0 or when responses in the alternative are
not stochastically ordered and we are interested only in comparing locations. In the literature there
are a large number of contributions to this very challenging problem; we discuss here only three
univariate permutation solutions, one approximate solution using the Aspin–Welch statistic and two
that use the multi-aspect procedure. One of the two multi-aspect solutions is exact for the restricted
sub-family and one is approximate for the generalized one. A full discussion of the univariate and
multivariate permutation solutions can be found in Pesarin (1995, 2001).

Let us consider an example from Johnson and Leone (1964, Vol. I, p. 226) concerning the
percentage shrinkage of synthetic fibres measured at two temperatures: I, with 12 units at 120◦C;
and II, with 10 units at 140◦C. The two-sample data X = {Xji, i = 1, . . . , nj , j = 1, 2} are dis-
played in Table 4.10. We may assume that the two scale coefficients are possibly unequal in
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Table 4.10 Percentage shrinkage of synthetic
fibres (Johnson and Leone, 1964)

I II
3.45 3.62 3.60 3.72 4.01 3.54
3.49 3.64 3.56 3.67 4.03 3.40
3.52 3.53 3.57 3.96 3.60 3.76
3.44 3.56 3.43 3.91

the alternative and that the underlying distributions may not be normal. The problem is to
examine whether, at α = 0.01, the distribution of percentage shrinkage at 140◦C is stochasti-
cally larger than that at 120◦C. A first approximate solution can be obtained by applying the
well-known Aspin–Welch statistics in the permutation framework. With B = 2000 CMC iterations
we obtain λ̂AW = 0.0075 for T ∗AW = (X̄∗1 − X̄∗2)/σ̂

∗
E , where the permutations are on data X and

σ̂ ∗E = [
∑

ji(X
∗
ji − X̄∗j )

2/(nj (nj − 1))]1/2. This result is significant at α = 0.01 and substantially in
accordance with that of the parametric Aspin–Welch test (t = −3.20 with approximately 11 d.f.:
t0.005;11 = −3.106).

To obtain an exact solution, let us observe that in this problem units are randomly assigned to
treatments and so the two distributions and in particular the scale coefficients can be assumed to be
equal in H0, thus it looks like a typical experimental design. If we expect that, in the alternative,
the treatments may act on the first two moments, provided that a stochastic dominance relation

X1
d
< X2 is assumed, then we may apply a multi-aspect testing procedure. This interpretation is

consistent with the idea that if temperature has no influence on fibre shrinkage, as H0 asserts, then
the two distributions are equal; conversely, in the alternative the distribution at 140◦C is expected
to dominate that at 120◦C.

Again with B = 2000 CMC iterations on two partial tests T ∗r =
∑

i (X
∗
2i )

r , r = 1, 2, the first
for comparing locations and the second for second moments, we obtain λ̂1 = 0.0019, λ̂2 = 0.0016
and λ̂′′ = 0.0015, respectively for the two partial tests and the combined test, the latter obtained
by a direct combining function on standardized partial tests. It is worth noting that this solution
gives a p-value lower than both the permutation and parametric approximate counterparts. Also
note that, as both partial tests are exact and consistent having assumed that E(|X|) is finite, in these
circumstances multi-aspect testing gives an exact and consistent solution.

To see a solution for the generalized problem, let us assume that each underlying distribution
Pj is symmetric with respect to µj , j = 1, 2, with unknown scale coefficients σj . Thus, both
distributions of Yj = (Xj − µ), j = 1, 2, are symmetrically distributed around zero if and only if
H0 : {µ1 = µ2 = µ} is true. Moreover, the distributions of Yj = (Xj − X̃), j = 1, 2, conditional
on the pooled median X̃, defined as X̃ = (X(n/2) +X(1+n/2))/2 if n is even and as X̃ = X((n+1)/2)

if n is odd, X(i) indicating the ith order statistic, are such that

Pr{Yj < −z|X̃ = −t} = Pr{Yj > z|X̃ = t}, ∀z, t ∈ R1.

Hence they are mutually symmetric. In practice, they are only slightly asymmetric around zero
and their asymmetry vanishes as sample sizes increase. Accordingly, we may recall the main
points of a proper permutation solution for univariate symmetric distributions as discussed in
Example 1, 2.6. The reasons for a proper solution are graphically illustrated in Figure 4.3. Univariate
hypotheses may be equivalently written as H0 : {(Y1 is symmetric around 0)

⋂
(Y2 is symmetric

around 0)} = {H01
⋂

H02} and H1 : {H01
⋃

H02}.
It is worth noting that in the generalized Behrens–Fisher problem, two symmetric distributions

may be rather different. For instance, P1 may be unimodal and P2 multimodal.
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Figure 4.3 Comparisons of two symmetric distributions in H0 and H1

The distributions of the Yj in H0 are invariant with respect to the common location parameter
µ, but they depend on scale coefficients σj and generally on underlying distributions Pj , j =
1, 2. Hence, in order to avoid this dependence, we may work within a permutation approach by
conditioning with respect to a set of jointly sufficient statistics in H0. This set is the pair of data
groups (X1;X2), in which data can only be permuted within groups, the permutation sample space
being X/X1 × X/X2 (see Remark 4, 2.1.2 and Problem 15, 4.6.1). Equivalently, another jointly
sufficient set of statistics is (X̃;Y1;Y2), because X̃ is a permutation invariant quantity (see point
(ii) in Remark 2, 2.1.2). The set (X̃; |Y1|; |Y2|) may also be regarded as a set of sufficient statistics
for the problem, but only in the univariate case (see Problems 16 and 17, 4.6.1).

Hence, in order to test H0 against H1 it is appropriate to first establish two separate partial tests
of symmetry, one from each sample, followed by a suitable combination. A pair of conditional
permutation tests for separately testing symmetry conditionally on (X1;X2), in accordance with the
theory of permutation testing for symmetry (see Example 1, 2.6), may be

T ∗j =
nj∑
i=1

Yji · S∗ji/nj , j = 1, 2,

where the random signs S∗ = {S∗ji; i = 1, . . . , nj , j = 1, 2, } can be regarded as a random sample
of n i.i.d. observations from variable S, taking values −1 and +1, each with probability 1/2. It
should be noted that, conditionally on (X1;X2), the two partial tests are independent, because their
joint permutation distribution is generated by independent signs and the Y play the role of fixed
coefficients.

In H0, being based on sample deviates Y (formally these are residuals), the permutation distri-
butions of tests T ∗j are µ-invariant. Moreover, due to conditioning on sufficient statistics, they are
(σ1, σ2)-invariant in H0 and H1, because these are constant coefficients within each data group.
In addition, we note that conditioning on (X̃;Y1;Y2) implies that the conditional distributions of
(Yj |X̃) are not exactly symmetric around zero, so that test statistics T ∗j are only approximately
exact for testing symmetry. This approximation is due to the fact that the Y are residuals, so
that even within groups they are not completely independent with respect to units and exact joint
exchangeability therefore fails. However, this approximation is generally quite good even for small
sample sizes (see Pesarin, 1995, 2001).

At this stage, we may combine two partial tests by using the theory of combination of independent
tests, or we can use NPC.

One such combination function, deduced by taking into consideration its asymptotic behaviour, is
�∗ = ϕ(T ∗2 − T ∗1 ), where ϕ(·) corresponds to +(·), −(·) or the absolute value | · | respectively for
alternatives corresponding to ‘<’, ‘>’ or ‘ 	=’. Our preference for this direct form of combination is
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also due to the fact that the permutation mean value of �∗ is not dependent on µ− X̃, so that the
average distortion of �∗ induced by considering residuals with respect to X̃ vanishes. In practice,
as both underlying distributions are symmetric by assumption, each partial test plays the role of
a test for location (see Section 1.9). In fact, the response model being Xji = µj + σjZji, i =
1, . . . , nj , j = 1, 2, the model for observed values of the j th partial statistic is Tj = δj + σj Z̄j ·,
where δj = (µj − µ) and Z̄j · =

∑
i Zji/nj . Thus, T2 − T1 = (µ2 − µ1)+ σ2Z̄2· − σ1Z̄1·.

The permutation sample space X/(X1;X2) and, if there are no ties, the permutation support of �∗
both contain 2n points.

Let us denote the p-value of � by

λ = λ(X1;X2) = Pr{�∗ ≥ �o|X/(X1;X2)},

where the observed value is �o = �(X) = ϕ(�iY2i/n2 −�iY1i/n1). According to standard infer-
ential rules, H0 is rejected at significance level α if λ ≤ α.

For practical purposes, the evaluation of λ may be tackled using the algorithm in Section 1.9.3. On
the data of the example and with B = 2000 CMC iterations, we obtain λ̂� = 0.0031, a result which
is slightly larger than the exact multi-aspect test λ̂′′ obtained under the assumption of stochastic
dominance of P2 with respect to P1 in the alternative.

Although conditioning on (X1;X2) leads to an approximate solution, the null distribution of �∗
T

is very close to being (σ1; σ2)-invariant for all (n1; n2) so that it can be named almost exact (see
Pesarin, 1995).

When underlying responses are asymmetrically distributed around their locations, we found in
several Monte Carlo experiments that � becomes slightly conservative. In order to overcome this
slight drawback, we suggest the use of data transformations in order to symmetrize the responses
before proceeding with the analysis (see Example 1, 2.6).

In order to show the asymptotic behaviour of �∗, let us assume that: (i) response variables Xj

have finite location and scale parameters (µj , σj ), j = 1, 2; (ii) as sample sizes diverge, the ratio
ζ = n2/n1 converges to a positive number ζ̃ ; (iii) as n diverges, the pooled median X̃ converges
weakly or strongly, according to the properties of underlying distributions Pj , j = 1, 2, towards
the pooled population location functional µ. Under these assumptions, �∗

T is permutationally
equivalent to

�∗
Z =

ϕ(
∑

i Y2iS
∗
2i/n2 −

∑
i Y1iS

∗
1i/n1)[∑

i Y
2
2i/n

2
2 +

∑
i Y

2
1i/n

2
1 − (µ2 − X̃)2/n2 − (µ1 − X̃)2/n1

]1/2 ,

since the two statistics are related by an increasing one-to-one relationship with probability one,
the denominator being a permutation constant (which is positive with probability one in the sample
space X).

Now, as n1 and n2 go independently to infinity, Slutsky’s well-known theorem says that the two
quantities ∑

i (Xji − µj )
2 + nj (µj − µ)2∑
i Y

2
ji

, j = 1, 2,

both converge to 1 weakly or strongly, depending on how X̃ converges to µ. Let us now denote
by �µ the test statistic for comparing two means when variances are known, the observed value
of which is

�µ(X) = ϕ(X̄2 − X̄1)

(σ 2
2 /n2 + σ 2

1 /n1)1/2
,
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where the role of the whole data set X is emphasized. Hence, as n goes to infinity, the observed
values of the two test statistics �µ(X) and

�Z(X) = ϕ(Ȳ2 − Ȳ1){∑
j

[∑
i Y

2
ji/n

2
j − (µj − X̃)2/nj

]}1/2 ,

where Ȳj = Tj , are such that, for every ε > 0,

Pr{|�Z(X)−�µ(X)| < ε} → 1,

weakly or strongly. Hence, the two tests are asymptotically equivalent for almost all X ∈ X, in H0

and H1.
This is the main argument in proving the following theorem:

Theorem 13. If �µ is asymptotically ‘optimal’ in some sense (UMP or UMPU, depending on
alternatives), then �Z , being convergent to �µ, is asymptotically optimal in the same sense.

As a special case, we also have the following corollary:

Corollary 6. If response variables are normally distributed, then �µ is an ‘optimal’ test, and �Z ,
being asymptotically equivalent to it, is also asymptotically optimal .

The result of Corollary 6 shows that the asymptotic relative efficiency of � or �Z with respect to
�µ is 1 under the assumption of normality.

Extensions to C > 2 samples and to multivariate situations are straightforward within the NPC
methodology (see Pesarin, 2001).

Remark 9. Monte Carlo evaluations of the stability of the permutation distribution of �, as well
as evaluation of its power behaviour with respect to �µ, under both normality and knowledge of
σ1 and σ2, are reported in Pesarin (1995).

From these results, we may argue that its stability with respect to σ1/σ2 and n1/n2 is very good
in all conditions, even when both are quite far from unity. Moreover, test convergence with respect
to �µ is quite fast: in practice, for n1 ≥ n2 > 50, the two tests are almost indistinguishable by
means of Monte Carlo simulations.

Remark 10. By using the foregoing results together with that of Example 10, 2.7 on testing for
equality of two scale coefficients, we may deal with the problem of approximate joint testing for
location and scale coefficients. Indeed, again with reference to univariate response models such as
Xji = µj + σjZji, i = 1, . . . , nj , j = 1, 2, let us suppose that the hypotheses are H0 : {(µ1 =
µ2)

⋂
(σ1 = σ2)} = H0µ

⋂
H0σ , against alternatives such as H1 : {(µ1 < 	= >µ2)

⋃
(σ1 < 	= >σ2)}.

This problem may be tackled by means of two separate tests, both consistent and approximately
unbiased. The first involves testing the equality of locations irrespective of scales, as above for
the Behrens–Fisher. The second tests the equality of scale coefficients irrespective of locations.
Note that both tests are approximately marginally unbiased, irrespective of whether the other null
hypothesis is true or not. Specifically, the two test statistics are (with obvious notation) T ∗µ =
ϕµ(T

∗
1 − T ∗2 ) and T ∗σ = ϕσ

(∑
i Y

∗2
1i /n1 −

∑
i Y

∗2
2i /n2

)
, where ϕ·(·) stands for −(·) if the alternative

is <, for +(·) if > and for | · | if 	=.
Note that the permutation signs S∗, useful for T ∗µ , are completely independent among them-

selves and independent of the observed data; thus, they are also independent of permutations of
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sample deviates Y∗, useful for obtaining T ∗σ . This implies that the two test statistics are at least
approximately independent conditionally. Hence, their combination may be obtained by recourse
to standard theory and methods for the combination of independent tests.

The multivariate extension of this problem is straightforward.

Remark 11. Let us assume that, in an experimental design (and with obvious notation), the
model for positive responses is Xji = µ+ δj + σ(δj )Zji, i = 1, . . . , nj , j = 1, 2, with 0 = δ1 ≤
δ2 and σ(0) ≤ σ(δ2), so that two population distributions satisfy the stochastic dominance relation
F1(t) ≤ F2(t), ∀t ∈ R1. As these assumptions imply that, in the alternative, the two conditions
E(X1) ≤ E(X2) and E(X2

1) ≤ E(X2
2) are jointly satisfied, then the problem of jointly testing for

location and scale coefficients may be tackled within a multi-aspect testing method (see Example 3).
Hence, two partial tests may be, for instance, T ∗1 =

∑
i X

∗
2i and T ∗2 =

∑
i (X

∗
2i )

2, or permutational
equivalents. The reader should prove that, under these conditions, this procedure gives an exact,
unbiased and consistent solution for jointly testing for location and scale coefficients (see Problems
11–13, 4.6.1).

Example 9. A real example for comparison of two species of flies .
In this example we have two samples, one from each of two species of flies (Leptoconops carteri
and Leptoconops torrens) and seven variables have been measured (Johnson and Wichern, 2007).
We wish to test for the restricted alternative,

H1 :


 ⋃

1≤h≤6

(µ1h < µ2h)

⋃(µ17 >µ27)

 ,

where µjh is the mean of the hth variable in group j, j = 1, 2, h = 1, . . . , 7. This can be done
by carrying out one partial test for each variable (according to the related alternative), and then by
combining the partial tests into a global test. A vector of contrasts will again be useful in obtaining
the test statistic T ∗h = x̄∗2h − x̄∗1h. The first column of the data set contains an indicator variable of
the species (1 = L. carteri , 2 = L. torrens). Since the t2p function follows the large-is-significant
rule, we must change the signs of the permutation distribution of T ∗7 before obtaining the partial
p-value of X7.

setwd("C:/path")

data = read.csv("Fly.csv",header=TRUE)

N = dim(data)[1] ; p = dim(data)[2]-1

n = table (data[,1]); B = 10000;

contr = as.vector(rep(c(-1/n[1],1/n[2]),each=n))

data = as.matrix(data[,-1])

T<-array(0,dim=c((B+1),p))

T[1,] = t(contr)%*%data

for(bb in 2:(B+1)){

data.star = data[sample(1:N),]

T[bb,] = t(contr)%*%data.star

}

T[,7] = -T[,7]

P = t2p(T)

partial.p = P[1,] ; names(partial.p) = colnames(data);

round(partial.p,digits=4)
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X1 X2 X3 X4 X5 X6 X7

0.0248 0.2303 0.0000 0.3665 0.0000 0.3953 0.0619

The vector partial.p contains the partial p-values of each variable. The matrix P contains
the null distribution of partial p-values. As a result X1, X3 and X5 are strongly significant and
X7 is moderately non-significant. We combine the partial tests with the Fisher, Liptak and Tippett
combining functions. Note that if Tippett’s combining function is applied, the rule is small is
significant , therefore we run the t2p function on the inverse of the vector containing Tippett’s
combination of the rows of P.

F = apply(P,1,function(x){-2*log(prod(x))})

L = apply(P,1,function(x){sum(qnorm(1-x))})

T = apply(P,1,min)

P.F = t2p(F); P.L = t2p(L) ; P.T = t2p(1/T);

globs = c(P.F[1],P.L[1],P.T[1])

names(globs) = c("Fisher","Liptak","Tippett")

globs

Fisher Liptak Tippett

0.00009999 0.00019998 0.00059994

The corresponding MATLAB code is given below:

D=textimport(‘Fly.csv’,’,’,1);

reminD(D)

[P T opts] = NP_2s({‘X1’,‘X2’,‘X3’,‘X4’,‘X5’,‘X6’,‘X7’},

‘group’,1000,[1 1 1 1 1 1 -1 ]);

P2=NPC(P,‘F’);

P2=NPC(P,‘L’);

P2=NPC(P,‘T’);

The data set and the corresponding software codes are available from the examples_chapters

_1-4 folder on the book’s website.

4.6.1 Problems and Exercises

1) With reference to Example 8, 4.6, discuss a solution to the testing problem for two-sample
designs when V(X1) = σ 2(δ) and σ 2(0) = σ 2. In particular, distinguish between two situations:
(a) in the alternative the two CDFs do not cross; and (b) the two CDFs can cross.

2) With reference to point (iv) in Remark 2, 2.1.2 and Examples 11, 2.7 and 8, 4.6, discuss a
testing solution when covariates X are assumed not exchangeable in H0 between two groups and
in particular when regression functions β1 and β2 cannot be assumed to be equal (show that this
becomes a sort of Behrens–Fisher MANCOVA).

3) Extend the results of Examples 1 and 2, 4.6, to Fisher, Liptak and Tippett combining functions.

4) Extend the results of Examples 3 and 5, 4.6, to Fisher, Liptak and Tippett combining functions.

5) With reference to point (i) of Example 7, 4.6, on stochastic ordering, extend the given solution
to Fisher, Liptak and Tippett combining functions.

6) Extend the approximate permutation solutions of Example 8, 4.6 to C > 2 groups.

7) Express the approximate permutation solutions of Example 8, 4.6 by using sample medians.
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8) Find an approximate permutation procedure for evaluating a 1− α confidence interval for the
functional δ = E(X1 −X2) within the univariate Behrens–Fisher framework.

9) With reference to Example 8, 4.6, give detailed extensions of approximate multivariate permu-
tation solutions for the Behrens–Fisher problem.

10) Discuss how to find approximate confidence intervals for δ = σ2/σ1, in accordance with the
test for scale coefficients discussed in Example 10, 2.7.

11) Discuss the details of the multivariate extension of the joint test for locations and scale coeffi-
cients (Remark 11, 4.6).

12) Prove the statement of Remark 11, 4.6.

13) Extend the solution in Remark 11, 4.6, to V -dimensional problems.

14) With reference to the generalized Behrens–Fisher problem, prove that pooled data set X1
⊎

X2

is not a set of sufficient statistics.

15) With reference to Problem 14 above, prove that the pair of data groups (X1;X2), in which no
data can be exchanged between two groups, is a set of sufficient statistics in the Behrens–Fisher
context.

16) With reference to the generalized one-dimensional Behrens–Fisher problem, prove that if X̃ is
the pooled median (see Example 8, 4.6) then (X̃;Y1;Y2) and (X̃; |Y1|; |Y2|) are sets of sufficient
statistics both equivalent to (X1;X2).

17) With reference to Problems 15 and 16 above, extend the results to multivariate situations and
show that (X̃; |Y1|; |Y2|) is not a set of sufficient statistics.

18) With reference to the testing for the equality of scale coefficients in Example 10, 2.7 for univari-
ate situations, show that the pair of data groups (X1;X2) is a set of sufficient statistics. Also show
that (X̄1; X̄2;Y1;Y2), where Yj = {Yji = Xji − X̄j , i = 1, . . . , nj } and X̄j =

∑
i Xji/nj , j =

1, 2, is a set of sufficient statistics because there is a one-to-one relationship between two sets.

19) Give a formal proof that the solution of the restricted multivariate Behrens–Fisher problem is
exact when multi-aspect testing (see Example 3, 4.6) is used.

20) Give a formal proof that the solution presented in Example 4, 4.6, related to the testing for
two-sided alternatives separately, is consistent.

21) Give a formal proof that the solution presented in Example 5, 4.6, related to the testing for
multi-sided alternatives, is consistent.

22) Give details of a permutation solution for non-inferiority testing presented in Example 6, 4.6.

4.7 Comments on the Nonparametric Combination

4.7.1 General Comments

The NPC of dependent permutation partial tests is a method for the combination of significance
levels, that is, of rejection probabilities. In contrast, most parametric tests, based for instance on
likelihood ratio behaviour, essentially combine discrepancy measures usually expressed by point
distances in the sample space X. In this sense, the NPC method appears to be a substantial extension
of standard parametric approaches. From the next chapter onwards, we shall show that the NPC
method is suitable and effective for many multivariate testing problems which, in a parametric
framework, are very difficult or even impossible to solve.

As the NPC method is conditional on a set of sufficient statistics, it exhibits good general power
behaviour (see Chapters 7–11 to appreciate its versatility and to evaluate unconditional power
behaviour in some situations). Monte Carlo experiments, reported in Pesarin (1988, 1989, 1992,
1994, 1995, 1996a, 1996b, 2001), Ballin and Pesarin (1990) and Celant et al. (2000a, 2000b), show
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that the Fisher, Liptak or direct combining functions often have power functions which are quite
close to the best parametric counterparts, even for moderate sample sizes. Thus, NPC tests are
relatively efficient and much less demanding in terms of underlying assumptions with respect to
parametric competitors.

In addition, the Fisher, Liptak, Lancaster, Tippett and direct combining functions for NPC are
not at all affected by the functional analogue of multicollinearity among partial tests; indeed, the
combination only results in a kind of implicit weighting of partial tests. In order to illustrate this,
let us suppose that within a set of k partial tests, the first two are related with probability one,
so that T1

p= T2, and that Fisher, Liptak or direct combining functions are used. Thus, denoting
− log(λ̂i), �−1(1− λ̂i ) or Ti by ϕi , for the Fisher, Liptak and direct combining functions respec-
tively, the combined test becomes T ′′ϕ = 2ϕ1 +

∑
3≤i≤k ϕi , which is a special case of an unbounded,

convex, weighted linear combination function (see (f) in Section 4.2.4). Thus these solutions belong
to C because they satisfy all the conditions of Section 4.2.

Of course, when a quadratic combining function is used, the matrix R∗ must be positive definite
(see Remark 3, 4.2.4). Thus, in order to obtain a computable function, we must avoid linear
relationships with probability one among partial tests in this situation. However, except for the
quadratic form, possible functional analogues of multicollinearity do not give rise to computational
problems in NPC methods. In this sense, problems in which the number V of component variables
is larger than the number n of subjects are generally easy to solve, provided that the conditions of
Sections 4.1.3, 4.2.1 and 4.2.2 are satisfied.

4.7.2 Final Remarks

Except for the direct combining function, NPC procedures require intensive computation in order
to find sufficiently accurate Monte Carlo estimates of the k-dimensional permutation distribution of
partial tests and combined p-value. The availability of fast and relatively inexpensive computers,
and of efficient software, makes the procedure effective and practical.

Although intensive computation is seldom avoidable, when the multivariate permutation CDF
F(t|X/X) is available, by exact or approximate calculations (see Ives, 1976; Gail and Mantel, 1977;
Mehta and Patel, 1980, 1983, 1999; Mielke and Iyer, 1982; Berry, 1982; Pagano and Tritchler, 1983;
Berry and Mielke, 1983, 1984, 1985; Mehta et al., 1985, 1988a, 1988b; Zimmerman, 1985a, b; Berry
et al., 1986; Lock, 1986; Spino and Pagano 1991; Mielke and Berry, 2007), Edgeworth expansions,
saddlepoint approximations (Barndorff-Nielsen and Cox, 1979; Robinson, 1980, 1982; Davison
and Hinkley, 1988; Boos and Brownie, 1989), CLTs, empirical likelihood methods, sequential
approximations (Lock, 1991), or inversion of characteristic functions or Fourier transformations
(Barabesi, 1998, 2000, 2001), etc., then more direct solutions may be used.

One major feature of the NPC of dependent tests, provided that the permutation principle applies,
is that we must pay attention to a set of partial tests, each appropriate for the related sub-hypotheses,
because the underlying dependence relations are nonparametrically and implicitly captured by the
combining procedure. In particular, the researcher is not explicitly required to specify the depen-
dence structure on response variables. This aspect is of great importance especially for non-normal
and categorical variables in which dependence relations are generally too difficult to define and,
even when well defined, are too hard to cope with (see Joe, 1997). The researcher is only required to
make sure that all partial tests are marginally unbiased (see Remark 1, 4.2.1), a sufficient condition
which is generally easy to check.

In Section 4.1 it was emphasized that the NPC procedure may be effective when one overall
test is not directly available. In such a situation it is usually convenient to analyse data by firstly
examining a set of k partial aspects each interesting in a marginal sense, and then combining all
captured information, provided that side-assumptions allow for proper breakdown of hypotheses
and the k partial tests are marginally unbiased. In principle it is possible to apply a proper single
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overall permutation procedure directly, if it were known, and then avoid the combination step. But
in most complex situations such a single test is not directly available, or is not easy to justify, or
it is useful to obtain separate tests within multiplicity control of inferential errors and in doing so
enrich the study result.

In a way the NPC procedure for dependent tests may be viewed as a two-phase testing procedure.
The first phase involves a simulation from the permutation sample space X/X by means of a CMC
method based on B iterations, to estimate L(t|X/X). The second combines the estimated p-values
of partial tests into an estimate of the overall p-value λ′′ by using the same CMC results in the
first phase. Of course, the two phases are jointly processed, so that the procedure always remains
multivariate in its own right. Furthermore, in the presence of a stratification variable, through a
multi-phase procedure, the NPC allows for quite flexible solutions. For instance, we may first
combine partial tests with respect to variables within each stratum, and then combine the combined
tests with respect to strata. Alternatively, we may first combine partial tests related to each variable
with respect to strata, and then combine the combined tests with respect to variables. In this
respect, the nonparametric componentwise analysis (POSET method) – as suggested for instance,
by Rosenbaum (2002) – can only permit the overall solution and nothing can be said as regards
the stratified partial analyses.

As a final remark, from a general point of view and under very mild conditions, the NPC method
may be regarded as a way of reducing the degree of complexity of most testing problems.





5
Multiplicity Control
and Closed Testing
In many modern investigations (econometrics, biostatistics, machine learning, etc.) several thousand
hypotheses may be of interest and, as a consequence, may be tested. In such cases, the problem of
multiplicity control arises whenever the number of hypotheses to be tested is greater than one. With
reference to this problem, two major issues may be identified: multiple comparisons and multiple
testing problems. We start by defining raw and adjusted p-values, and then present a brief overview
of multiple comparison procedures (MCPs) along with some definitions of the global type I error.
Our main focus is on closed testing procedures for multiple comparisons and multiple testing. Some
hints are also given with reference to weighted methods for controlling FWE and FDR, adjustment
of stepwise p-values, and optimal subset procedures. While a detailed treatment of MCP issues is
beyond the scope of this chapter, our goal is to give some hints, to discuss the basics, thus making
the reader comfortable with the notion of multiplicity adjustment via closed testing performed
when carrying out the analyses from real data sets by means of permutation combination-based
tests. Recent developments in the field of MCPs are discussed, for example, in the papers by Bretz
et al. (2009), Calian et al. (2008), Sonnemann (2008) and Westfall and Troendle (2008). We also
refer the reader to those papers and references therein for a specialized discussion on multiplicity
procedures within the permutation approach.

5.1 Defining Raw and Adjusted p-Values
Along with a raw (unadjusted) p-value, on many occasions it is recommended to calculate an
adjusted p-value λ̃j , j = 1, . . . , k, for each test of H0j against H1j , so the decision to reject H0j

at FWE = α is obtained merely by noting whether λ̃j ≤ α. Analogously to the definition of an
ordinary unadjusted p-value, an adjusted p-value is defined as

λ̃j = inf {α|H0i is rejected at FWE = α} .

Hence, λ̃j is the smallest significance level for which we still reject H0j , given a particular simul-
taneous procedure. Multiplicity-adjusted p-values of various forms have been considered by Shafer
and Olkin (1983), Farrar and Crump (1988), Heyse and Rom (1988), Westfall and Young (1989)
and Dunnett and Tamhane (1992). Alternatively, tabled critical values to accept or reject the null
hypothesis (Westfall and Young, 1993) are commonly used to perform multiple testing.

Permutation Tests for Complex Data: Theory, Applications and Software Fortunato Pesarin, Luigi Salmaso
 2010, John Wiley & Sons, Ltd
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The concepts of raw and adjusted p-values are mathematically well defined in Dudoit and van
der Laan (2008). Here we wish to provide some hints, reporting some useful definitions for raw and
adjusted p-values, while recommending that readers consult the original book by Dudoit and van der
Laan (2008). Assume that it is of interest to test k null hypotheses H0j , j = 1, . . . , k, individually
at level α, based on test statistics T = {Tj ; j = 1, . . . , k}, with unknown probability distribution
P and assumed null distribution P0 (Dudoit and van der Laan, 2008). The null hypothesis H0j is
rejected at the single-test nominal type I error level α if Tj belongs to the rejection region (RR),
i.e. Tj ∈ RRj ;α . The rejection regions RRj ;α = RR(Q0j ;α), based on the marginal null distributions
Q0j ;α , are such that the probability of making a type I error is at most α for each test,

PrQ0j (Tj ∈ RRj ;α) ≤ α,

and the nestedness assumption , stating that

RR(j ; T ,Q0, α1) ⊆ RR(j ; T ,Q0, α2), ∀α1 ≤ α2,

is satisfied. The raw (unadjusted) p-value λ0j = P(Tj ,Q0j ), for the single test of null hypothesis
H0j is then defined as

λ0j = inf{α ∈ [0, 1] : reject H0j at single test nominal level α}
= inf{α ∈ [0, 1] : Tj ∈ RRj ;α}, j = 1, . . . , k,

that is, the unadjusted p-value λ0j , for null hypothesis H0j , is the smallest nominal type I error level
of the single hypothesis testing procedure at which we would reject H0j , given Tj . The smaller the
unadjusted p-value λ0j , the stronger the evidence against the corresponding null hypothesis H0j .

This concept may be easily extended to multiple testing problems (MTPs). Let us consider any
multiple testing procedure, with rejection regions RRj ;α = RR(j ; T ,Q0, α). Hence, the k-vector of
adjusted p-values may be defined as

λ̃0j = inf{α ∈ [0, 1] : reject H0j at nominal MTP level α}
= inf{α ∈ [0, 1] : T (j) ∈ RRj ;α}, j = 1, . . . , k,

that is, the adjusted p-value λ̃0j , for the null hypothesis H0j , is the smallest nominal type I error
level of the multiple hypothesis testing procedure at which one would reject H0j given T . As in
single hypothesis tests, the smaller the adjusted p-value λ̃0j , the stronger the evidence against the
corresponding null hypothesis H0j . Thus, we reject H0j for small adjusted p-values λ̃0j . Note that
the unadjusted p-value λ0j , for a single test of a null hypothesis H0j , corresponds to the special
case k = 1 (Dudoit and van der Laan, 2008).

5.2 Controlling for Multiplicity

5.2.1 Multiple Comparison and Multiple Testing

The terms multiple comparisons and multiple tests are synonymous and are often used interchange-
ably. However, we refer to multiple comparisons when we are interested in comparing mean values
of different groups (e.g. group 1 against group 2, group 1 against group 3, group 2 against group
3, etc.). By multiple tests we mean multiple tests carried out when handling multivariate problems.
For example, when evaluating the effectiveness of a treatment, it might be considered effective if
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Table 5.1 Main characteristics of multiple comparisons and
multiple tests (from Westfall et al., 1999)

Multiple comparisons Multiple tests

The main goal is to compare Refer to more general inferential
means obtained in AN(C)OVA problems, concerning
type problems multivariate data

Inference based on Inference based on
confidence intervals tests of hypotheses

Single-step methods Stepwise methods

it reduces the disease symptoms, or speeds up the recovery time, or reduces the occurrences of
side-effects. Hence the principal distinction between multiple comparisons and multiple tests is that
with multiple comparisons it is possible to compare three or more means, in pairs or combinations,
of the same measurements (Westfall et al., 1999). In contrast, multiple testing procedures consider
multiple measurements. See Table 5.1, which summarizes some of the common characteristics of
multiple comparisons and multiple tests.

5.2.2 Some Definitions of the Global Type I Error

Type I error is defined as the probability of rejecting the null hypothesis H0 when it is true. Hence,
intuitively, the global type I error increases together with the number of tested true null hypotheses.
In fact, if the tests are each conducted at α level, the type I error may take the minimum value α if
only one of the hypotheses is true. Otherwise, when increasing the number of true null hypotheses,
it may assume greater values. MCPs have been developed to control the multiplicity issue which
will be discussed in Section 5.3.

We use the term ‘family’ to refer to the whole set of hypotheses that should be tested to achieve
the aims of a study; for example, the set of all possible pairwise comparisons is a family.

Global type I error may be defined in different ways. Let us consider the following quantities
(see Table 5.2):

• U = number of true null hypotheses correctly not rejected;
• V = number of true null hypotheses wrongly rejected;
• W = number of false null hypotheses wrongly not rejected;

Table 5.2 Defining different types of global errors

Decision taken

Not rejected Rejected

State True null hypotheses U V m0

of nature False null hypotheses W S m1

m− R R m
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• S = number of false null hypotheses correctly rejected.

In what follows, the terms listed below will often be used:

• familywise error rate, FWER = Pr{V > 0};
• false discovery proportion, FDP = V/R, i.e. the number of false rejections divided by the total

number of rejections (defined as 0 if there are no rejections);
• false discovery rate, FDR = E[FPD |R> 0] Pr{R> 0}, where FDP = V/R, i.e. the expected

proportion of false rejections within the class of all rejected null hypotheses.

A property that is generally required is strong control of the familywise error rate (FWER),
that is, the probability of making one or more errors on the entirety of the hypotheses considered
(Marcus et al., 1976). On the other hand, weak control of the FWER means simply controlling
α for the global test (i.e. the test where all hypotheses are null). Although the latter is a more
lenient control, it does not allow the selection of active variables because it simply produces a
global p-value that does not allow interesting hypotheses to be selected, so the former is usually
preferred because it makes inference on each (univariate) hypothesis (Finos and Salmaso, 2005).
A precise definition of strong and weak FWE may be found in Blair et al. (1996). FWE is defined
as the probability that we reject one or more of the true null hypotheses in a set of comparisons. If
a multiple testing procedure produces an FWE rate less than or equal to a specified level α when
all null hypotheses in the set of comparisons are true, then we say that the procedure maintains
control of FWE in a weak sense. By contrast, with FWE maintained at a level less than or equal
to α for any subset of true null hypotheses, we then say that the procedure maintains control in a
strong sense. The choice of error type to control has to be made very carefully and should be based
on considerations regarding the particular study at hand. An alternative approach to multiplicity
control is given by the false discovery rate (FDR). This is the maximum proportion of type I
errors in the set of elementary hypotheses. The FWE guarantees stricter control than the FDR,
which in fact only controls the FWE in the case of global null hypotheses, that is, when all the
hypotheses involved are under H0 (Benjamini and Hochberg, 1995). In confirmatory studies, for
example, it is usually better to strongly control the FWE, thus ensuring an adequate inference when
we wish to avoid making even one error. It is a stricter requirement than the FDR and guarantees
‘stronger’ inferences.

In contrast, when it is of interest to highlight a pattern of potentially involved variables, especially
when dealing with a large number of variables, the FDR would appear to be a more reasonable
approach. In this way it is accepted that part (no greater than the α proportion) of the rejected
hypotheses are in fact under the null (Finos and Salmaso, 2005).

In this chapter we deal with the FWE-controlling procedures for two reasons: it can be shown
that E[V/R] ≤ Pr{V > 1}, hence FDR procedures are less conservative than the FWE ones (Horn
and Dunnet, 2004) and they do not control the FWE (Westfall, 1997), while the contrary holds
(Westfall et al., 1999). Therefore the FWE is the natural extension of the definition of type I error
in the case of single comparisons, and it is closer to the logic underlying the traditional inference.

5.3 Multiple Testing
When dealing with multiple testing problems, false positives must be controlled over all tests. The
standard measure is the probability of any type I errors (i.e. the FWE). The problem of multiplicity
control arises in all cases where the number of sub-hypotheses to be tested is greater than one.
Such partial tests, one for each sub-hypothesis, possibly after adjustment for multiplicity (Westfall
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and Young, 1993), may be useful for marginal or separate inferences. However, when jointly
considered, they provide information on the global hypothesis. Very often this represents the main
goal in multivariate testing problems. In order to produce a valid test for the combination of a large
number of p-values, we must guarantee that such a test is unbiased and produces, therefore, p-values
below the significance level with a probability less or equal to α itself. This combination can be very
troublesome unless we are working in a permutation framework. A Bonferroni correction is valid,
but the conservativeness of this solution is often unacceptable for both theoretical and practical
purposes. Moreover, this combination loses power when there is dependence between p-values.
In contrast, using appropriate permutation methods, dependencies may be controlled. Multiple
testing procedures have their starting point in an overall test and look for significant partial tests.
Conversely, combination procedures start with a set of partial tests, each appropriate for a partial
aspect, and look for joint analyses leading to global inferences (see the algorithms for NPC discussed
in Chapter 4). The global p-value obtained through the NPC procedure of p-values associated with
sub-hypotheses is an exact test, thus providing weak control of the multiplicity. The inference in this
case must be limited to the global evaluation of the phenomenon. Due to the use of NPC methods, a
more detailed analysis may be carried out. Actually what is important is to select potentially active
hypotheses (i.e. under the alternative). A correction of each single p-value is therefore necessary
in this case. A possible solution within a nonparametric permutation framework is represented
by closed testing procedures, which are quite powerful multiple inference methods (Westfall and
Wolfinger, 2000). Such methods include the so-called single-step and stepwise procedures, allowing
us to significantly reduce the computational burden.

5.4 The Closed Testing Approach
It would be no exaggeration to say that most of the recent developments in stepwise multiple
comparison procedures (MCPs) are strictly connected with the closure principle, formulated by
Marcus et al. (1976). In particular, the methods based on this concept are called closed testing
procedures since they refer to families of hypotheses that are closed under intersection.

Definition 1. A closed family is a family for which any subset intersection hypothesis involving
members of the family of tests is also a member of the family (Westfall et al., 1999).

Closed testing methods are special cases of stepwise methods. The goal of multiple testing
procedures is to control the ‘maximum overall type I error rate’, that is, the maximum probability
that one or more null hypotheses are rejected incorrectly. For details, we refer the reader to Westfall
and Wolfinger (2000) and Westfall and Young (1993).

Closed testing methods have recently attracted more and more interest, since they are flexible,
potentially adaptable to any situation and are able produce coherent decisions.

When dealing with closed testing procedures, coherence is a necessary property, while conso-
nance is only desirable (see Westfall et al., 1999).

Marcus et al. (1976) showed that the closed testing procedure controls the FWE in the strong
sense. The real strength of the closed testing approach lies in its generality. In fact the performance
of the procedure may depend on the choice of the tests used for both the minimal and the composite
hypotheses of the closure tree. The whole set of hypotheses may be properly assessed using both
parametric and nonparametric tests. This fact has a clear advantage: nonparametric methods, and
in particular NPC tests, are found to be very powerful when the structure (and nature) of the data
do not meet the requirements for the correct application of traditional parametric tests. Moreover,
they implicitly capture the whole dependence structure of the data. Hence, combining the closed
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testing approach with nonparametric procedures allows us to improve the performance of the
method. However, when the assumptions for valid application of parametric tests are satisfied
and the dependence structure of the data is known, using closed testing procedures in a parametric
framework produces the best results, even if such a situation rarely occurs in practice. Testing
the composite hypotheses of the closure tree using methods capable of handling the dependence
structure of the C minimal hypotheses is of primary importance, especially in the case of all pairwise
comparisons. In the following sections, we show how to reduce the closure tree, thus providing
significant improvements in the procedure’s power behaviour.

5.4.1 Closed Testing for Multiple Testing

There are two important classes of multiple testing procedures: single-step and stepwise methods.
The latter type of method allows a substantial reduction in the computational burden. An example
of the single-step method is the simple Bonferroni procedure. Assuming there are k hypotheses of
interest, the Bonferroni procedure rejects any null hypothesis H0i , i = 1, . . . , k, if the corresponding
p-value is less than or equal to α/k, where α is the desired FWE level. In contrast, stepwise methods
make use of significance levels larger than α/k, allowing us to detect more significant differences
and offering greater power.

The basic idea underlying closed testing procedures is quite simple, but some notation is required.
Suppose that we wish to test the hypotheses H1, H2, H3, allowing the comparison of three treatment
groups with a common control group or a single treatment against a single control on the basis of
three different variables (see Figure 5.1). The closed testing method works as follows:

1. Test each minimal hypothesis H1, H2 and H3 using an appropriate α-level test.
2. Create the closure of the set, which is the set of all possible intersections among H1, H2 and

H3 (in this case the hypotheses H12, H13, H23 and H123).
3. Test each intersection using an appropriate α-level test.
4. Any hypothesis Hi , with control of the FWE, may be rejected when the following conditions

both hold:
– the test of Hi itself yields a statistically significant result; and
– the test of every intersection hypothesis that includes Hi is statistically significant.

When using a closed testing procedure, the adjusted p-value for a given hypothesis Hi is the
maximum of all p-values for tests that include Hi as a special case (including the p-value for the

Composite
hypotheses H123

H12

H1 H2 H3

H13 H23

Minimal hypotheses

Figure 5.1 The closure tree (Westfall and Wolfinger, 2000)
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Hi test itself), hence λ̃i = max(λi , λik, λikl , . . .), the maximum of all p-values for tests including
Hi as component.

Hence, in order to test the null hypotheses, all the related closed families, that is, all the families
for which any subset intersection hypothesis involving members of the family of tests is also a
member of the family, must be considered. The rule for rejecting the original null hypothesis is
defined as follows:

– test every member of the closed family using a (suitable) level test;

– a hypothesis can be rejected provided that (a) its corresponding test was significant at level α and
(b) every other hypothesis in the family that implies it, can also be rejected by its corresponding
α-level test.

The choice of method to calculate the appropriate level of significance is different depending on
the situation; we will discuss this later.

It is in fact possible to obtain step-down procedures by means of the closure principle, and by
applying the related single-step methods to the closed family hypotheses. In step-down procedures,
the hypotheses corresponding to the most significant test statistics are considered in turn, with
successive tests depending on the outcome of previous ones. As soon as one fails to reject a null
hypothesis, no further hypotheses are rejected. These procedures are referred to as shortcut versions
of the closed testing procedure. For example, the Bonferroni–Holm method is the shortcut version
of the closed testing procedure using Bonferroni’s procedure.

The closure principle has recently been applied to nonparametric tests, leading to improvements
in terms of power. Westfall and Young (1993) show that the MinP (the minimum significant test
p-value) which, in the classic version of the closed testing method using the Bonferroni inequality,
has to be compared with the α/k level, where k is the number of minimal hypotheses considered,
in this framework may be compared with the α-quantile of the MinP distribution under H0. This
distribution is unknown, but may easily be obtained within the permutation framework (Finos et al.,
2003). In the following, we briefly present the shortcut version of the closed testing procedures for
the step-down MinP Bonferroni procedure and the step-down Tippett procedure (Finos et al., 2003).

Remark 1. It is well known (Dmitrienko et al., 2003) that Bonferroni-based tests are conserva-
tive for large correlation, and may all be non-significant even when all unadjusted p-values are
significant. The method is very general as it is applicable to any situation; however, its severe con-
servativeness, especially when the endpoints are correlated, constitutes a barrier to its usefulness
(Huque and Alosh, 2008). Resampling-based procedures (Westfall and Young, 1993) may solve the
former problem, while the use of the Simes test (Simes, 1986) may mitigate the latter problem.

5.4.2 Closed Testing Using the MinP Bonferroni–Holm Procedure

Let us deal with a multivariate two-sample problem, supposing it is of interest to test for differences
between the means of the two groups over three variables.

Definition 2. (Westfall and Young, 2000). When considering a closed testing procedure, the
adjusted p-value λ̃i for a given hypothesis Hi is the maximum of all p-values for tests including
Hi as a special case (including the p-value for the Hi test itself ).

In order to apply Bonferroni’s MinP test, the minimum p-value of the individual component
tests should be compared with α/k, where α is the desired FWE level and k is the number of
minimal hypotheses, and reject the composite hypothesis when MinP ≤ α/k.
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Holm (1979) proposed a modification of the simple Bonferroni procedure. Indeed, the MinP
Bonferroni–Holm procedure is the most classical version of closed testing (multi-level) procedures
and is called the sequentially rejective Bonferroni procedure. Holm demonstrated that it is not
necessary to calculate the p-values for the entire tree. It is sufficient to calculate the p-values
for the nodes of the tree corresponding to the ordered p-values. The Bonferroni–Holm closed
MinP -based method may be obtained as follows:

1. Let Hi, i = 1, . . . , k, be the set of the minimal hypotheses, and let λ(1), . . . , λ(k) be the vector
containing the (increasing) ordered p-values corresponding to the set of minimal hypotheses.

2. λ̃(1) = k · λ(1); if λ̃(1) ≤ α the corresponding hypothesis H(1) is rejected and the procedure is
continued; otherwise the hypotheses H(1), . . . , H(k) are accepted and the procedure stops.

3. λ̃(j) = max((k − j + 1) · λ(j), λ̃(j−1)); if λ̃(j) ≤ α the corresponding hypothesis H(j) is rejected
and the procedure is continued; otherwise the hypotheses H(j), . . . , H(k) are accepted and the
procedure stops, for j = 2, . . . , k.

Let us now briefly introduce the data set used by Westfall and Wolfinger (2000) to test for
differences between the means of two groups, G = 0 and G = 1 (two-sample test), for each of
three variables Y1, Y2, and Y3 (see the data in Table 5.3). The p-values are shown in Figures 5.2
and 5.3. The data are analysed using MATLAB and R in Section 5.5.

With reference to the example in Figure 5.2, the hypotheses H12 and H13 do not need to be tested.
In fact, the ordered vector of the minimal hypotheses is λ3 < λ2 < λ1 and H123 : λ123 = 3 · λ3 =
3 · 0.0067 = 0.0201. Let us assume that α = 0.05, in which case the hypothesis H123 should be
rejected and as a consequence automatically all the hypotheses containing H3 will be rejected (i.e.
H3, H13 and H23). Hence, an adjusted p-value equal to λ̃3 = 0.0201 will be associated with the
hypothesis H3. Then in the next step the composite hypothesis which has still not been rejected, H12,
will be evaluated and its significance will be obtained as H12 : λ12 = 2 · λ2 = 2 · 0.0262 = 0.0524.
With α = 0.05, the hypotheses H1 and H2 will be accepted.

Table 5.3 mult data (Westfall
and Wolfinger, 2000)

Group Y1 Y2 Y3

0 14.4 7.00 4.30
0 14.6 7.09 3.88
0 13.8 7.06 5.34
0 10.1 4.26 4.26
0 11.1 5.49 4.52
0 12.4 6.13 5.69
0 12.7 6.69 4.45

1 11.8 5.44 3.94
1 18.3 1.28 0.67
1 18.0 1.50 0.67
1 20.8 1.51 0.72
1 18.3 1.14 0.67
1 14.8 2.74 0.67
1 13.8 7.08 3.43
1 11.5 6.37 5.64
1 10.9 6.26 3.47
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H123 : l = 0.0201

H12 : l = 0.0524

H1 : l = 0.0982 H2 : l = 0.0262 H3 : l = 0.0067

H13 : l ≤0.0201 H23 : l ≤0.0201

Figure 5.2 Step-down MinP Bonferroni–Holm procedure (Finos et al., 2003)

H123 : l = 0.0201

H12 : l = 0.0524

H1 : l = 0.0982 H2 : l = 0.0262 H3 : l = 0.0067

H13 : l = 0.0134 H23 : l = 0.0134

Figure 5.3 Bonferroni single-step procedure (Finos et al., 2003)

By applying Bonferroni’s inequality (see Figure 5.3) to a single-step procedure (λHi
: max(λHj

:
Hj ⊇ Hi)), we would have obtained the same results, but the hypotheses would be tested instead
of calculating the significance for only two hypotheses.

On the one hand, by means of single-step methods, the critical value for all tests is found in
only one step, since each test is calculated without reference to the significance or non-significance
of remaining inferences. On the other hand, sequentially rejective or stepwise methods differ from
single-step methods in that the result of a given test depends on the results of the other test.
However, by means of these methods it is possible to substantially increase power while retaining
FWE control (Westfall et al., 1999). λ123 = 3 ·min(λ1, λ2, λ3) and λ12 = 2 ·min(λ1, λ2) and the
minimal hypotheses have been tested using a standard Student’s t test.

It is well known that the Bonferroni–Holm MinP test is very conservative, especially when the
correlation structure among variables is strong. Westfall and Young (1993) proposed to compare the
observed MinP (denoted by Minpo) for a given composite hypothesis with the α-quantile of the
MinP distribution under the null hypothesis, instead of comparing it with α/k. This corresponds to
calculating the p-value λ = Pr(MinP ≤ Minpo), where MinP is the random value of the minimum
p-value for the given composite hypothesis, and Minpo denotes the minimum p-value observed
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for the hypothesis under study. Usually the distribution of MinP is unknown but can be evaluated
by means of permutation methods as shown in Finos et al. (2003).

Westfall and Young (1993) showed that, like the Bonferroni–Holm method, this method may be
used to generate a stepwise procedure. Hence, it is no longer necessary to compute all the p-values,
but it is enough to use an algorithm similar to that proposed by Holm. In conclusion, the estimate
of the α-quantile of the MinP null distribution obtained by means of resampling methods without
replacement is equivalent to Tippett’s nonparametric combining function. The significance is cal-
culated as λ = Pr{min1≤i≤k(λi)

∗ ≤ min1≤i≤k(λi)}, where min1≤i≤k(λi)
∗ indicates the permutation

distribution of MinP and min1≤i≤k(λi) denotes the minimum p-value of the composite hypothesis
(i.e. Minpo):

λ = Pr( min
1≤i≤k

(λi)
∗ ≤ min

1≤i≤k
(λi))

= Pr(1− min
1≤i≤k

(λi)
∗ ≥ 1− min

1≤i≤k
(λi))

= Pr(max
1≤i≤k

(1− λi)
∗ ≥ max

1≤i≤k
(1− λi))

= T ′′T ,

where T ′′T denotes Tippett’s combination function (i.e. T ′′T = max1≤i≤k(1− λi)).
The shortcut is obtained as follows.

1. Let λ(1), . . . , λ(k) be the vector containing the (increasing) ordered p-values corresponding to
the set of minimal hypotheses.

2. λ̃(1) = λ′′(1),...,(k)Tippett; if λ̃(1) ≤ α, reject the corresponding hypothesis H(1) and go on; otherwise
retain the hypotheses H(1), . . . , H(k) and stop.

3. λ̃(i) = max(λ′′(1),...,(k)Tippett, λ̃(i−1)); if λ̃(i) ≤ α, reject (also) H(i) and go on; otherwise retain the
hypotheses H(i), . . . , H(k) and stop, for i = 2, . . . , k.

Remark 1. Within the context of multiple testing methods, we mention a recent paper by
Goeman and Mansman (2008), where a focus level procedure (i.e. a sequentially rejective multiple
testing method), is presented. The procedure actually combines Holm’s (1979) procedure with the
closed testing procedure of Marcus et al. (1976). The proposed procedure strongly controls the
FWE without any additional assumptions on the joint distribution of the test statistics used, while
explicitly making use of the directed acyclic graph structure of gene ontology. We refer the reader
to the original paper by Goeman and Mansman (2008) for further details.

Remark 2. If present, a stratification variable (also called a block variable) may be included in
the analyses. The resulting p-values are combined over levels of the stratification variable and
multiplicity adjustments are performed independently among strata levels. As an example, see the
analysis performed using the washing test data set, discussed in Section 5.6.

5.5 Mult Data Example

5.5.1 Analysis Using MATLAB

We now analyse the Mult data set, previously discussed in Westfall and Wolfinger (2000), to test
for equality of the multivariate distribution of three variables Y1, Y2, and Y3 in the two groups
labelled by the binary variable X (two independent samples test). The aim of this example is to
show how the closed testing procedure performs when different combining functions are applied.
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Table 5.4 Example from Westfall and Wolfinger (2000)

λ (raw p-value) λ̃ (Fisher) λ̃ (Tippett) λ̃ (Liptak)

Y1 0.1004 0.1004 0.1004 0.1004
Y2 0.0313 0.0445 0.0561 0.0426
Y3 0.0097 0.0234 0.0199 0.0270

p-GLOB 0.0220 0.0199 0.0221

We show the results for the closed testing procedure, using Tippett, Fisher and Liptak combining
functions (see Table 5.4). It should be noted that no uniformly most powerful (UMP) combined
test exists when k > 2. The MATLAB code is as follows:

MATLAB code:

B=10000

[data,code,DATA]=xlsimport(‘mult’);

Y=data(:,2:4);

X=data(:,1);

p=NP_2s(Y,X,B,0);

NPC_FWE(p,‘F’);

NPC_FWE(p,‘T’);

NPC_FWE(p,‘L’);

5.5.2 Analysis Using R

The aim of this example is to show how the closed testing procedure performs when different
combining functions are applied. The R code that follows is basically the body of the FWE.minP

function, except for Fisher’s and Liptak’s combining functions which have not been implemented
(if needed, one may just add an argument indicating the desired combining function and make some
adjustments in the body with if conditions, and add the lines that are signed by the symbol #).

The procedure is as follows. Let p(1) ≤ p(2) ≤ p(3) be the (increasingly) ordered raw p-values;
choose a combining function (whose arguments are raw p-values), and obtain a global test involving
all three variables. The adjusted p-value related to p(1) is the p-value of the global test on all the
three variables. In the second step, obtain a global test involving the variables corresponding to
p(2) ≤ p(3) only; the adjusted p-value related to p(2) is the p-value of the global test. In the third
step, obtain a global test involving the variable generating p(3) only; that is, there is no need to
perform the procedure on the variable with largest raw p-value. A monotonicity condition must
be satisfied, that the adjusted p-value at each step is not smaller than the adjusted p-value at the
previous step.

First of all, we carry out the testing procedure on the three variables and obtain the raw
p-values. We consider the difference in means as the test statistic, which can be obtained by mul-
tiplying the data matrix by a contrast vector. We consider a two-sided alternative and B = 5000
random permutations.

setwd("C:/path") ; source("t2p.r")

data<-read.csv("mult", header = TRUE)
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attach(data)

n=table(X) ; p = dim(data)[2]-1

contr<-rep(c(1/n[1],-1/n[2]),n)

B=5000 ; n = dim(data)[1]

Y = as.matrix(data[,-1])

T = array(0,dim=c((B+1),p))

T[1,] = t(Y)%*%contr

for(bb in 2:(B+1)){

Y.star = Y[sample(1:n),]

T[bb,] = t(Y.star)%*%contr

}

P = t2p(abs(T)) ; p.raw = P[1,]

p.raw

[1] 0.0948 0.0296 0.0088

The vector p.raw contains the raw p-values related to each variable. Now we order the raw
p-values increasingly, and store their original position in the vector o (this will be useful for printing
the adjusted p-values in their original positions). The matrix P.ord contains the null distribution
of the raw p-values, and its columns are ordered with respect to the elements of the first row (i.e.
the observed raw p-values).

p.ord<-sort(p.raw,decreasing=FALSE)

o<-order(p.raw,decreasing=FALSE)

B=dim(P)[1]-1

p=dim(P)[2]

p.ris<-array(0,dim=c(p,1))

P.ord<-P[,o]

Now we obtain the adjusted p-values as the global p-values obtained by combining the last 3− j

columns of P.ord, j = 0, 1, 2. We can do this by choosing one of the three combining functions
proposed (Tippett’s, Fisher’s and Liptak’s). The following code computes the adjusted p-values
by applying Tippett’s combining function; in order to change combining function, uncomment (i.e.
remove the symbol ‘#’) the rows with the desired combining function and comment the others.
Note that the computation of the p-values depends on the chosen combining function (the rule
small is significant applies when Tippett’s combining function is applied).

T=apply(P.ord,1,min) #Tippett’s

#T=apply(P.ord,1,function(x){-2*log(prod(x))}) #Fisher’s

#T=apply(P.ord,1,function(x){sum(qnorm(1-x))}) #Liptak’s

p.ris[1] = mean(T[-1]<=T[1]) #Tippett’s

#p.ris[1] = mean(T[-1]>=T[1]) #Fisher’s & Liptak’s
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if(p>2){

for(j in 2:(p-1)){

T=apply(P.ord[,j:p],1,min) #Tippett’s

#T=apply(P.ord[,j:p],1,function(x){-2*log(prod(x))}) #Fisher’s

#T=apply(P.ord[,j:p],1,function(x){sum(qnorm(1-x))}) #Liptak’s

p.ris[j] = max(mean(T[-1]<=T[1]),p.ris[(j-1)]) #Tippett’s

#p.ris[j] = max(mean(T[-1]>=T[1]),p.ris[(j-1)]) #Fisher’s & Liptak’s

}

}

p.ris[p] = max(p.ord[p],p.ris[p-1])

p.ris[o]=p.ris

rownames(p.ris)=colnames(data)[-1]

p.ris

[,1]

Y1 0.0992

Y2 0.0520

Y3 0.0212

Raw p Fisher’s Tippett’s Liptak’s

Y1 0.0992 0.0992 0.0992 0.0992
Y2 0.0288 0.0468 0.0520 0.0466
Y3 0.0098 0.0226 0.0212 0.0232

The data set and the corresponding software codes are available from the mult folder on the
book’s website.

5.6 Washing Test Data

5.6.1 Analysis Using MATLAB

Let us now introduce a real case study concerned with the development of a new detergent, where
an instrumental performance study modelled by a C independent sample design has been car-
ried out. The R&D division of a chemical company wishes to assess the level of performance
of a set of eight products (C = 8) on 25 types of stain, which may be classified into three main
domains (or categories) – general detergency, bleachable and enzymatic. A suitable experiment
has been designed. For each of the eight products, four washing machines (therefore, four repli-
cates/observations in each group) are used to wash a piece of fabric soiled with one of the 25 stains.
The experimental response variable is the reflectance, that is, the percentage of stain removed for
the 25 types of stain. Hence, it is of interest to compare the eight products on the basis of their
reflectance (the variable Y ), using, as stratification variable Z, the type of stain. Here we wish to
show that it is possible to include a stratification variable while controlling the FWE (see Remark 1,
5.4.2). Indeed, once the various strata of experimental units have been defined, the observation
vector may be resampled independently within strata to simulate the complete null hypothesis of
no treatment effect for any stratum. The test statistics are then recomputed by combining over
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Table 5.5 Controlling for multiplicity over types of stain and domains

Domain Strata (type of stain) No. p-value p-FWE p-value p-FWE

Bleach Blueberry juice 6 0.0080 0.1489
Bleach Coffee 10 0.0030 0.0679
Bleach Grass 12 0.3007 0.9501
Bleach Tea 20 0.0330 0.3736
Bleach Tomato 21 0.7912 0.9910
Bleach Wine 25 0.0150 0.2268 0.0180 0.0260

Detergency Artificial sebum on PES/cot 1 0.0060 0.1209
Detergency Artificial sebum on cotton 2 0.0190 0.2518
Detergency Bacon grease 3 0.1009 0.6883
Detergency Butter 7 0.0509 0.4745
Detergency Frying fat 11 0.0150 0.2268
Detergency Lanolin 13 0.3047 0.9501
Detergency Lipstick1 14 0.3636 0.9501
Detergency Lipstick2 15 0.6813 0.9910
Detergency Make-up1 16 0.6294 0.9910
Detergency Make-up2 17 0.2068 0.8721
Detergency Olive oil 18 0.0140 0.2268
Detergency Used Motor oil2 22 0.7642 0.9910
Detergency Used Motor oil3 23 0.8332 0.9910
Detergency Vegetable oil 24 0.0010 0.0240 0.0140 0.0260

Enzymatic Blood 4 0.1359 0.7582
Enzymatic Blood1 5 0.0330 0.3736
Enzymatic Chocolate 8 0.0010 0.0240
Enzymatic Cocoa 9 0.0110 0.1888
Enzymatic Rice starch 19 0.0030 0.0679 0.0050 0.0050

p-Global 0.0240 0.0050

strata, thus obtaining a test statistic for each stratum. Then multiplicity adjustment for multiple
tests that have been combined over strata may easily be done following the standard procedure
(see Section 5.4.1). Raw and adjusted p-values, along with the global p-value, are displayed in
Table 5.5. MATLAB code is given below.

B=1000

[data]=xlsimport(’WashingTest’);

strata=data(2);

Y=data(4);

X=data(1);

[P]=by_strata(strata, ’NP_Cs’, Y,X, B, 1);

P2=NPC_FWE(P,’T’,1);

d1=[6 10 12 20 21 25];

d2=[1 2 3 7 11 13 14 15 16 17 18 22 23 24];

d3=[4 5 8 9 19];

bleach=NPC(P(:,d1),’T’,1);
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detergency=NPC(P(:,d2),’T’,1);

enzymatic=NPC(P(:,d3),’T’,1);

NPC_FWE([bleach detergency enzymatic],’T’,1);

5.6.2 Analysis Using R

The R code for analysing the washing test data is as follows:

setwd("C:/path")

data<-read.csv("WashingTest.csv",header=TRUE)

attach(data)

C = length(unique(Product))

p = length(unique(Stain))

r = dim(data)[1]/(C*p)

B=1000

It is easy to show that the F statistic for one-way ANOVA is permutationally equivalent to
the statistic T ∗j =

∑C
i=1 ni(X̄

∗
ji)

2, j = 1, . . . , p. We first obtain, for each type of stain, the vector
of sample means Mj = [X̄j1, . . . , X̄jC], j = 1, . . . , p. We do this by multiplying the vector of
responses of the j th stratum for the diagonal block-matrix of contrasts:

contr =



1/rIr
... . . .

...
... 1/rIr . . .

...
...

...
. . .

...
...

... . . . 1/rIr


The matrix contr has dimension (r × C)× C, and Ir is the identity matrix of rank r . The observed
values of the partial test statistics T o

j are then obtained by adding the squared elements of Mj .

contr = array(0,dim=c(r*C,C))

for(cc in 1:C){

contr[((cc-1)*r+1):(cc*r),cc] = rep(1/r,r)

}

T = array(0,dim=c((B+1),p))

M = array(0,dim=c((B+1),p,C))

for(j in 1:p){

M[1,j,] = Reflectance[((j-1)*r*C+1):(j*C*r)]%*%contr

T[1,j] = sum(M[1,j,] ˆ 2)
}

This is a stratified analysis, where strata are defined by the type of stain (25 categories), therefore
we consider independent within-strata permutations. The vector R.star is a random permutation
of the response elements of the j th stratum.
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for(bb in 2:(B+1)){

print(bb)

for(j in 1:p){

R = Reflectance[((j-1)*r*C+1):(j*C*r)]

n = length(R)

R.star = R[sample(1:n)]

M[bb,j,] = R.star%*%contr

T[bb,j] = sum(M[bb,j,] ˆ 2)
}

}

The matrix M stores the sample means of the C products of each variable on each permutation.
The matrix T contains the null distribution of T ∗j for each variable. Finally, we obtain the partial
p-values of each stratum and adjust these p-values for multiplicity by running the FWE.minP

function.

source("t2p.r")

P = t2p(T)

colnames(P) = unique(Stain)

source("FWEminP.r")

p.FWE = FWE.minP(P)

res=data.frame(p = P[1,],p.fWE = p.FWE)

res

Category p p.fWE

Tea Bleach 0.0430 0.4334

Coffee Bleach 0.0020 0.0406

Blueberry juice Bleach 0.0120 0.2086

Wine Bleach 0.0120 0.2086

Grass Bleach 0.2890 0.9302

Tomato Bleach 0.8006 0.9946

Used Motor oil3 Detergency 0.8332 0.9946

Olive oil Detergency 0.0116 0.2086

Bacon grease Detergency 0.1126 0.7214

Frying fat Detergency 0.0196 0.2712

Vegetable oil Detergency 0.0004 0.0096

Butter Detergency 0.0464 0.4334

Make-up2 Detergency 0.2228 0.8910

Lipstick2 Detergency 0.6740 0.9946

Artificial sebum on cotton Detergency 0.0238 0.3036

Make-up1 Detergency 0.6376 0.9946

Artificial sebum on PES/cot Detergency 0.0042 0.0814

Lipstick1 Detergency 0.3538 0.9366

Used Motor oil2 Detergency 0.7612 0.9946

Lanolin Detergency 0.3246 0.9366

Chocolate Enzymatic 0.0000 0.0000

Blood Enzymatic 0.1296 0.7476

Rice starch Enzymatic 0.0024 0.0514

Blood1 Enzymatic 0.0390 0.4258

Cocoa Enzymatic 0.0132 0.2086
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The type of stain considered can be combined according to the three domains (bleach, detergency,
enzymatic). Applying Fisher’s combining function, we obtain that there are significant differences
within all domains.

T.dom = array(0,dim=c((B+1),3))

dom=c(rep(1,6),rep(2,14),rep(3,5))

for(dd in 1:3){

T.dom[,dd] = apply(P[,dom==dd],1,function(x){-2*log(prod(x))})

}

P.dom = t2p(T.dom)

p.dom = P.dom[1,]

p.d.fwe = FWE.minP(P.dom)

res.dom = data.frame(p.dom,p.d.fwe)

colnames(res.dom) = c(’Bleach’, ’Detergency’, ’Enzymatic’)

res.dom

p.dom p.d.fwe

1 0 0

2 0 0

3 0 0

The data set and the corresponding software codes are available from the Washing_test folder
on the book’s website.

5.7 Weighted Methods for Controlling FWE and FDR
When dealing with a very large number of variables (say, hundreds of thousands), the standard
type I error rate criterion is no longer recommended (Finos and Salmaso, 2007). On the other hand,
Bonferroni’s method used to control the FWE may be excessively conservative. In fact when k

tests are available, a test will be considered significant if its p-value is less than or equal to α/k.
As previously seen, the Bonferroni–Holm (Holm, 1979; Ludbrook, 1998) step-down approach
represents another valid solution but it does not provide great power when k is large. The method
rejects the hypothesis corresponding to the most significant test (endowed with the smallest p-value)
if its p-value is less than α/k; if this hypothesis is rejected, then the second smallest p-value is
compared to α/(k − 1), and so on.

An alternative is the FDR-controlling method of Benjamini and Hochberg (1995). Once again,
FDR may become exceedingly conservative for large k. Furthermore, since FDR-controlling proce-
dures do not generally control the FWE, they allow a fraction of detected significances to be in error.

In Finos and Salmaso (2007) weighted methods controlling FWE and FDR are presented.
Weighted methods represent an important feature of multiplicity control methods. The weights
must usually be chosen a priori on the basis of experimental hypotheses. Under some conditions,
however, they can be chosen by making use of information from the data, therefore a posteriori ,
while maintaining multiplicity control.

Weighted methods are in fact useful when some Hi hypotheses are considered more important
than others on the basis of a priori knowledge, for example in clinical trials, where patients’
endpoints may be ranked a priori , thus planning the testing procedure in order to emphasize
the most important hypotheses. The simplest weighted multiple testing procedure, discussed in
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Rosenthal and Rubin (1983), consists in the rejection of Hi whenever λi ≤ wiα, where the weights
wi lie in the simplex wi ≥ 0,

∑
wi = 1, and λi is the p-value of the ith test, i = 1, . . . , k. The

choice of wi may be based purely on the a priori importance of the hypotheses or, to optimize
power, on prior information (Spjøtvoll, 1972; Westfall and Krishen, 2001).

When weights are properly chosen from the concurrent data set, an increase in terms of power
may be obtained without invalidating significance levels. Finos and Salmaso (2007) provide a review
of weighted methods for FWE (both parametric and nonparametric) and FDR control and a review of
data-driven weighted methods for FWE control. Moreover, the authors propose a class of weighted
FWE-and FDR-controlling procedures which take advantage of information from the available
data (data-driven weights), thus improving, under some conditions, power performance. They also
suggest new data-driven weighted procedures controlling FDR in the case of independence between
variables and under positive regression dependency on the subset of variables corresponding to
null hypotheses. We refer the reader to the paper by Finos and Salmaso (2007) for an in-depth
examination of these topics.

5.8 Adjusting Stepwise p-Values
Stepwise methods for variable selection are frequently used to determine the predictors of an out-
come in generalized linear models; see Miller (1984) and Hocking (1976) for a comprehensive
overview of model selection methods. Despite their widespread use, it is well known that the
tests on the explained deviance of the selected model are biased. Several solutions have been
proposed to overcome this problem. In particular, Copas and Long (1991) propose a correc-
tion for forward selection in multiple linear models for orthogonal regressors; Grechanovsky and
Pinsker (1995) generalize it to general forward selection for linear models; Harshman and Lundy
(2006) describe a computer-intensive method that accurately estimates stepwise p-values by using
a modified randomization permutation test procedure that empirically determines the appropriate
null distributions.

The Harshman–Lundy method also corrects for bias due to the advantage of getting the best
current option and the disadvantage of not getting the even better alternatives chosen at prior steps.
Actually, all these solutions control the FWER strongly but are restricted to linear models under
forward selection. For a complete literature review, see Finos et al. (2010). Hence, the p-values of
stepwise regression can be highly biased, and care must be taken with the evaluation of results from
stepwise generalized linear models (GLMs). This biasedness arises from the fact that the traditional
test statistics upon which these methods are based were intended for testing pre-specified hypotheses;
instead the tested model is selected through a data-driven procedure. In particular, the problem of
equipping them with statistically valid stopping rules remains unresolved. At each forward selection
step, the covariate that explains more of the residual response than any other remaining regressor
is entered into the regression, if this explained residual response is large enough; otherwise the
forward selection stops. What constitutes large enough is decided by a stopping rule, that is, by
a significance test performed at each step of this multi-step decision-making process. Typically,
computer packages provide a p-value based on the F statistic calculated based on the observed
data and computed from tables of the F -distribution. Otherwise, the deviance, scaled deviance and
χ2 distribution represent the corresponding goodness-of-fit criteria and approximate distribution in
the GLM. As pointed out by many authors, this distribution is correct only if all previously entered
regressors have not been data-driven. However, since the forward selection searches for the best
regressor and may discontinue this process at any step, the F -distribution is not valid (Grechanovsky
and Pinsker, 1995). A multiplicity problem therefore arises. In Finos et al. (2010) a nonparametric
procedure to adjust the p-value of the selected model of any stepwise selection method is discussed.
The proposed method is unbiased and consistent. Moreover, it is proven that the procedure controls
the FWE in a weak sense only (Westfall and Young, 1993). This means that it does not correct the
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p-values of each selected variable but only the p-value of the model. Therefore, it is only able to
assess whether at least one variable among those selected is associated with the dependent variable.
Although control is weak, it has the clear advantage of being applicable to any GLM (not only to
linear models) and to any stepwise methods. The procedure does not therefore ask practitioners to
change the way they model phenomena and select variables, but simply gives a minimum validity
inferential criterion to their findings.

5.8.1 Showing Biasedness of Standard p-Values for Stepwise Regression

Here we present an explanatory simulation study. We have generated standard normal distributed
independent covariates that are unrelated and independent of the outcome. We have also chosen
the backward mode of stepwise searching. In the first simulation study the number of covariates
was set at V = 10, the number of cases at n = 20 and the number of Monte Carlo replications
at 1000. In the second simulation study we set the number of covariates at V = 20, the number
of cases at n = 30 and the number of Monte Carlo replications at 1000. Table 5.6 shows the
estimated probability of finding a non-real significant model after stepwise regression under the
null hypothesis H0. For α = 0.05, under H0 the probability of finding a significant model is more
than 50% in the first simulation study and more than 80% in the second simulation study.

5.8.2 Algorithm Description

As mentioned in the previous section, when dealing with model selection, the problem of multi-
plicity control arises because of the multitude of models explored by the stepwise method. With V

covariates, M = 2V − 1 potential models could be obtained.
Let � define the set of all these models (i.e. with cardinality C(�) = M), where ω are its

elements and λω is the p-value associated with the model ω. Furthermore, let �0 ⊂ � denote the
subset with all models ω under the null hypothesis of no association with Y. It is well known
that Pn(λω ≤ α|ω ∈ �0) = Pn(minω∈�0 λω ≤ α) ≤ α does not hold in all non-trivial situations.
Therefore, the probability that at least one model is wrongly rejected is out of control. This fact
gives rise to the practical problem of p-values tending to be (very) small also when response Y is
not associated with any of the covariates X.

The familiar Bonferroni inequality guarantees an upper bound to this probability, Pn(minω∈�0 λ ≤
α) ≤ αC(�0). In practical applications, however, C(�0) is unknown and C(�) is used instead. The
Bonferroni correction is very conservative (i.e. has low power) whenever C(�) is high and/or the p-
values are dependent. Both conditions hold in our case: C(�) = 2V − 1 increases exponentially with
V and the dependence among p-values of two different models can be very high since dependence
exists whenever two models share at least one variable.

Moreover, the exhaustive search of all elements in � is not always feasible. All stepwise methods
aim to avoid the cost of this exhaustive research by exploring a subset of elements in � in a (more
or less) ‘efficient’ way. However, the price paid is that the selected model is sub-optimal and the
p-value is not always the minimum (actually different methods lead to different selected models).

Table 5.6 Type I error out of control

nominal α level 0.01 0.05 0.10 0.20 0.30 0.50

1st simulation 0.187 0.521 0.733 0.892 0.935 0.939
2nd simulation 0.530 0.840 0.938 0.983 0.996 0.998
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Thus, a Bonferroni correction would appear to be a valid but not a useful correction in order to con-
trol the FWER in a weak sense (i.e. the probability of at least one wrong rejection when �0 = �).

The method proposed in Finos et al. (2009), under the global null hypothesis that all covariates
are unrelated to the outcome variable, corrects the p-value of the selected model in such a way
that it controls the type I error at level α and ensures unbiasedness and consistency of the p-values
of the selected model.

A possible correction for the p-value of the selected model can be based on the following
algorithm:

(1) Perform a standard stepwise regression (backward or forward) in a GLM (e.g. linear, logistic,
Poisson, Cox models) for the model Y = h(X), where Y indicates the response variable and X
are the covariates.

(2) Extract the p-value associated with the F test on residual deviance for the GLM. This p-value
is called the observed (raw) p-value.

(3) Carry out B independent permutations of the response variable Y and repeat steps (1) and (2).
(4) The adjusted p-value λ̃ is exactly the fraction of permutation p-values that are less or equal to

the observed one.

In conclusion, the p-values obtained after performing a stepwise regression may be highly biased.
In particular, the evaluation of stepwise GLM must be done with care, mainly when regressors
have been data-driven. However, it is possible to correct p-values in a very simple manner; for
example, Finos et al. (2009) suggest a nonparametric permutation solution that is exact, flexible
and potentially adaptable to most different applications of model selection. The correction becomes
more severe when many variables are processed by the stepwise machinery.

5.8.3 Optimal Subset Procedures

Optimal subset procedures are another approach to multiplicity control. Here we merely provide
some hints and refer the reader to the original paper by Finos and Salmaso (2005) for details. This
approach is in fact based on the selection of the best subset of partial (univariate) hypotheses such
that, once conveniently combined, they provide the minimal p-value.

Optimal subset procedures constitute a less stringent multiplicity control than FWE and FDR.
Indeed, the control of the FWE is weak, that is, it is correct only in the case of a global null
configuration (all hypotheses are null).

Finos and Salmaso (2005) also show how stepwise regression may be seen as a special case
of the optimal subset procedures and that it is possible to adjust for multiplicity the p-value
corresponding to the selected model. As is known, in the model selection context, the multiplicity
issue arises because of the multitude of models explored by the stepwise method. As mentioned
before, instead of controlling the multiplicity of the univariate tests, these procedures select the
multivariate hypotheses which produce the most significant combined tests. The p-values of these
multivariate hypotheses are then adjusted for multiplicity.

In this way, therefore, the optimal subset procedures supply a global response on the model and
not a specific response on the single partial tests. By way of compensation, however, they show
sensitivity in identifying the hypotheses under the alternative.

Optimal subset procedures are found to be more sensitive when it comes to identifying the
hypotheses under the alternative than other procedures, such as the Bonferroni–Holm (Holm, 1979)
and FDR procedures (Benjamini and Hochberg, 1997). Due to their main features (i.e. weaker
multiplicity control and greater power), these procedures are recommended in all studies involving
a large number of variables, especially when a global assessment of the phenomenon, rather than
the strong inference on single univariate hypotheses, is of interest.



6
Analysis of Multivariate
Categorical Variables

6.1 Introduction
This chapter deals with a permutation approach to some multivariate problems of hypothesis testing
with regard to categorical data in a nonparametric framework. The problems considered concern the
definition of the underlying distribution of data and the possibility of applying the likelihood ratio
test or other parametric solutions. Practical examples from real application problems are discussed
and some scripts, useful for carrying out the required analyses in MATLAB, R and SAS, are also
illustrated. Section 6.2 deals with a typical multivariate paired data problem, leading to the solution
of a natural multivariate extension of McNemar’s test. Other testing problems of interest are the
multivariate goodness-of-fit test for ordered variables and the MANOVA test with nominal categor-
ical data, described in Sections 6.3 and 6.4, respectively. In many pharmacological studies, where
the effects of different dose levels are compared and where responses are represented by ordered
categorical variables, it is generally of interest to test certain order relations on the distributions of
the response variables and to consider more than one response variable simultaneously. Section 6.5
is devoted to this type of stochastic ordering problem.

A very common testing problem consists in evaluating the independence in distribution between
two categorical variables. The classical solution is the χ2 test for contingency tables in the presence
of sparse data. This may prove to be anticonservative. A nonparametric solution which decomposes
the problem and considers each category as a dummy variable giving a solution based on the NPC
of dependent tests is described in Section 6.6.

When the goal of a genetic study is the identification of genes causing a given pathology,
discovering the major susceptibility locus can be the starting point for advances in the understanding
of the causes of a disease. Section 6.7 describes a permutation approach to testing allelic association
and genotype-specific effects in the genetic study of a disease. The term used to identify this testing
problem is ‘isotonic inference’.

In several sciences complex univariate and multivariate testing problems may arise when cate-
gorical data are present. In Section 6.8, the problem of testing whether the response related to one
treatment is stochastically larger than that of another is considered for univariate and multivariate
ordinal categorical data. The solution based on the parametric test on moments implies the trans-
formation of categorical response variables into numeric variables and the breaking down of the
original hypotheses into partial sub-hypotheses related to the moments of the transformed variables.

Permutation Tests for Complex Data: Theory, Applications and Software Fortunato Pesarin, Luigi Salmaso
 2010, John Wiley & Sons, Ltd
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One application problem which is very frequently encountered, yet almost ignored in the litera-
ture, is that of establishing whether the distribution of a categorical variable is more heterogeneous
(less homogeneous or less concentrated) in one population than in another. The nonparametric
solution illustrated in Section 6.9 is based on a permutation test, in some aspects similar to the
permutation solution for stochastic dominance. The peculiarity of the methodology illustrated is that
exchangeability under the null hypothesis is not exact (but well approximated in practice) because
the solution is based on sample estimates of the true ordering of unknown probabilities.

Section 6.10 describes an application problem regarding a comparative performance evaluation
of PhD programs. The first part concerns an extension of the NPC of dependent rankings for the
computation of a composite indicator measuring satisfaction with some aspects of PhD programs.
The second part looks at a problem of hypothesis testing, where a permutation ANOVA is applied to
compare the performances of different PhD programs. The chapter concludes with a brief description
of an SAS macro for the practical application of methodologies discussed in this chapter.

6.2 The Multivariate McNemar Test
In this section we illustrate one of the specifications of a multivariate paired data problem, leading
to the solution of a natural multivariate extension of McNemar’s test (see also Section 1.8.6 and
Examples 6–8, 2.6). In the univariate situation, one variable Y is observed in two experimental
conditions on each of n units, leading to a set of independent pairs Y = {(Y1i , Y2i ), i = 1, . . . , n}
and the associated set of differences X = {Xi = Y1i − Y2i , i = 1, . . . , n}. The response variable is
ordered categorical with two classes (or binary, or even continuous transformed into binary) in
such a way that it is possible to evaluate within each unit whether there is a positive variation
φ(Y1i , Y2i) = +1 when Y1i < Y2i , a negative variation φ(Y1i , Y2i) = −1 when Y1i > Y2i , or a tie
φ(Y1i , Y2i) = 0 when Y1i = Y2i , i = 1, . . . , n. The test aims to establish whether the data agree or
disagree with the hypothesis of a null treatment effect, so that H0 : {Y1

d= Y2} = {Pr(+1) = Pr(−1)}.
It is known that this univariate problem, assuming that Pr(+1) and Pr(−1) are unknown nuisance
quantities, can be solved within permutation arguments using a binomial test.

Let us now assume that the response variables are V -dimensional binary, Y = (Y1, . . . , YV ), so
that the data set is

Y = {(Yh1i , Yh2i ), i = 1, . . . , n, h = 1, . . . , V }
= {(Y1i ,Y2i ), i = 1, . . . , n},

and the related hypotheses become

H0 :
{

Y1
d= Y2

}
=
{

V⋂
h=1

[Pr(+1)h = Pr(−1)h]

}
against alternatives of the form

H1 :

{
Y1

d

< 	= > Y2

}
=
{

V⋃
h=1

[Pr(+1)h < 	= > Pr(−1)h]

}
,

where it is emphasized that some of the sub-alternatives are one-sided and others two-sided. This
way of illustrating the problem shows that it is a particular case of the more general problem
concerning multivariate paired observations. Hence, its solution takes into consideration the set of
differences

X = {Xhi = φ(Yh1i , Yh2i), i = 1, . . . , n, h = 1, . . . , V }



Analysis of Multivariate Categorical Variables 199

and the set of partial tests

T ∗h = ϕh

(
n∑

i=1

XhiS
∗
i

)
, h = 1, . . . , V ,

where to preserve dependence relations the S∗i = 1− 2Bn(1, 1/2) are h-invariant random signs,
and ϕh corresponds respectively to the sign ‘+’, the ‘absolute value’, or ‘−’ according to whether
the specific hth sub-alternative is ‘<’, ‘	=’, or ‘>’. Thus, as all partial tests are marginally unbiased,
because each of them is separately related to one component variable, the NPC method provides
for a proper overall solution. For instance, the direct combination leads to

T ∗′′D =
∑
h

ϕh

[ ∑
i XhiS

∗
i

(
∑

i X
2
hi)

1/2

]

because
∑

i X
2
hi is the conditional (permutation) variance of

∑n
i=1 XhiS

∗
i (see Section 1.9.4).

It is worth noting that in this context we cannot use asymptotic approximations unless we
know the dependence relations among component binomials (in Pesarin, 2001, some hints in this
direction are suggested), and so a CMC approach based on B iterations seems to be an appropriate
way forward. Brown and Hettmansperger (1989) considered the particular case in which data are
bivariate and alternatives are two-sided, i.e. unrestricted (see also Klingenberg and Agresti, 2006).

Remark 1. It is worth observing that all partial tests Th are permutationally equivalent to
Uh = #(Xhi = +1), h = 1, . . . , V , the permutation marginal distributions of which are binomial
Bn(νh, ϑh), where νh = #(Xhi 	= 0), ϑh = 1/2 in H0h, and ϑh < 	= > 1/2 in H1h. Of course, the V -
variate permutation distribution of U = (U1, . . . , UV ) is not multinomial because

∑
h ϑh is generally

different from 1; however, it is such that all its univariate marginals are binomials. From this point
of view, a multinomial variable may be seen as either multivariate or univariate multiparametric,
whereas U = (U1, . . . , UV ) is typically multivariate.

From the foregoing, we may argue that it is rather difficult to find general solutions for these
problems outside the NPC method. As an example of an application to a real problem, let us
consider a data set related to an epidemiological study on the quality of care in β-thalassaemia,
conducted on 446 subjects in 15 Italian centres specializing in the management and care of this
disease (Pesarin, 2001).

The study was carried out shortly before the introduction of a modified formulation of a specific
drug D currently used for treatment of this disease (occasion 1), and approximately one year
later, when the modified formulation Dm was available to patients (occasion 2). Each patient was
examined on both occasions with respect to two different binary variables, so that observations are
paired bivariate.

The modified formulation Dm aims to reduce the side-effects which may occur during subcuta-
neous infusion of the drug. These side-effects may appear as adverse reactions at the injection site,
called local adverse events (variable Y1), such as skin irritation, swelling or itching. Occasionally
infusion of this kind of drug may also cause so-called systemic symptoms (variable Y2), such as
myalgia, fever or headaches.

The occurrence of adverse events may be related to several factors such as the mechanical effects
of the infusion process, or a subjective reaction to either the active ingredient or to by-products
generated during the preparation of the drug. Hence, evaluation of the tolerability profile and of
the comparative incidence of both local and systemic adverse events between the two formulations
D and Dm of the drug was included as part of a broader epidemiological study on the quality of
care in β-thalassaemia (Arboretti et al., 1997).
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Table 6.1 Adverse events in β-thalassaemia patients

Y11 Y12 Y21 Y22 f

0 0 0 0 340
0 1 0 0 15
0 1 0 1 13
1 0 0 0 22
1 0 1 0 23
1 1 0 0 6
1 1 0 1 7
1 1 1 0 3
1 1 1 1 17

Table 6.2 Two marginal tables derived from Table 6.1

Y11\Y12 0 1

0 340 28

1 45 33

Y21\Y22 0 1

0 383 20

1 26 17

Paired bivariate data from this study are reported in Table 6.1, where only the presence (≡ 1) or
absence (≡ 0) of adverse events is considered. For instance, for the response point (Y11 = 0, Y12 =
1, Y21 = 0, Y22 = 0), the second row contains 15 individuals. Note that all omitted combinations
of responses have no individuals (e.g. the response point (Y11 = 0, Y12 = 0, Y21 = 0, Y22 = 1) has
no individuals). Two marginal tables are displayed in Table 6.2.

Formally, we test H0 : {(Y11
d= Y12)

⋂
(Y21

d= Y22)} against H1 : {(Y11
d
>Y12)

⋃
(Y21

d
>Y22)}

because there is a specific interest in whether the new formulation Dm causes an overall
stochastic reduction in adverse events. The test is thus a bivariate McNemar case. With
B = 4000 CMC iterations, the two partial p-values are λ̂Y1 = 0.025, λ̂Y2 = 0.264, and the
combined p-value, obtained by using a direct combination function on standardized partial tests,
is λ̂′′ = 0.051, which is not significant at α = 0.05. Standardized partial tests have the form
T ∗h =

∑
i XhiS

∗
i /(
∑

i X
2
hi)

1/2, j = 1, 2, where X1 = Y12 − Y11 and X2 = Y22 − Y21.
The combined p-value, being close to significance, may suggest further examination of the

properties of the modified drug formulation, possibly by considering responses with more than two
ordered categories, according to the theory in next subsection, or by including other informative
variables. Note that the marginal p-values obtained by normal approximation of related binomials
are λ1 = 0.0233 and λ2 = 0.288 respectively.

6.2.1 An Extension of the Multivariate McNemar Test

Let us consider the extensions of univariate McNemar tests, discussed above, where k ordered
categories for ‘differences’ (A1, . . . , Ak) were considered, instead of three (−, 0,+) see
Example 6, 2.6. As a multivariate extension, let us consider the multivariate ‘difference’ response
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[Xh ∈ (Ah1, . . . , Ahkh), h = 1, . . . , V ], where classes on the hth component variable satisfy kh > 2,
where the hypotheses are:

H0 :
{

Y1
d= Y2

}
=


V⋂
h=1

�kh/2�⋂
c=1

[Pr(Ahc) = Pr(Ahkh−c+1)]


against alternatives of the form

H1 :

{
Y1

d

< 	= > Y2

}
=
{⋃

h

⋃
c

[Pr(Ahc) < 	= >Pr(Ahkh−c+1)]

}
.

As an extension of the test T ∗ω =
∑�k/2�

c=1 [f ∗(c)− νc/2]/
√
νc/4, let us consider the direct combi-

nation of standardized partial tests, that is,

T ′′∗ =
V∑

h=1

ϕh


�kh/2�∑
c=1

[f ∗h (c)− νhc/2]
(νhc

4

)−1/2

 ,

where again ϕh corresponds respectively to ‘+’, the absolute value or ‘−’, according to whether
the specific hth sub-alternative is ‘<’, ‘	=’, or ‘>’. Of course, instead of direct combination, we
may also consider any other combining function. Extensions when different degrees of importance
for ‘differences’ related to each component variable, ωhc (say), are to be considered, and those in
relation to chi-square are left to the reader as exercises.

6.3 Multivariate Goodness-of-Fit Testing for Ordered Variables
Let us first observe that all goodness-of-fit test statistics presented in Section 2.8 are nothing
more than NPCs by direct combining functions of a set of partial tests. For instance, tests for
the response variable X ∈ (A1 ≺ . . . ≺ Ak) in relation to the Anderson–Darling T ∗D =

∑k−1
j=1 N

∗
2j ·[

N·j · (n−N·j )
]−1/2

, and used for testing the null hypothesis

H0 :
{
X1

d= X2

}
=


k⋂
j=1

F1(Aj ) = F2(Aj )


against the alternative

H1 :

{
X1

d
>X2

}
=
⋃

j

[F1(Aj ) < F2(Aj )]

 ,

can be seen as the direct combination of standardized partial tests T ∗j = N∗
2j ·

[
N·j · (n−N·j )

]−1/2
,

each suitable for testing the partial hypotheses H0j : F1(Aj ) = F2(Aj ) against H1j : F1(Aj ) <

F2(Aj ), j = 1, . . . , k − 1.
As a multivariate extension, let us consider one representation of the two-sample multivariate

problem. This situation to some extent corresponds to a problem of componentwise multivariate
monotonic inference. To this end, let us assume that the response variable is V -dimensional ordered
categorical, X = (X1, . . . , XV ), with respective numbers of ordered classes k = (k1, . . . , kV ). Units
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n1 and n2 are independently observed from X1 and X2 respectively, each related to a treatment
level. The hypotheses to be tested are

H0 :
{

X1
d= X2

}
=


V⋂
h=1

kh−1⋂
j=1

(
Fh1j = Fh2j

)
against H1 : {X1

d
>X2} = {

⋃
h

⋃
j (Fh1i < Fh2i )}, where Fh1j and Fh2j play the role of CDFs for

the j th category of the hth variable in the first and second groups, respectively.
This problem (see Wang, 1996; Silvapulle and Sen, 2005) is considered to be extremely difficult

when approached using the likelihood ratio method and, until now, no satisfactory solutions have
been proposed in the literature (see Silvapulle and Sen, 2005).

Within the NPC approach the solution to this extended problem is now straightforward.
We may consider the same kind of partial tests previously discussed, for instance, T ∗hj =
N∗

h2j , or T ∗hj = N∗
h2j ·

[
N·j · (n−N·j )

]−1/2
j = 1, . . . , kh − 1, h = 1, . . . , V ; hence, we may

proceed with Fisher’s NPC, T ∗′′F = −∑h

∑
j log(L̂∗hj ), or with the direct combination T ∗′′D =∑

hj N
∗
h2j ·

[
N·j · (n−N·j )

]−1/2
.

In a two-sample problem of non-dominance, where the alternative is H1 : {X1

d

	= X2} ={⋃V
h=1

⋃kh−1
j=1 (Fh1j 	= Fh2j )

}
, the solution becomes

T ∗2
D =

V∑
h=1

kh−1∑
j=1

(
N∗

2hj −N∗
1hj

)2 [
Nh·j (n−Nh·j )

]−1
.

It is worth noting that T ∗2
D is not the square of T ∗′′D ; however, it does correspond to one of the

possible analogues of Hotelling’s T 2 test for ordered categorical variables.
The extension to the multivariate C-sample case, C > 2, considers the hypotheses

H0 :
{

X1
d= . . .

d= XC

}
=
{⋂

hi
(Fh1i = . . . = FhCi)

}
against H1 = {H0 is not true}. This extension, being related to a one-way MANOVA design for
ordered categorical variables, is in some senses straightforward. In fact, we may consider partial
test statistics such as

T ∗hj =
C∑

c=1

nc(F̂
∗
hcj )

2, j = 1, . . . , kh − 1, h = 1, . . . , V ,

where F̂ ∗hcj = N∗
hcj /nc, and one NPC is Fisher’s T ∗′′F = −∑hj log(L̂∗hj ), where symbols and struc-

tures have obvious meanings.
Alternatively, we may make use of the direct combination function applied to partial

Anderson–Darling type tests T 2
ADh , one for each component variable. Consequently,

T ∗2
MD =

V∑
h=1

C∑
c=1

kh−1∑
j=1

(
F̂ ∗hcj − F̄h·j

)2 [
F̄h·j · (1− F̄h·j ) · (n− nc)/nc

]−1
,

where F̄h·j = Nh·j /n and Nh·j =
∑

c Nhcj .



Analysis of Multivariate Categorical Variables 203

6.3.1 Multivariate Extension of Fisher’s Exact Probability Test

Let us now suppose that the responses of the goodness-of-fit multidimensional problem are binary,
so that Xhci = 0 or 1, i = 1, . . . , nj , c = 1, 2, h = 1, . . . , V . Again, the hypotheses under
test are

H0 :

{
V⋂

h=1

[Xh1
d= Xh2]

}
=
{

V⋂
h=1

H0h

}

against, say, the dominance alternative H1 : {⋃h[Xh1
d
>Xh2]} = {⋃h H1h}. For this problem, appro-

priate permutation partial tests are

T ∗h =
∑

i
X∗h1i , h = 1, . . . , V .

Note that if V = 1, this problem corresponds to Fisher’s well-known exact probability test, in the
sense that the sub-hypotheses are tested by partial Fisher exact probability tests. If V > 1, we have
a natural multivariate extension of Fisher’s exact test, which may be solved effectively using the
NPC method.

6.4 MANOVA with Nominal Categorical Data
This section considers an extension of a multivariate permutation one-way ANOVA procedure to
cases in which responses are nominal categorical . This kind of problem is quite common, especially
in such areas as clinical trials, psychology and social sciences, in which many nominal categorical
variables are observed.

For each unit i = 1, . . . , n, let us assume that the observed responses have the form of V

categorical variables X = (X1, . . . , XV ). Also assume that the data are partitioned into C groups
or samples of size nc, c = 1, . . . , C, according to C levels of a symbolic treatment, and the V

categorical variables may respectively present k1, . . . , kV classes. Thus, the hth variable takes values
in the support (Ah1, . . . , Ahkh).

The data set X = {Xhci , i = 1, . . . , nc, c = 1, . . . , C, h = 1, . . . , V } may also be writ-
ten in accordance with the unit-by-unit representation of individual records, such as
X = {Xh(i), i = 1, . . . , n, h = 1, . . . , V ; n1, . . . , nC}.

The following assumptions are made: (i) the model for treatment effects produces distributional
differences on some (or all) of the V categorical variables without restrictions; (ii) data vectors are
i.i.d. within groups, and groups are independent; (iii) all marginal distributions of the variables X
are non-degenerate; (iv) component variables (X1, . . . , XV ) are non-independent (see Joe, 1997,
for the notion of multivariate dependence on categorical variables). The hypotheses under test are

H0 : {P1 = . . . = PC} =
{

X1
d= . . .

d= XC

}
against H1 : {H0 is not true}, where Pc is the underlying distribution of X in the cth group.

The hypotheses and assumptions are such that the permutation testing principle can be properly
applied. In any case, the complexity of underlying dependence structures among the V variables is
such that one overall test statistic is very difficult to find directly, especially in a full parametric set-
ting. Thus, the problem can be solved by considering a set of V partial tests, one for each component
variable, followed by their NPC, provided that all k partial tests are marginally unbiased. This proce-
dure is appropriate because, by assumption, the hypotheses may be equivalently broken down into
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H0 :

{
V⋂

h=1

(Xh1
d= . . .

d= XhC)

}
=
{

V⋂
h=1

H0h

}
,

against H1 :
{⋃

H1h
}
, which is much easier to process. In particular, H0h : {Xh1

d= . . .
d=

XhC}, h = 1, . . . , V , indicates the equality in distribution among the C levels of the hth variable Xh.
We observe that for each of the V sub-hypotheses H0h, a permutation test statistic such as

Pearson’s chi-square is almost always appropriate; that is,

X∗2
h =

C∑
c=1

kh∑
j=1


(
f ∗hcj − f̂hcj

)2

f̂hcj

 ,

where, as usual, f̂hcj = n · fh·j /nc, fh·j =
∑

c fhcj , f ∗hcj =
∑Nc

i=Nc−1
I[X∗h(i) ∈ Ahj ] and Nc =∑

r≤c nr . Thus, the nonparametric direct combination X∗2
D =⋃h X

∗2
h provides for a global solution.

Alternatively, it is possible to apply any combining function provided that, according to theory, all
partial tests are transformed into their permutation p-values.

The extension to mixed variables, some nominal, some ordered categorical and some quantitative,
is now straightforward. This can be done by separately combining the nominal, ordered categorical
and quantitative variables, and then by combining their respective p-values into one overall test.
Details are left to the reader.

6.5 Stochastic Ordering

6.5.1 Formal Description

In many dose-response studies (see Example 7, 4.6), in the presence of ordered categorical
responses, it is of interest to test certain order relations on the distributions of the response
variables and to consider multivariate response variables. Let us suppose that, in a dose-response
experiment, C different doses of a treatment are administered to C different groups of patients. Let
Xci = (X1ci , . . . , XVci ) be the response on V variables for the ith subject randomly assigned to
treatment dose c, c = 1, . . . , C, i = 1, . . . , nc, and the total number of observations n =∑C

c=1 nc.
Let us assume that the support of the hth categorical variable Xh (h = 1, . . . , V ) is parti-

tioned into kh ≥ 2 ordered categories A1 ≺ . . . ≺ Akh . Moreover, Xc1, . . . , Xcnc are nc i.i.d.
V -dimensional variables with marginal COFs Fhc(Aj ) = Pr

{
Xhc ≤ Aj

}
, j = 1, . . . , kh, h =

1, . . . , V , c = 1, . . . , C.
Stochastically ordered random vectors (see Marshall and Olkin, 1979; Silvapulle and Sen, 2005)

have received much less attention than inference based on stochastically ordered univariate random

variables. The C multivariate distributions are said to be stochastically ordered when X1
d≤ X2

d≤
. . .

d≤ XC , if and only if E[ϕ(X1)] ≤ E[ϕ(X2)] ≤ . . . ≤ E[ϕ(XC)] holds for all increasing real
functions ϕ(·) such that the expectation exists, where at least one inequality is strict.

We wish to test the null hypothesis H0 : {X1
d= . . .

d= XC}, against the alternative H1 : {X1
d≤

. . .
d≤ XC and X1, . . . , XC are not equal in distribution}, that is, at least one inequality is strict.

Bacelli and Makowski (1989) prove that H0 holds if and only if X1, . . . , XC have the same
marginal distributions, namely

Fh1(x) = . . . = FhC(x), ∀x, h = 1, . . . , V .
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As a consequence, H1 holds if and only if Xh1
d≤ . . .

d≤ XhC , h = 1, . . . , V , and X1, . . . ,XC are
not equal in distribution, expressed as

Fh1(x) ≥ . . . ≥ FhC(x), ∀ x, h = 1, . . . , V ,

with at least one strict inequality holding at some real x and for at least one h.
In complex problems it is preferable to regard H0 as the intersection of a number of partial

hypotheses and H1 as the union of the same number of corresponding partial alternatives, in
symbols

H0 :

{
V⋂

h=1

H0h

}
=
{

V⋂
h=1

Fh1(x) = . . . = FhC(x), ∀ x
}

and

H1 :

{
V⋃

h=1

H1h

}
=
{

V⋃
h=1

Fh1(x) ≥ . . . ≥ FhC(x), ∀ x and not H0h

}
.

6.5.2 Further Breaking Down the Hypotheses

Let us consider the hth sub-problem of testing H0h against H1h. A nonparametric rank solution
for this problem is proposed by the Jonckheere–Tepstra test (Jonckheere, 1954). El Barmi and
Mukerjee (2005) proposed an asymptotic test by using the sequential testing procedure described
in Hogg (1962). This procedure consists in sequentially testing H0hj : {Fh1 = . . . = Fh(j−1) = Fhj }
against H1hj : {Fh1 = . . . = Fh(j−1) ≥ Fhj }, j = 2, . . . , C, with strict inequality holding for some
x, as in two-sample tests by pooling the first j − 1 samples for testing H0jh. Thus H0h and H1h

can be expressed as

H0h :
C⋂

j=2

{
H0jh

} = C⋂
j=2

{
Fh1 = . . . = Fh(j−1) = Fhj

}
and

H1h :


C⋃

j=2

H1hj

 =


C⋃
j=2

[
Fh1 = . . . = Fh(j−1) ≥ Fhj

] ,

respectively. However, H0h and H1h can also be expressed as

Hh0 :


C⋂

j=2

H0hj

 =


C⋂
j=2

[Fh1 = . . . = Fh(j−1) = Fhj = . . . = FhC]

 ,

Hh1 :


C⋃

j=2

H1hj

 =


C⋃
j=2

[Fh1 = . . . = Fh(j−1) ≥ Fhj = . . . = FhC]

 ,

where for testing H0hj against H1hj we refer to a two-sample problem by pooling the first j − 1
and the last C − j + 1 samples, j = 2, . . . , C.



206 Permutation Tests for Complex Data

6.5.3 Permutation Test

A parametric solution to this problem is very complex, especially when C > 2 (Wang, 1996). In
order to tackle this problem in a permutation context (see also Example 7, 4.6), let us consider
the solution proposed in Finos et al. (2007). For any j ∈ {2, . . . , C}, the whole data set is split
into two pooled pseudo-groups, where the first is obtained by pooling together data from the
first j − 1 (ordered) groups and the second by pooling the remaining C − j + 1 groups. In other
words, we define the first pooled pseudo-group as X1(j) = X1

⊎
. . .
⊎

Xj−1 and the second as
X2(j) = Xj

⊎
. . .
⊎

XC, j = 2, . . . , C, where Xj = {Xji , i = 1, . . . , nj } is the V -dimensional
data set in the j th group.

Under the null hypothesis, for each pair of pseudo-groups data are exchangeable among pseudo-
groups because related pooled variables satisfy the relationships X1(j)

d= X2(j), j = 2, . . . , C.

Under the alternative, the relation X1(j)
d
< X2(j) corresponds to the monotonic stochastic domi-

nance between any pair of pseudo-groups. This suggests that the hypotheses can be written in the
equivalent form

H0 :


V⋂

h=1

C⋂
j=2

H0hj

 =


V⋂
h=1

C⋂
j=2

[Xh1(j)
d= Xh2(j)]

 ,

against

H1 :


V⋃

h=1

C⋃
j=2

H1hj

 =


V⋃
h=1

C⋃
j=2

[Xh1(j)
d≤ Xh2(j)]

 ,

where Xh1(j) and Xh2(j) are the hth component variable of X1(j) and X2(j), respectively.

Let us look at the j th sub-hypothesis for the hth component variable H0hj : {Xh1(j)
d= Xh2(j)}

against H1hj : {Xh1(j)
d≤ Xh2(j)}. We note that the related sub-problem corresponds to a two-sample

comparison for restricted alternatives, a problem which has an exact and unbiased permutation
solution (see Pesarin, 2001; see also Example 7, 4.6).

Observed data correspond to a 2× kh contingency table as in Table 6.3, where fh1(j)r =
#(Xh1(j) ∈ Ar) and fh2(j)r = #(Xh2(j) ∈ Ar) are the observed frequencies, Nh1(j)r =

∑
s≤r fh1(j)s

and Nh2(j)r =
∑

s≤r fh2(j)s are the cumulative frequencies, Nh·(j)r = Nh1(j)r +Nh2(j)r and
fh·(j)r = fh1(j)r + fh2(j)r are the marginal frequencies, n1(j) =

∑
r fh1(j)r and n2(j) =

∑
r fh2(j)r

are the sample sizes, and n = n1(j) + n2(j) =
∑

j nj is the total sample size.
In order to avoid computational problems, let us assume that marginal frequencies fh·(j)r , r =

1, . . . , kh, are all positive, in the sense that we remove class r from analysis if fh·(j)r = 0.

Table 6.3 A typical 2× kh contingency table

Categories Absolute frequencies Cumulative frequencies

A1 fh1(j)1 fh2(j)1 fh·(j)1 Nh1(j)1 Nh2(j)1 Nh·(j)1
. . . . . . . . . . . . . . . . . . . . .

Ar fh1(j)r fh2(j)r fh·(j)r Nh1(j)r Nh2(j)r Nh·(j)r
. . . . . . . . . . . . . . . . . . . . .

Akh fh1(j)kh fh2(j)kh fh·(j)kh Nh1(j)kh Nh2(j)kh Nh·(j)kh
n1(j) n2(j) n – – –
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Exchangeability under H0hj implies that the permutation testing principle may be properly
applied. This implies taking into consideration the permutation sample space generated by all
permutations of pooled data set X, that is, the set of all possible tables in which the marginal
frequencies are fixed.

To test H0hj against H1hj , we may consider the following as a permutation test statistic:

DT
∗
hj =

kh−1∑
r=1

(
N∗

h1(j)r −N∗
h2(j)r

) [
4
Nh·(j)r

n
· n−Nh·(j)r

n
· n1(j)n2(j)

n− 1

]−1/2

,

which is permutationally equivalent to

DT
∗
hj =

kh−1∑
r=1

N∗
h1(j)r ·

[
Nh·(j)r · (n−Nh·(j)r )

]−1/2
,

with Nh·(j)r = Nh1(j)r +Nh2(j)r = N∗
h1(j)r +N∗

h2(j)r , in which N∗
h1(j)r =

∑
s≤r f

∗
h1(j)s and

N∗
h2(j)r =

∑
s≤r f

∗
h2(j)s, r = 1, . . . , kh − 1, are permutation cumulative frequencies. Note that DT

corresponds to the discrete version of a statistic following the Anderson–Darling goodness-of-fit
test for dominance alternatives, which consists of a comparison of two EDFs, weighted by the
reciprocals of permutation standard deviations (D’Agostino and Stephens, 1986).

Of course, many other test statistics may be useful. For example, we may consider: (a)
KM T ∗hj = supr (N

∗
h1(j)r −N∗

h2(j)r ), which is a discretized version for restricted alternatives of the
Kolmogorov–Smirnov test; (b) CM T ∗hj =

∑
r (N

∗
h1(j)r −N∗

h2(j)r ), which is a discretized version of
the Cramér–von Mises test.

Within the NPC approach the solution to this multivariate problem is now straightforward. To
this end, we may consider the same types of partial tests introduced to solve the single partial
problems, for instance DT

∗
hj , h = 1, . . . , V , j = 2, . . . , C. Hence, we may proceed with an NPC,

for instance using Fisher’s combining function T ′′F = −
∑

h

∑
j log(λ̂hj ) where the λ̂hj are the p-

values of the partial tests according to the permutation distribution. This type of combination is
rather computer-intensive, and due to its good power behaviour when sample sizes are sufficiently
large, we suggest using a direct combination function on the standardized partial tests such as DT

∗
hj .

Thus, one solution for restricted alternatives is T ′′∗MD =
∑

h

∑
j DT

∗
hj . Since the partial tests are all

exact and marginally unbiased, their NPC provides for an exact overall solution.

6.6 Multifocus Analysis

6.6.1 General Aspects

This section presents a nonparametric procedure which is useful for testing independence in distri-
bution for categorical variables between two or more populations (see Finos and Salmaso, 2004).
Let us consider a categorical variable and two independent samples selected from two different
populations (groups). The aim is to test the independence in distribution of the two populations.

Data can be represented by means of a two-way contingency table of observed frequencies as in
Table 6.4, where fir is the absolute frequency for the rth category in sample i, f·r =

∑
i fir is the

marginal frequency for the rth category, and ni is the size of sample i (i = 1, 2; r = 1, . . . , k).
The classical solution is the χ2 test which is generally valid but not very powerful when dealing
with sparse tables (Agresti, 2002).

The following testing procedure, proposed by Finos and Salmaso (2004), called multifocus analy-
sis , involves a nonparametric test which considers the categorical variable as a whole (global testing
or weak FWE control), and each category as a single dummy variable (strong control; Hochberg
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Table 6.4 Two-way contingency table for two independent samples

Categories

Sample A1 A2 . . . Ak

1 f11 f12 . . . f1k n1

2 f21 f22 . . . f2k n2

f·1 f·2 . . . f·k n

and Tamhane, 1987; and Sections 5.1–5.4). This property is essential when the inference is aimed
not only at a global evaluation but also at the identification of the categories which most distinguish
between two groups (e.g. cases from controls).

6.6.2 The Multifocus Solution

What distinguishes multifocus analysis is the decomposition of the contingency table into k two-
by-two sub-tables with the aim of verifying the equality in distribution of each category in the
two samples. The p-values referring to the respective sub-tables are nonparametrically combined
according to the NPC of dependent permutation tests as discussed in Chapter 4.

Let us use Xi to denote the categorical response variable corresponding to ith population, taking
values in (A1, A2, . . . , Ak), and πir to denote the probability that Xi falls in the rth category,
πir = Pr {Xi ∈ Ar} , i = 1, 2, r = 1, . . . , k. The probability distributions of X1 and X2 are shown
in Table 6.5.

The relative frequency fir/ni (conditionally on the ith row of the contingency table) is a sample
estimate of probability πir . The hypothesis of the testing problem can be written as

H0 :

{
k⋂

r=1

H0r

}
=
{

k⋂
r=1

π1r = π2r

}

versus H1 :
{⋃

r H1r
} = {⋃r π1r 	= π2r

}
. Hence, the (global) null hypothesis is true if each of the

null sub-hypotheses is true, while the (global) alternative hypothesis is true if at least one of the
alternative sub-hypotheses is true or equivalently if at least one null sub-hypothesis is false.

The generic table of frequencies (Table 6.4) can be decomposed into k sub-tables made up from
the comparison of each single category against the remaining ones gathered into a single cell as
shown in Table 6.6 and thus considering k separate tests.

In Table 6.6, Ār represents the set of all categories excluding Ar , that is, Ār = {A1, A2,

. . . , Ak} \ {Ar }, and obviously ni − fir =
∑

s 	=r fis , i = 1, 2, r = 1, . . . , k. A possible choice for

Table 6.5 Probability distributions of the two populations

Categories

Population A1 A2 . . . Ak

X1 π11 π12 . . . π1k 1
X2 π21 π22 . . . π2k 1
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Table 6.6 Contingency table for category Ar

Sample Categories

Ar Ar

1 f1r n1 − f1r n1

2 f2r n2 − f2r n2

f·r f·2 n

the test statistic is given by the χ2 statistic whose formulation is

χTr =
(
f 1r − f̂1r

)2

f̂1r

+
[
(n1−f 1r )−

(
n1 − f̂1r

)]2

(
n1 − f̂1r

) +
(
f 2r − f̂2r

)2

f̂ 2r

+
[
(n2−f 2r )−

(
n2 − f̂2r

)]2

(
n2 − f̂2r

) ,

where f̂ ir = ni · f·r /n, i = 1, 2, r = 1, . . . , k. Observing that χTr is a monotonic function of(
f 1r − f̂1r

)2
/f̂ 1r and f̂ 1r is constant with respect to each permutation (therefore to each point on

the permutation space), the following test statistic is permutationally equivalent to χTr because any
monotonic transformation does not change the ordered statistic and therefore leaves the p-value
calculation unchanged (Pesarin, 2001 and Section 2.4):

T ∗r =
(
f ∗1r − f̂1r

)2
.

In order to show how to construct k separate tests for the k sub-hypothesis, let us now pass from
the 2× k table representation shown in Table 6.4 to a matrix representation. In this case there will
be n1 + n2 rows (n1 and n2 being the size of the two samples) and two columns: the first is the
vector of group 1 or 2 labels (treatment factor), the second represents the variable categories for
each individual observation.

The definition of k (dichotomous) dummy variables from the categorical variable (second column)
represents a solution to our requirements. Testing the association of the rth dichotomous variable
with the vector indicating the group of origin verifies the corresponding rth sub-hypothesis. Two
possible choices are provided by Fisher’s exact test or by the test proposed here. By adopting this
test for the single sub-hypotheses it is also possible to evaluate directional alternative hypotheses
(in this case permutationally equivalent to Fisher’s exact test).

In order to find a test on the whole categorical variable of the two groups it is necessary to
consider a test which combines the k values of p calculated on the sub-tables. In this case the
problem of weak control of multiplicity arises (Hochberg and Tamane, 1987 and Sections 5.1–5.4).
To produce a valid test for the combination of a multiplicity of p-values, we have to guarantee
that such a global test is unbiased and thus produces p-values below the significance level α with
a probability less than or equal to α itself.

Except for the field of permutation methods, such a combination seems problematic. The depen-
dence between the k tests makes it impossible to use the classic Fisher combination (T ′′F =
−∑r log(λr )) with χ2

2k asymptotic distributions (Folks 1984), where λr is the p-value of the
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rth partial test. The alternative is provided by Bonferroni’s combination, λ′′B = k minr (λc). How-
ever, this combination is known for its loss of power when there is dependence between p-values
(Hochberg and Tamhane, 1987; Westfall and Young, 1993) and the bond which arises due to the
fixing of the marginal quantity leads to a dependence between the categories which cannot be
omitted from the problem.

The adoption of an adequate permutation method makes it possible to immediately control
the dependences. The global p-value obtained from the nonparametric combination of the p-values
relating to the sub-hypotheses is an exact test and thus guarantees a weak control of the multiplicity.
Such a p-value refers to the intersection of the sub-hypotheses previously shown. The inference in
this case must be limited to the global evaluation of the phenomenon. Given the approach used, it
is possible to give greater detail to the analysis using the tests on the single sub-hypotheses. This
allows us to decide for which of the k categories of a variable the differences between the two
samples are significant. Note that the tests relating to the sub-hypotheses are separate tests for the
independence hypothesis for each individual category r = 1, . . . , k, and the dependences between
the tests are maintained by the permutation strategy, without having to model it.

A p-value adjustment for multiplicity is again necessary in this case. Here, however, the cor-
rection must concern each individual p-value since we are interested in making a decision about
each one. A solution is provided by a closed testing procedure (Finos et al., 2003).

6.6.3 An Application

Let us consider an application concerning a case–control study in which the dependent variable is
the haplotypical expression in a chromosome 17 marker. The aim of the study is to estimate the
association between the group variable (cases/controls) and the marker (the categorical variable).
Data are shown in Table 6.7.

The association test was performed using χ2 (asymptotic and exact) and TSM tests (Sham and
Curtis, 1995). Moreover, the analysis followed the multifocus approach. Ten thousand CMC itera-
tions were carried out for the four tests based on a permutation strategy.

All test p-values are less than 0.05, hence the tests are significant when α = 0.05. In par-
ticular, asλχ2 = 0.043, exλχ2 = 0.031 and λSM = 0.018. The tests based on multifocus analysis,
with the Fisher and Tippett combining function, give the results λMuF = 0.021 and λMuT = 0.009,
respectively.

Table 6.8 shows the raw p-values and those adjusted for multiplicity using Tippett’s combination
for each category. The alleles A and C are individually significant at a level of α = 0.05 (0.0376
and 0.0015, respectively). After adjustment for multiplicity (Tippett’s step-down procedure; Finos
et al., 2003) only allele C remains significant (0.0097).

The analysis was performed in both R and MATLAB. Thus two scripts were created. From the
chrom17 folder on the book’s website it is possible to download the file chrom17m.txt, where
the R script is enclosed, and the file chrom17m.m, which allows the execution of the analysis in

Table 6.7 Frequencies for the two treatment groups in a chromosome 17 marker

Haplotypes

Group A B C D E F G H I J
Cases 19 1 51 3 4 6 29 25 6 0 144
Controls 35 1 29 6 5 3 29 38 5 2 153

54 2 80 9 9 9 58 63 11 2 297
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Table 6.8 Association of the locus with the illness:
single haplotypes using Tippett’s combining function

Haplotypes Raw p-values Adjusted p-values

A 0.038 0.214
B 1.000 1.000
C 0.001 0.009
D 0.507 0.954
E 1.000 1.000
F 0.324 0.873
G 0.882 0.993
H 0.121 0.449
I 0.768 0.993
J 0.492 0.935

MATLAB. The data sets for the analysis in R and MATLAB are respectively stored in the files
chrom17m.csv and chrom17m.xls.

6.7 Isotonic Inference

6.7.1 Introduction

Case–control studies are important in genetic epidemiology for establishing an association between
genes and certain pathologies. A typical 3× 2 contingency table for such studies is shown in
Table 6.9. The n1 cases (subjects with the disease) and the n2 controls (healthy subjects) are
classified according to the genotypes: we distinguish between subjects with zero (negative), one
(heterozygous) and two (homozygous) copies of the rare allele A.

The odds ratios

θAa =
[
Pr {disease|Aa} /Pr {no disease|Aa}][
Pr {disease|aa} /Pr {no disease|aa}]

and

θAA =
[
Pr {disease|AA} / Pr {no disease|AA}][
Pr {disease|Aa} / Pr {no disease|Aa}]

Table 6.9 Contingency table of a case–control study of
association between genes and a given pathology

Genotypes Cases Controls

aa faa,1 faa,2 naa

Aa fAa,1 fAa,2 nAa

AA fAA,1 fAA,2 nAA

n1 n2 n
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can be consistently estimated by ORAa = fAa,1faa,2/fAa,2faa,1 and ORAA = fAA,1fAa,2/fAA,2

fAa,1, respectively. The significance of the deviation of these ratios from one can be tested by
the usual chi-square test or, for small samples, by Fisher’s exact test.

In genetic epidemiology, association studies are useful for investigating candidate disease genes.
Association studies are case–control population-based studies where unrelated affected and unaf-
fected individuals are compared. Association between an allele A at a gene of interest and the
disease under study means that the given allele occurs at a significantly higher frequency among
affected individuals than among control individuals. For a biallelic locus with common allele a and
rare allele A, individuals may carry none (subjects with genotype aa), one (subjects with genotype
Aa) or double (subjects with genotype AA) copies of the A allele. Traditionally a test for allelic
association involves testing for the distribution of case/control genotypes using the likelihood ratio
chi-square statistic (asymptotically distributed as χ2 with 2 d.f.) or the Fisher exact test.

The effect of an allele can be described as recessive, codominant or dominant. In the recessive
case, there is an effect only in the presence of two copies of allele A (genotype AA). In the
codominant case, allele A has an additive effect: genotype Aa carries a larger (or smaller) risk of
illness than genotype aa, and AA carries a larger (or smaller) risk of illness than genotype Aa.
Obviously, AA carries a larger (or smaller) risk of illness than genotype aa. In the dominant case,
the effect of the A allele is the same in the AA and Aa genotype. In this situation, there is no relative
risk (or protection) between AA and Aa, but only between AA (or Aa) and aa. For these reasons,
differences in the risks should be tested for while maximizing over the restricted parameter space
that corresponds to plausible biological models: risk of AA ≥ (≤) risk of Aa ≥ (≤) risk of aa.

In case–control studies it is easy to obtain genotype-specific relative risk from odds ratios,
θAA = ρAA/ρAa and θAa = ρAa/ρaa , where ρh denotes the relative risk of h (h = aa, Aa, AA).
The null and alternative hypotheses are

H0 : {θAA = θAa = 1}

and

H1 : {[(θAA ≥ 1) ∩ (θAa ≥ 1)] XOR [(θAA ≤ 1) ∩ (θAa ≤ 1)]} ,

where at least one inequality is strong. These particular hypotheses were defined by Chiano and
Clayton (1998). From a statistical point of view, the alternative hypothesis is isotonic, i.e. the
variables are ordered in one sense. However, there is the further complication due to the exclusive
‘or’ (XOR) relation. This approach allows us to study genetic diseases for which the relative effect
of the putative allele (dominant, recessive or codominant) is not known, or in studies on related
genetic polymorphism that may be protective or deleterious with respect to the disease.

6.7.2 Allelic Association Analysis in Genetics

In the genetic configuration introduced by Chiano and Clayton (1998), the statistical problem we
are discussing can be formalized in the following way. Let us assume responses are bivariate and
that observed subjects are partitioned into two groups (as per a typical case–control study), so
that data may be represented as X = {(X1ji , X2ji), i = 1, . . . , nj, j = 1, 2}, where responses are
binary ordered categorical. Of course, in a more general setting we may also consider real-valued
responses, or any kind of ordered variables, with more than two dimensions and with more than
two groups. The hypotheses we are interested in are

H0 :
{(

X11, X21

)
d=
(
X12, X22

)}
=
{(

X11
d= X12

)⋂(
X21

d= X22

)}
,
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against the special isotonic set of alternatives,

H1 :


(
X11

d≥ X12

)⋂(
X21

d≥ X22

)
XOR(

X11
d≤ X12

)⋂(
X21

d≤ X22

)
 ,

where at least one inequality is strong, under H1 one and only one of the two bivariate stochastic
dominance relations is true, and the variable Xhj represents the hth response for the j th group
(h, j = 1, 2).

To facilitate interpretation, it is often useful to introduce a response model such as Xhji =
δhj (µh + Zhji), where δhj is the effect on the hth variable in the j th group, all other symbols
having obvious meanings. In accordance with this model, the hypotheses may be written as

H0 : {(δ11 = δ12 = 1)
⋂

(δ21 = δ22 = 1)}
against

H1 :
{[

(δ11 ≥ δ12 = 1)
⋂

(δ21 ≥ δ22 = 1)
]

XOR
[
(δ11 ≤ δ12 = 1)

⋂
(δ21 ≤ δ22 = 1)

]}
,

where at least one inequality in each ‘sub-alternative’ is strong. In the genetic context the alternative
hypothesis means that a gene is associated with a given disease so that, on affected individuals
(cases), at least one of the genotype frequencies with the putative allele increases XOR decreases
with respect to non-affected individuals (controls).

6.7.3 Parametric Solutions

Let us consider two possible solutions to the testing problem based on a parametric approach.
The first proposal, by Chiano and Clayton (1998), uses a reparametrization and Wilks’s likelihood
ratio chi-squared statistic. The second method, developed by El Barmi and Dykstra (1995) and
Dykstra et al. (1995), is based on the maximum likelihood estimator calculated from a multinomial
distribution.

Chiano and Clayton’s Method

Chiano and Clayton (1998) consider the formalization of the problem based on the odds ratios but
use the log transformations:

γAA = log θAA and γAa = log θAa.

Thus the hypotheses become

H0 : {γAA = γAa = 0}
against

H1 :
{
(γAA ≥ 0)

⋂
(γAa ≥ 0)

}
XOR

{
(γAA ≤ 0)

⋂
(γAa ≤ 0)

}
.

If regularity conditions hold, inference would be made with reference to Wilks’s likelihood ratio
chi-squared statistic:

� = 2
∑

nL (γ̂AA, γ̂Aa) log

[
L (γ̂AA, γ̂Aa)

L (0, 0)

]
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distributed as a χ2 with 2 d.f. Unfortunately, under such order restriction, Wilks’s regularity assump-
tions are not met since the null point (origin) is on the boundary of the parametric space. The
likelihood is therefore maximized subject to order constraints as follows. First, we obtain the
unrestricted maximum likelihood estimate (γ̂AA, γ̂Aa) of (γAA, γAa):

(1) if (γ̂AA, γ̂Aa) ∈
{
(γAA ≤ 0)

⋂
(γAa ≥ 0)

}⋃{
(γAA ≥ 0)

⋂
(γAa ≤ 0)

}
the maximum likelihood

estimate is recalculated under the constraint γ̂AA = 0 or γ̂Aa = 0;
(2) otherwise the maximum likelihood estimate corresponds to unrestricted solution (γ̂AA, γ̂Aa).

Hence, it turns out that the distribution of the likelihood ratio chi-square statistic can be repre-
sented as a mixture of two chi-square distributions:

� ∼ λ (γAA, γAa) χ
2
2 +

[
1− λ (γAA, γAa)

]
χ2

1 ,

where λ (γAA, γAa) is the probability that (γ̂AA, γ̂Aa) falls in the region indicated in (1), and it can
be approximated to

λ (γAA, γAa) = cos−1
(

ν12√
ν11ν22

)
/π,

where νij is the element in the ith and j th column of the 2× 2 matrix V(γ̂AA, γ̂Aa |H0).

Maximum Likelihood Approach

The case–control contingency table in Table 6.9 can be interpreted as two independent vectors
of data. The random sample of n1 cases is taken from a multinomial distribution with probability
vector π1 = (πaa1, πAa1, πAA1 ) while the n2 controls are taken from a multinomial distribution
(independent of the other) with parameter π2 = (πaa2, πAa2, πAA2 ). It is possible to derive the
nonparametric maximum likelihood estimators (MLEs) π̂1 and π̂2 under the hypotheses

H0 :
{
π1

LR= π2

}
against

H1 :

{
(π1

LR≤ π2) or (π1
LR≥ π2)

}
,

with at least one strict inequality, where π̂ j = (faaj /nj , fAaj /nj , fAAj /nj ), j = 1, 2. The symbol
LR
> (

LR
<) means that a likelihood ratio ordering exists between the distributions of two random vari-

ables. For example, X
LR
>Y means that for all a, b such that a < b, the conditional distribution of X

given X ∈ (a, b) is stochastically greater than the distribution of Y given Y ∈ (a, b), or equivalently
fX(t)/fY (t) is a non-decreasing function of t , where fX(t) and fY (t) are the density functions of X
and Y . Starting from the likelihood function L(π1,π2) ∝

∏
s π

fs1
s1 π

fs2
s2 , s ∈ {aa,Aa,AA}, through

reparameterizations and following an algorithm proposed by Dykstra et al. (1995) and El Barmi
and Dykstra (1995), it is possible to obtain the MLEs and perform a likelihood ratio test.

6.7.4 Permutation Approach

Considering the above testing problem, the pooled data set X is a sufficient statistic for the problem,
therefore a partial test statistic could be

T ∗h =
∑
i

∣∣X∗h2i −X∗h1i

∣∣ , h = 1, 2,
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and the null hypothesis should be rejected for high values of Th. A combination of partial p-values
λh allows us to calculate a global p-value which is useful for solving the global testing problem
by the NPC methodology.

An allele A at a gene of interest is said to be associated with the disease if it occurs at significantly
higher or lower frequencies among affected individuals than among control individuals. Given that
the effect of an allele can be recessive, codominant or dominant, the problem’s null hypothesis,
defined in terms of sample odds ratios (OR) and according to the permutation approach, can also
be expressed as

H0 :
{(

fAA,1 · fAa,2
d= fAA,2 · fAa,1

)
∩
(
fAa,1 · faa,2 d= fAa,2 · faa,1

)}
which allows a computationally easy solution. The two partial tests can be written as

H0AA :
{
fAA,1 · fAa,2

d= fAA,2 · fAa,1

}
versus

H1AA :


[
fAA,1 · fAa,2

d≥ fAA,2 · fAa,1

]
XOR[

fAA,1 · fAa,2
d≤ fAA,2 · fAa,1

]


and

H0Aa :
{
fAa,1 · faa,2 d= fAa,2 · faa,1

}
versus

H1Aa :


[
fAa,1 · faa,2

d≥ fAa,2 · faa,1
]

XOR[
fAa,1 · faa,2

d≤ fAa,2 · faa,1
]

 .

The permutation solution can be based on the partial statistics TAA = ORAA and TAa = ORAa .
Considering all the permutations of the rows of data set X, or (for computational convenience)
a random sample B of such permutations, and recalculating the frequencies of Table 6.9 and the
values T ∗AA and T ∗Aa , corresponding to each permutation (preserving the marginal values of the
contingency table n1, n2, naa, nAa and nAA), it is possible to calculate estimations of partial p-
values λ̂AA = #(T ∗AA ≥ T o

AA)/B and λ̂Aa = #(T ∗Aa ≥ T o
Aa)/B, where T o

h is the observed value of the
test statistic Th, that is, the value calculated on the observed data set X, T o

h = Th(X), h = 1, 2. The
application of a combining function ψ (·) allows us to obtain a p-value for the global test λ̂ψ =
ψ
(̂
λAA, λ̂Aa

)
, to be compared with the significance level α according to the classical decisional

rule of testing problems.

6.8 Test on Moments for Ordered Variables

6.8.1 General Aspects

An interesting and common testing problem is that of comparing two independent samples when
the response variables are ordered categorical. In particular, one-sided tests are very useful in
practical applications but very difficult to deal with. Traditional likelihood ratio tests need to know
the distribution under the null hypothesis but it is often not possible to find a plausible distribution
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of data or to perform a test for it, thus asymptotic and bootstrap approaches (Wang, 1996) or
nonparametric solutions (Pesarin, 2001) are required.

Let us denote by Xj (j = 1, 2) the random variable representing the response for the j th treat-
ment group. The hypothesis of interest is that response in treatment 1 is stochastically larger than
in treatment 2. Formally, we are interested in testing

H0 : {X1
d= X2} against H1 : {X1

d
>X2}.

The parametric solution for the multivariate case is even more difficult, especially when a large
number of component variables are present because it is difficult or impossible to describe the data
distribution function and asymptotic solutions are often not suitable.

Let us assume that the support of Xj (j = 1, 2) is partitioned into k ≥ 2 ordered categories
{Ar, r = 1, . . . , k} and that Xj = {Xji , i = 1, . . . , nj }, j = 1, 2, are two samples of i.i.d. obser-
vations. The null hypothesis can be written in terms of cumulative distribution functions Fj (Ar) =
Pr
{
Xj ≤ Ar

}
, j = 1, 2,

H0 : {F1(Ar) = F2(Ar), r = 1, . . . , k − 1},

and similarly the alternative hypothesis can be written as

H1 : {F1(Ar) ≤ F2(Ar), r = 1, . . . , k − 1, AND ∃r : F1(Ar) < F2(Ar)}.

6.8.2 Score Transformations and Univariate Tests

The testing problem in Section 6.8.1 can be decomposed into k − 1 partial problems, or equivalently
the hypotheses can be broken down into k − 1 sub-hypotheses, as

H0 :

{⋂k−1

r=1
[F1(Ar) = F2(Ar)]

}
,

and similarly the alternative can be written as

H1 :
{⋃

r
[F1(Ar) ≤ F2(Ar)], AND ∃r : F1(Ar) < F2(Ar)

}
.

We observe that under the null hypothesis, data are exchangeable between groups, thus it is
possible to calculate p-values according to the permutation distribution of a suitable test statistic
and apply the classical decision rule for the testing problem. Several contributions on stochastic
dominance problems can be found in the literature (see Silvapulle and Sen, 2005; Wilcoxon, 1945;
Mann and Whitney, 1947; Brunner and Munzel, 2000).

The following solution is based on the joint analysis’ of tests on sample moments. It
requires an initial transformation of ordered categories A1, . . . , Ak into numeric scores
w1, . . . , wk , that is, the application of an increasing function g (·) such that g (Ak) = wk . Thus
E
[
g (X)s

] =∑k
r=1 Pr {X = Ar}ws

r is the sth moment of g (X). It is well known that two
distributions of discrete variables, defined on the same support with k distinct real values, coincide
if and only if their first k − 1 moments are equal. As a matter of fact a characteristic function, like
a probability generating function, depends only on the first k − 1 moments (Jacod and Protter,
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2000). Thus, the global null hypothesis can be written as

H0 :

{
k−1⋂
s=1

E
[
g (X1)

s
] = E

[
g (X2)

s
]}

=
{

k−1⋂
s=1

k∑
r=1

[Pr {X1 = Ar } − Pr {X2 = Ar}]ws
r = 0

}
.

Since the inequality
⋃

s

{
E
[
g (X1)

s
]
>E

[
g (X2)

s
]}

is not equivalent to the stochastic domi-

nance of X1 over X2, the application of the test on moments requires us to assume X1
d≥ X2, or

equivalently to exclude X1
d
< X2. If this condition holds, then stochastic dominance is equivalent

to moment inequalities and the directional alternative hypothesis can be written as

H1 :

{
k−1⋂
s=1

E
[
g (X1)

s
]
>E

[
g (X2)

s
]}

where the opposite inequality is never true by assumption.
A permutation partial test for each of the k − 1 sub-hypotheses can be carried out using the

differences between the sample moments or permutationally equivalent statistics, such as the sample
moments of the first sample, as test statistics. Hence, the statistic for the sth partial test could be

T ∗s =
∑k

r=1w
s
r · f ∗1r

n1
, s = 1, . . . , k − 1,

where f ∗1r and n1 respectively denote the absolute permutation frequency of Ar and the sample
size in the first sample. NPC of partial tests allows us to calculate a p-value for the global test on
moments .

6.8.3 Multivariate Extension

The problem of two-sample tests on moments for restricted alternatives can be extended to the
multivariate case. The alternative hypothesis in this case is also called the componentwise stochastic
dominance hypothesis.

Let us use Xj =
(
X1j, . . . , XVj

)
, j = 1, 2, to denote the V -variate response for the j th population

and Ah1, . . . , Ahkh to denote the kh ordered classes of the support of the hth component variable.
The V -dimensional random vector X1 is stochastically larger then X2, or equivalently, X1 dominates

X2 (in symbols X1
d
>X2) if and only if E[g(X1)] ≤ E[g(X2)] holds for all increasing real functions

g(·) such that the expectation exists. Hence the multivariate extension of the testing problem can
be represented by

H0 :
{
X1

d= X2

}
=
{

V⋂
h=1

[
Xh1

d= Xh2

]}
,

H1 :

{
X1

d
>X2

}
=
{⋃

h

[
Xh1

d
>Xh2

]}
.

It is quite complex and often impossible to find a solution based on the maximum likelihood ratio
test (Wang, 1996). According to the NPC methodology, the testing problem can be decomposed
into V sub-problems: for each component variable a partial test can be carried out and the NPC
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makes it possible to solve the global testing problem taking into account the dependence structure of
variables and consequently of the V dependent partial tests, even if the multivariate and univariate
distributions are unknown. A solution for each partial testing problem can be given by the score
transformation and the application of the test on moments. Thus, the global null hypothesis can be
broken down into k − V sub-hypotheses, where k =∑h kh, and can be written as

H0 :

{
V⋂

h=1

kh−1⋂
s=1

E
[
g (Xh1)

s
] = E

[
g (Xh2)

s
]}

.

Assuming that Xh1
d≥ Xh2 for all h ∈ {1, . . . , V }, the alternative hypothesis can be written as

H1 :
{⋃

h

⋃
s
E
[
g (Xh1)

s
]
>E

[
g (Xh2)

s
]}

,

where the opposite inequality is never true.
Thus, the solution is found in two steps:

1. the partial tests on moments for each variable are performed and combined to obtain V global
tests on moments using the NPC;

2. the V partial tests obtained in the first step are combined to obtain the overall multivariate test.

The procedure described involve a multiple testing procedure, therefore it is necessary to control
the maximum familywise error rate (FWE), that is, the maximum probability that one or more null
hypotheses are erroneously rejected. Closed testing procedures, based on ‘families’ of multivariate
tests and compatible with the NPC methodology, are an ideal solution for multiplicity control
(Chapter 5; and Arboretti and Bonnini, 2009).

6.9 Heterogeneity Comparisons

6.9.1 Introduction

A typical problem of heterogeneity comparison is discussed in Corrain et al. (1977) describe an
anthropological study on a number of Kenyan populations. Among these, the ‘Ol Molo’ is a
nomadic population which therefore is expected to have more genetic exchanges with other ethnic
groups than, for instance, the ‘Kamba’ population, which is non-nomadic and exhibits rather rigid
endogamous behaviour. Hence the Ol Molo are likely to be characterized by a higher genetic
heterogeneity than the Kamba. Corrain et al. (1977), whose interest lies in comparing genetic
heterogeneity, take four genetic factors into consideration (Gm(1), Gm(2), Gm(4) and Gm(12)),
and all their phenotypic combinations, corresponding to 24 = 16 nominal categories. The response
variable is therefore nominal categorical and each category is a sequence of four signs (“+” or
“−”) indicating the presence or absence of these factors.

In descriptive statistics a variable X is said to be minimally heterogeneous when its distribution
is degenerate, and is said to be maximally heterogeneous when its distribution is uniform over
its support, that is, the set of categories. Thus, heterogeneity is related to the concentration of
probabilities and its degree depends on these probabilities. Let us suppose that the response variable
X takes values in (A1, . . . , Ak), with probability distribution Pr{X = Ar} = πr, r = 1, . . . , k. The
following properties must be satisfied by an index for measuring the degree of heterogeneity:

1. It reaches its minimum when there is an integer r ∈ (1, . . . , k) such that πr = 1 and πs = 0, for
all s 	= r .
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2. It assumes increasingly large values as it moves away from the degenerate towards the uniform
distribution.

3. It reaches its maximum when πr = 1/k, for all r ∈ (1, . . . , k).

Various indicators satisfy the three properties and can be used to measure the degree of hetero-
geneity. Among the most commonly used are:

• Gini’s index (Gini, 1912), G = 1−∑k
r=1 π

2
r .

• Shannon’s entropy index (Shannon, 1948), S = −∑k
r=1 πr log(πr ), where log(·) is the natural

logarithm and by convention 0 · log(0) = 0.
• A family of indexes proposed by Rényi (1996), called entropy of order δ and defined as Rδ =

1
1−δ

log
∑k

r=1 π
δ
r , with special cases

R1 = lim
δ→1

Rδ = −
k∑

r=1

πr log(πr ) = S;

R2 = − log

(
k∑

r=1

π2
r

)
= − log[1−G];

R∞ = lim
δ→∞

[(
1

1− δ
log

k∑
r=1

πδ
r

)]
= − log

[
max

1≤r≤k
(πr )

]
.

A critical comparative discussion on heterogeneity indexes from a descriptive point of view can
be found in Piccolo (2000).

6.9.2 Tests for Comparing Heterogeneities

Let us consider two independent samples with i.i.d. observations Xj = {Xji, i =
1, . . . , nj > 2}, j = 1, 2. As usual, the symbol X denotes the pooled data set X = X1

⊎
X2.

Observed data can be displayed in a 2× k contingency table where the absolute frequencies are
{fjr =

∑
i≤nj I(Xji = Ar), r = 1, . . . , k, j = 1, 2}. The marginal frequency of the rth column

(category) is denoted by f·r = f1r + f2r , r = 1, . . . , k.
Alternatively, data can be represented unit-by-unit by listing the n = n1 + n2 individual observa-

tions. The observed data set is then denoted by X = {X(i), i = 1, . . . , n; n1, n2}. Each permutation
of the records of the data set is associated with a contingency table (the permuted table) with
marginal frequencies equal to those of the observed contingency table. In other words, marginal fre-
quencies are permutation invariant, that is, f·r = f1r + f2r = f ∗1r + f ∗2r = f ∗·r , r = 1, . . . , k, where
f ∗jr , j = 1, 2, are the frequencies of the permuted table.

It is worth observing that if the exchangeability condition holds, in univariate two-sample designs
the set of marginal frequencies (n1, n2, f·1, . . . , f·k), the pooled data set X, and any of its per-
mutations X∗ are equivalent sets of sufficient statistics (see Section 2.8). A well-known relevant
consequence of exchangeability is that any conditional inference is exact. If exchangeability is satis-
fied only asymptotically (i.e. it is approximately satisfied), only approximate solutions are possible.
This is the case with the permutation tests for heterogeneity.

Given two populations P1 and P2, if we use Het(Pj ) to denote the heterogeneity of Pj , j = 1, 2,
the testing problem can be expressed as H0 : Het(P1) = Het(P2) against some alternatives. For
the example regarding the heterogeneity dominance of the Ol Molo with respect to the Kamba, the
alternative can be written as H1 : Het(P1)>Het (P2).
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If probabilities related to the populations
{
πjr , r = 1, . . . , k, j = 1, 2

}
were known, they could

be arranged in non-increasing order, πj(1) ≥ . . . ≥ πj(k), and an equivalent expression for the null
hypothesis given is:

H0 : {Het(P1) = Het(P2)} = {π1(r) = π2(r), r = 1, . . . , k}.

Under the null hypothesis, exchangeability holds and the permutation testing principle is appli-
cable exactly. Therefore the one-sided alternative can be written as

H1 : {Het(P1)>Het (P2)}

=
{

r∑
s=1

π1(s) ≤
r∑

s=1

π2(s), r = 1, . . . , k

}

where at least one strict inequality holds.
This problem is in some ways similar to that of stochastic dominance of cumulative probabilities

as in Section 6.5. The difference between the two problems lies in the ordering criterion which
is based on the probabilities in the test on heterogeneities and on the ordered categories in the
traditional stochastic dominance test.

Unfortunately, parameters πjr , r = 1, . . . , k, j = 1, 2, are unknown and we can only estimate
them using the observed relative frequencies, π̂jr = fjr/nj . Obviously the ordered parameters
πj(r), r = 1, . . . , k, j = 1, 2, are also unknown, thus the ordering within each population, estimated
through relative frequencies within each sample, is a data-driven ordering and so may differ from
the true one. The main implication is that exchangeability under H0 is not exact. We notice that
only asymptotically data-driven and true ordering are equal with probability one. Indeed, by virtue
of the well-known Glivenko–Cantelli theorem (Shorack and Wellner, 1986), the exchangeability
of data with respect to samples is asymptotically attained in H0.

To solve the testing problem, a reasonable test statistic should be a function of the difference of
the sample indices of heterogeneity, TI = I1 − I2, where Ij , j = 1, 2, are the sample indices (in
the example Ij stands for Gj, Sj , or Rδj , etc.). Large values of TI lead to the rejection of H0.
It is worth noting that in the 2× k contingency table rearranged according to ordered frequencies
(ordered table) {fj(r), r = 1, . . . , k, j = 1, 2}, where fj(1) ≥ . . . ≥ fj(k), the rth column (ordered
category) in group 1 corresponds to an original category which may differ from the rth column
in group 2. Furthermore, where there are ties in frequencies, we can arbitrarily choose their order
since this has no influence on the permutation analysis.

Once the data-driven ordering is obtained, it is possible to proceed in a similar fashion with the
testing for stochastic dominance on ordered categorical variables. Operating with the ordered table,
the observed value of the test statistics T o

I , permutation values T ∗I and p-value λI are calculated.
Using simulation studies Arboretti et al. (2009a) prove that under H1 the power behaviours of
TG and TS are very similar and better than that of TR∞, and that under H0 all the tests are
well approximated.

6.9.3 A Case Study in Population Genetics

Let us again consider the anthropological study of the Ol Molo and Kamba populations described
above. Table 6.10 shows the sample frequencies of the 16 phenotypic combinations in the samples
selected from the two populations.

From Table 6.10 it is possible to order the absolute frequencies separately for each sample and
to calculate the ordered relative frequencies. The ordered table of relative frequencies provides an
estimate of the ordered probabilities distributions (Table 6.11).
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Table 6.10 Observed frequencies of Gm phenotypic combinations in Ol Molo and Kamba

Categories Combinations Frequencies

Gm(1) Gm(2) Gm(4) Gm(12) Ol Molo Kamba

A1 + + + + 12 0
A2 − + + + 1 0
A3 + − + + 8 6
A4 + + − + 2 1
A5 + + + − 0 0
A6 − − + + 1 0
A7 + + − − 1 0
A8 − + − + 0 0
A9 − + + − 0 0
A10 + − + − 2 0
A11 + − − + 8 15
A12 + − − − 6 0
A13 − + − − 0 0
A14 − − + − 0 0
A15 − − − + 3 1
A16 − − − − 1 0

45 23

Table 6.11 Observed relative frequencies of Gm phenotypic combinations in Ol Molo and
Kamba

Population (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) · · · (16)

Ol Molo 0.27 0.18 0.18 0.13 0.07 0.04 0.04 0.02 0.02 0.02 0.02 · · · 0

Kamba 0.66 0.26 0.04 0.04 0 0 0 0 0 0 0 · · · 0

As shown in Table 6.11, from a descriptive point of view, the heterogeneity of the Ol Molo
appears higher than that of the Kamba. Using a CMC simulation with B = 50 000 random permu-
tations, we obtain the p-values λ̂S = 0.00003 using the test statistic TS based on Shannon’s index,
λ̂G = 0.00012 using the test statistic TG based on Gini’s index, and λ̂R∞ = 0.00183 for Rényi’s
TR∞. It is clear that the three p-values are lower than the significance level α = 0.01, hence the
null hypothesis of equal heterogeneity has to be rejected in favour of the alternative that the genetic
heterogeneity of the Ol Molo is greater than that of the Kamba.

In order to carry out the above analysis it is possible to use MATLAB or R. The MATLAB
code can be found in the file Kenya.m (data set in Kenya.xls). The R script is given in the file
Kenya.txt (data set in Kenya.csv). All the files can be downloaded from the Kenya folder on
the book’s website.

6.10 Application to PhD Programme Evaluation Using SAS

6.10.1 Description of the Problem

The quality evaluation of a PhD programme requires complex analysis because it will be based on
several aspects. Performance evaluation is a multidimensional phenomenon and, from the statistical
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Table 6.12 Relative frequencies of satisfaction judgements for the three PhD macro-areas

Judgement MB ST EL

Education–employment relationship
very satisfied 0.30 0.61 0.91
quite satisfied 0.35 0.22 0.09
quite unsatisfied/not very satisfied 0.20 0.10 0.00
very unsatisfied/not at all satisfied 0.15 0.07 0.00

Education–employment coherence
very satisfied 0.10 0.39 0.65
quite satisfied 0.45 0.17 0.30
quite unsatisfied/not very satisfied 0.25 0.26 0.05
very unsatisfied/not at all satisfied 0.20 0.18 0.00

Use of education at work
very satisfied 0.25 0.26 0.57
quite satisfied 0.30 0.30 0.35
quite unsatisfied/not very satisfied 0.24 0.22 0.08
very unsatisfied/not at all satisfied 0.21 0.22 0.00

point of view, the main methodological difficulties relate to the synthesis of information in the
construction of a composite indicator, and the need to take the dependence structure among the
univariate component variables in the multivariate distribution and the categorical nature of data
into account.

Some Italian universities have carried out surveys on postdoctoral students’ opinions on the
education provision and researcher activities during their PhD courses. In 2004 the University of
Ferrara carried out such a survey. This survey involved a random sample of 120 persons: four
cohorts of 30 postdocs who graduated between 2001 and 2004, grouped into three macro-areas,
namely economic-legal (EL), medical-biological (MB) and scientific-technological (ST).

To express their satisfaction with the various aspects of their work, education received and
organization of the PhD course, postdocs gave an integer score from 1 to 4 corresponding to
four ordered categories: ‘not at all satisfied’, ‘not very satisfied’, ‘quite satisfied’, ‘very satisfied’.
To evaluate external effectiveness, one of the composite aspects considered in the survey was
‘education–employment relationship’, a three-dimensional notion involving: (1) coherence between
education and employment; (2) use in employment of acquired abilities; (3) adequacy of the PhD
training for work. Relative frequencies are shown in Table 6.12.

This section presents two macros which are useful for computing a composite nonparametric
performance index and performing a permutation ANOVA test, to obtain a comparative performance
evaluation of the three PhD programmes from the 2004 University of Ferrara survey (Arboretti et
al., 2009b). Although we are dealing with an observational study, the assumption of exchangeability
in the null hypothesis is plausible in this context.

6.10.2 Global Satisfaction Index

The following procedure allows for the computation of a combined indicator of a set of k ordered
categorical variables representing satisfaction judgements given by a set of experts or evaluators,
following the method proposed by Arboretti et al. (2007g). Let us suppose that each marginal
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variable has a given (non-negative) degree of importance and can assume m ordered scores. Let us
also suppose that large values correspond to higher satisfaction levels.

The NPC of dependent rankings (Lago and Pesarin, 2000) can be used to obtain a single com-
bined ranking of the statistical units under evaluation which summarizes many partial (univariate)
rankings. Starting with the component variables X1, . . . , Xp, each providing information about a
partial aspect, and their weights ω1, . . . , ωp, the global index is obtained by means of a real function
φ : R2p → R1, which combines the available information. A few easy-to-check minimal properties
have to be satisfied by φ: (i) φ must be continuous in all its 2k arguments, so that small changes
in a subset of arguments imply small changes in φ; (ii) φ must be a non-decreasing function of
all the partial ranks; (iii) φ must be symmetric with respect to rearrangements of the p pairs of
arguments (ω1, X1), . . . , (ωp,Xp). These properties are satisfied by several combining functions,

such as TF = −
∑

h ωh log(1− λh), TL =
∑

h ωh�
−1(λh), TT =

∑
h ωh log

(
λh

1−λh

)
and others,

where λh is the relative rank (or normalized score) for a given unit according to the hth variable
(ranking) and �(·) is the standard normal CDF.

To compare the absolute evaluations with target values, the concept of extreme satisfaction
profiles is introduced. These involve hypothetical frequency distributions of variables corre-
sponding to minimum or maximum satisfaction of the set of evaluators. In order to include the
extreme satisfaction profiles in the analysis, original values are transformed according to the
following rules:

1. Scores 1 and 2, corresponding to expressions of dissatisfaction, are transformed by adding
(1− phr) · 0.5, r = 1, 2, h = 1, . . . , p, where phr is the relative frequency of evaluators who
chose the rth judgement or category for the hth aspect or variable.

2. Scores 3 and 4, corresponding to expressions of satisfaction, are transformed by adding phr · 0.5,
r = 3, 4, h = 1, . . . , p.

3. Using zhi to denote the transformed scores related to the hth variable and ith unit (h =
1, . . . , p; i = EL, MB or ST ), the normalized scores λhi are computed: λhi = (zhi − zh,min +
0.5)/(zh,max − zh,min + 1), where zh,min and zh,max are the transformed scores corresponding to
minimum and maximum satisfaction respectively, according to the extreme satisfaction profiles.

4. For each unit, a combined value is calculated using a combining function (e.g. Fisher’s) according
to NPC theory: Ti = φ

(
λ1i , . . . , λpi;ω1, . . . , ωp

) = −∑h ωh log (1− λhi) , i = EL,MB, ST .

This method is particularly useful in overcoming two methodological problems related to the
computation of composite performance indicators: (1) the synthesis of information to reduce the
data dimensionality; (2) the criticism of Bird et al. (2005), who stress that rank is a relative datum
and extreme ranking positions do not immediately equate to genuinely worst or best performances.

To facilitate the reading of the final results a further transformation can be applied to the Ti
values to obtain normalized scores: Si = (Ti − Tmin)/(Tmax − Tmin), where Tmin and Tmax are the
theoretical minimum and maximum values for Ti . Performing the analysis on data illustrated in
Table 6.12, it is evident that postdocs in the economic-legal field are the most satisfied and those
in the medical-biological field are the least satisfied: SEL = 0.66>SST = 0.47>SMB = 0.34.

The analysis can be performed with the SAS macro npc_ranking (dataset, cod, w, k, m, t, list).
The input parameters are:

• dataset: SAS data set name;
• cod: name of variable identifying statistical units;
• w: list of weights for the variables (weights must sum to the number variables, k);
• k: number of ordered variables;
• m: number of ordered categories, representing ordered discrete scores, with value 1 corresponding

to lower satisfaction and m to higher satisfaction;
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• t: number of least values corresponding to satisfaction judgements;
• u: percentage frequency of subjects with value m in the extreme satisfactory profile;
• l: percentage frequency of subjects with value 1 in the extreme satisfactory profile;
• list: list of names of ordered variables.

The macro generates the SAS temporary data set called Fisher containing the variable ‘y_def’
representing the combined index varying from 0 to 1. The file NPCRanking.sas, downloadable
from the PhDdata folder on the book’s website, contains the script to perform the macro.

6.10.3 Multivariate Performance Comparisons

To perform the ANOVA permutation test, in accordance with the NPC test theory
(Sections 1.11 and 4.2), in the SAS macro NPC_2samples the input npc(dati, var_byn,

var_cat, var_con, dom_byn, dom_con, weights, clas, nsample, strato, paired,

unit, missing) can be used.
The null hypothesis of the testing problem can be written as

H0 :

{
3⋂

h=1

Xh,EL
d= Xh,MB

d= Xh,ST

}
=
{

3⋂
h=1

H0h

}
,

where Xh,i represents the performance of the ith group (macro-area) considering the hth variable
(partial aspect). The alternative hypothesis can be written as H1 :

{⋃
h H1h

}
.

According to the NPC of dependent permutation tests, each of the three sub-problems can
be solved by performing a univariate permutation test, and the combination of partial p-values
using Fisher’s function gives a global p-value which is useful for solving the global testing prob-
lem. In this application case the final p-value for the global testing problem, with B = 10 000,
takes the value 0.000 < 0.01 = α, thus the null hypothesis has to be rejected in favour of the
alternative hypothesis.

The input parameters of the procedure are:

• dati: name of the data set;
• var_byn: list of binary variables;
• var_cat: list of categorical, non-binary variables;
• var_con: list of continuous variables;
• dom_byn: list of directional marginal sub-hypotheses for binary variables:

– if XAu< XBu specify LESS
– if XAu> XBu specify GREAT
– if XAu 	= XBu specify NOTEQ;

• dom_con: list of directional marginal sub-hypotheses for continuous variables, see above;
• weights: list of weights for the variables, first specify weights for binary variables and then

weights for categorical variables and continuous variables;
• clas: variable defining the two groups (character variable);
• nsample: number of conditional resamplings;
• strato: variable defining strata (character variable);
• paired: paired data (yes/no);
• unit: variable identifying paired observations;
• missing: presence of missing values (yes/no).

SAS macros can be downloaded from the book’s website.



7
Permutation Testing for Repeated
Measurements

7.1 Introduction
Repeated measures designs are used in observational and experimental situations in which each
subject is observed on a finite or at most a countable number of occasions, usually in time or
space, so that successive responses are dependent. In practice, responses of one unit may be
viewed as obtained by a discrete or discretized stochastic process. With reference to each spe-
cific subject, repeated observations are also called the response profiles , and may be viewed as a
multivariate variable.

Without loss of generality, we discuss general problems which can be referred to in terms of a
one-way MANOVA layout for response profiles. Hence, we refer to testing problems for treatment
effects when: (a) measurements are typically repeated a number of times on the same units; (b) units
are partitioned into C groups or samples, there being C levels of a treatment; (c) the hypotheses
being tested aim to investigate whether the observed profiles do or do not depend on treatment
levels; (d) it is presumed that responses may depend on time or space and that related effects are
not of primary interest. For simplicity, we henceforth refer to time occasions of observation, where
‘time’ is taken to mean any sequentially ordered entity, including space, lexicographic ordering, etc.

In the context of this chapter, repeated measurements, panel data, longitudinal data, response
trajectories and profiles are considered as synonymous. As the proposed solutions essentially employ
the method of NPC of dependent permutation tests, each obtained by a partial analysis on data
observed on the same ordered occasion (this is called time-to-time analysis in Pesarin, 1997a,
1997b, 1999b, 2001; Celant et al., 2000a, 2000b), we assume that the permutation testing principle
holds. In particular, in the null hypothesis, in which treatment does not induce differences with
respect to treatment levels, we assume that the individual response profiles are exchangeable with
respect to groups.

To be more specific, let us refer to a problem in which n units are partitioned into C groups and
a univariate variable X is observed. Groups are of size nj ≥ 2, j = 1, . . . , C, with n =∑j nj .
Units belonging to the j th group are presumed to receive a treatment at the j th level. All units are
observed at k fixed ordered occasions τ1, . . . , τk , where k is an integer. For simplicity, we refer to
time occasions by using t to mean τt , t = 1, . . . , k. Hence, for each unit, we observe the discrete
or discretized profile of a stochastic process, and profiles related to different units are assumed to
be stochastically independent. Thus, within the hypothesis that treatment levels have no effect on
response distributions, profiles are exchangeable with respect to groups.

Permutation Tests for Complex Data: Theory, Applications and Software Fortunato Pesarin, Luigi Salmaso
 2010, John Wiley & Sons, Ltd



226 Permutation Tests for Complex Data

7.2 Carry-Over Effects in Repeated Measures Designs
When planning and carrying out repeated measures designs, the experimenter should take two
sources of bias into account: practice effects and differential carry-over effects. Practice effects
occur when subjects, exposed to all the conditions, gradually become familiar with the procedures
and the experimental context, thus getting practice. If any effect is produced, it is due to a real
learning process. As a result, potential variations (in the subsequent measurements) may be ascribed
to the acquired practice rather than to the administered treatment. Using a sufficiently large number
of testing orders, thus ensuring the equal occurrence of each experimental condition at each stage
of practice during the trial, minimizes this drawback. In practice, this could be achieved by means
of counterbalancing, and the resulting experimental design becomes a type of Latin square design.
In contrast, differential carry-over or residual effects cannot be controlled by counterbalancing.
These are distinguishing effects in that the treatment administered first (or previously) influences a
patient’s subsequent (or current) responses in one way in one testing order, and in a different way
in another testing order. For example, when comparing the active treatment (A) with placebo (B),
patients assigned to the AB sequence may experience a substantial carry-over effect in the second
administration, whereas patients in the BA sequence might have a low B carry-over effect in the
second period. By allowing wash-out periods, these effects can be reduced and practice effects may
have the same influence on all treatment conditions. In the general definition, carry-over effects
represent the continuation or the protraction of previous treatment administration on subsequent
measurements. As a result, the first treatment may improve or decrease the effectiveness of the
second, thus reducing the potential capability of repeated measures experiments to show treatment
effects. If subsequent administrations of treatment A and B are close together, there is a sort of
mixture, which could mask actual differences between the two treatments. In order to minimize
carry-over effects, successive treatment times for each subject should be far enough apart by setting
appropriate wash-out periods. Although the experimenter should check on carry-over effects in order
to run a valid repeated measures experiment, carry-over effects do not invalidate a repeated measures
randomization test. In any case, two distinct kinds of carry-over effects can be identified: carry-
over effects that are the same for all treatments, and differential carry-over effects that vary from
one treatment to another. The latter in particular may invalidate a design with repeated measures.
Only ‘true’ treatment effects should emerge, hence it is important to investigate whether or not
treatments A or B are different in the absence of carry-over effects. Repeated measures designs are
appealing in that the results obtained from such experiments allow us to infer what would happen
in independent experimental groups exposed to the same treatments (Edgington and Onghena,
2007). The subsequent administration of treatments to a subject should barely be influenced by the
previous ones. In conclusion, minimizing the presence of carry-over effects common to the various
treatments may reduce the presence of differential carry-over effects.

We observe that in the literature such a problem has not been dealt with within the permutation
approach. Later on in this chapter we will discuss a permutation solution for the standard cross-over
design without taking into account carry-over effects.

7.3 Modelling Repeated Measurements

7.3.1 A General Additive Model

Let us assume that there are no missing values (see Section 7.13 for analysis of problems with
missing values). Moreover, let us refer to a univariate stochastic time model with additive effects,
covering a number of practical situations. Extensions of the proposed solution to multivariate
response profiles are generally straightforward, by analogy with those given for the one-way
MANOVA layout.



Permutation Testing for Repeated Measurements 227

The symbol X = {Xji(t), i = 1, . . . , nj , j = 1, . . . , C, t = 1, . . . , k} indicates that the whole
set of observed data is organized as a two-way layout of univariate observations. Alternatively,
especially when effects due to time are not of primary interest, X may be organized as a one-way
layout of profiles, X = {Xji , i = 1, . . . , nj , j = 1, . . . , C}, where Xji = {Xji(t), t = 1, . . . , k}
denotes the jith observed profile.

The general additive response model referred to in this section is

Xji (t) = µ+ ηj (t)+�ji(t)+ σ(ηj (t)) · Zji(t),

i = 1, . . . , nj , j = 1, . . . , C, t = 1, . . . , k. In this model the Zji(t) are generally non-Gaussian
error terms distributed as a stationary stochastic process with null mean and unknown distribution PZ
(i.e. a generic white noise process); these error terms are assumed to be exchangeable with respect
to units and treatment levels but, of course, not independent of time. Moreover, µ is a population
constant; coefficients ηj (t) represent the main treatment effects and may depend on time through any
kind of function, but are independent of units; quantities �ji(t) represent the so-called individual
effects ; and σ(ηj (t)) are time-varying scale coefficients which may depend, through monotonic
functions, on main treatment effects ηj , provided that the resulting CDFs are pairwise ordered so that

they do not cross each other, as in Xj(t)
d
< (or

d
>) Xr(t), t = 1, . . . , k, and j 	= r = 1, . . . , C. When

the �ji(t) are stochastic, we assume that they have null mean values and distributions which may
depend on main effects, units and treatment levels. Hence, random effects �ji(t) are determinations
of an unobservable stochastic process or, equivalently, of a k-dimensional variable � = {�(t),

t = 1, . . . , k}. In this context, we assume that �j ∼ Dk{0,β(ηj )}, where Dk is any unspecified
distribution with null mean vector and unknown dispersion matrix β, indicating how unit effects
vary with respect to main effects ηj = {ηj (t), t = 1, . . . , k}. Regarding the dispersion matrix β ,

we assume that the resulting treatment effects are pairwise stochastically ordered, as in �j(t)
d
< (or

d
>) �r(t), t = 1, . . . , k, and j 	= r = 1, . . . , C. Moreover, we assume that the underlying bivariate
stochastic processes {�ji(t), σ (ηj (t)) · Zji(t), t = 1, . . . , k} of individual stochastic effects and
error terms, in the null hypothesis, are exchangeable with respect to groups. This property is easily
justified when subjects are randomized to treatments.

This setting is consistent with a general form of dependent random effects fitting a very large
number of processes that are useful in most practical situations. In particular, it may interpret a
number of the so-called growth processes . Of course, when β = 0 with probability one for all t ,
the resulting model has fixed effects.

For evaluating the inherent difficulties in statistical analysis of real problems when repeated
observations are involved, see, for example, Laird and Ware (1982), Azzalini (1984), Ware (1985),
Crowder and Hand (1990), Diggle et al. (2002), Lindsay (1994) and Davidian and Giltinan (1995).
In particular, when dispersion matrices � and β have no known simple structure, the underlying
model may not be identifiable and thus no parametric inference is possible. Also, when k ≥ n, the
problem cannot admit any parametric solution; see Chung and Fraser (1958) and Blair et al. (1994)
in which heuristic solutions are suggested under normality of errors Z and for fixed effects.

One among the many possible specifications of models for individual effects assumes that terms
�ji(t) behave according to an AR(1) process:

�ji(0)
d= 0; �ji(t) = γ (t) ·�ji(t − 1)+ β(ηj (t)) ·Wji(t),

i = 1, . . . , nj , j = 1, . . . , C, t = 1, . . . , k, where Wji(t) represent random contributions inter-
preting deviates of individual behaviour; γ (t) are autoregressive parameters which are assumed to
be independent of treatment levels and units, but not time; and β(ηj (t)), t = 1, . . . , k, are time-
varying scale coefficients of autoregressive parameters, which may depend on the main effects.
By assumption, the terms Wji(t) have null mean value, unspecified distributions, and are possibly
time-dependent, so that they may behave as a stationary stochastic process.
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A simplification of the previous model considers a regression-type form such as

�ji(t) = γj (t)+ β(t) ·Wji(t), i = 1, . . . , nj , j = 1, . . . , C, t = 1, . . . , k.

Of course, many other models of dependence errors might be considered, including situations where
matrices � and β are both full.

Remark 1. This problem corresponds to a special case of a two-way layout, in which effects due
to time are supposed to be of no interest, in the sense that such effects are generally taken for
granted. Also, it should be noted that this layout is unbalanced, because we do not assume that
nj = n/C.

Remark 2. As individual profiles are assumed to be exchangeable in the null hypothesis, a set of
sufficient statistics for this problem is the pooled vector of observed profiles

X = {Xji , i = 1, . . . , nj , j = 1, . . . , C} =
{

X1

⊎
. . .
⊎

XC

}
.

Note that exchangeability of observations with respect to time cannot generally be assumed.

7.3.2 Hypotheses of Interest

The hypotheses we wish to test are

H0 :
{

X1
d= . . .

d= XC

}
=
{
X1(t)

d= . . .
d= XC(t), t = 1, . . . , k

}
=
{

k⋂
t=1

[
X1(t)

d= . . .
d= XC(t)

]}
=
{

k⋂
t=1

H0t

}

against H1 : {⋃t [H0t is not true]} = {⋃t H1t }, in which a decomposition of the global hypotheses
into k sub-hypotheses according to time is highlighted. This decomposition corresponds to the
so-called time-to-time analysis.

Distributional assumptions imply that X = X1
⊎

. . .
⊎

XC is a set of sufficient statistics for the

problem in H0. Moreover, H0: {X1
d= . . .

d= XC} implies that the observed profiles are exchange-
able with respect to treatment levels. Thus, the permutation testing principle applies to observed
time profiles.

Note that by decomposition into k partial sub-hypotheses, each sub-problem is reduced to a
one-way ANOVA. Also note that, from this point of view, the associated two-way ANOVA, in
which effects due to time are not of interest, becomes equivalent to a one-way MANOVA. Hence,
for partially testing sub-hypotheses H0t against H1t we may use any suitable permutation test T ∗t
as in Sections 1.11, 2.7, 2.8.4 and 6.4. For real-valued univariate data, such tests may have the
standard C-sample form. In addition, each partial test is marginally unbiased and consistent, and
large values are significant. Hence, NPC may be used.

7.4 Testing Solutions

7.4.1 Solutions Using the NPC Approach

In the given conditions, k partial permutation tests T ∗t =
∑

j nj · (X̄∗j )2, where X̄∗j =
∑

i X
∗
ji (t)/nj ,

t = 1, . . . , k, are appropriate for time-to-time sub-hypotheses H0t against H1t . Thus, in order to
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achieve a global complete solution for H0 against H1, we must combine all these partial tests. Of
course, due to the complexity of the problem and to the unknown k-dimensional distribution of
(T1, . . . , Tk) (see Crowder and Hand, 1990; Diggle et al., 2002), we are generally unable to evaluate
all dependence relations among partial tests directly from X. Therefore, this combination should be
nonparametric and may be obtained through any combining function ψ ∈ C. Of course, when the
underlying model is not identifiable, and so some or all of the coefficients cannot be estimated, this
NPC becomes unavoidable. Moreover, when all observations come from only one type of variable
(continuous, discrete, nominal, ordered categorical) and thus partial tests are homogeneous, a direct
combination of standardized partial tests, such as T ∗t =

∑
j nj · [X̄∗j (t)− X̄·(t)]2/

∑
ji [X

∗
ji(t)−

X̄∗j (t)]
2, may be appropriate especially when k is large. This may not be the case when observations

are on variables of different types (e.g. some continuous and others categorical).

Remark 1. When baseline observations Xji(0) are present and are assumed to influence subsequent
responses, so that they are not negligible, then all partial tests should be conditional on them; that
is, the Xji(0) must be considered as playing the role of covariates. In practice, in this case, the
testing process may be carried out by considering k ANCOVA layouts. Sometimes, according
to proper models describing how covariates influence responses, it may suffice to consider data
transformations as, for example: time increments, Xji(t)−Xji(t − 1); increments with respect to
the baseline, Xji(t)−Xji(0); relative time increments, [Xji(t)−Xji(t − 1)]/Xji(t − 1), etc. Of
course, in these cases, the k partial tests are modified accordingly.

Remark 2. When, in accordance with multi-aspect testing and, for instance, we assume that effects
may act on the first two time-to-time moments, so that the null hypothesis H0 becomes

H0 :

{[
k⋂

t−1

(E(X1(t)) = . . . = E(XC(t)))

]⋂[
k⋂

t−1

(
E(X2

1(t)) = . . . = E(X2
C(t))

)]}
,

then we may apply two partial tests for each time, {(T1t , T2t ), t = 1, . . . , k}, followed by their NPC.

Remark 3. In the case of testing for monotonic stochastic ordering, in which the alternative is
expressed by

H1 :

{
X1

d≤ . . .
d≤ XC

}
=
{
X1(t)

d≤ . . .
d≤ XC(t), t = 1, . . . , k

}
,

the inequality being strict for at least one index j and/or t , the testing problem may be solved as
follows. For each j ∈ (1, . . . , C − 1), according to Example 7, 4.6 and Chapter 8, we may split
the whole data set into two pooled pseudo-groups, where the first is obtained by pooling together
data of the first j (ordered) groups and the second by pooling the rest. Thus, the C − 1 pairs
of pooled pseudo-groups to consider are Y1(j) = X1

⊎
. . .
⊎

Xj and Y2(j) = Xj+1
⊎

. . .
⊎

XC ,
j = 1, . . . , C − 1, where Xj = {Xji(t), i = 1, . . . , nj , t = 1, . . . , k} is the data set of the j th
group.

In the overall null hypothesis, time profiles of every pair of pseudo-groups are exchangeable,
because Y1(j)

d= Y2(j), whereas in the alternative there is monotonic stochastic dominance over time

Y1(j)
d≤ Y2(j) =

⋃
t [Y1(j)(t)

d≤ Y2(j)(t)], where symbols have obvious meanings. This suggests to
express the global hypotheses in the equivalent form

H0 :
{⋂

t

⋂
j

[
Y1(j)(t)

d= Y2(j)(t)
]}
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and H1 : {⋃t

⋃
j [Y1(j)(t)

d≤ Y2(j)(t)]}, where a (time-to-time) decomposition into an appropriate
set of sub-hypotheses is emphasized.

Therefore, for each j = 1, . . . , C − 1 and each t = 1, . . . , k, a proper time-to-time partial test is
T ∗j (t) =

∑
1≤i≤N2(j)

Y ∗2(j)i(t), where N2(j) =
∑

r > j nr is the sample size of Y2(j). Since under the
conditions of the problem all these k(C − 1) partial tests are exact and marginally unbiased, their
NPC provides for an exact overall solution.

7.4.2 Analysis of Two-Sample Dominance Problems

Let us assume that responses behave in accordance with the additive model in Section 7.3.1. A
rather special and interesting problem arises when C = 2 and when, for instance, we are interested

in testing whether the first process is stochastically dominated by the second: {X1(t)
d
< X2(t),

t = 1, . . . , k}. In such a case and referring to models with stochastic coefficients, the hypotheses
are

H0 :

{
k⋂

t=1

[
X1(t)

d= X2(t)
]}
=
{

k⋂
t=1

[η1(t) = η2(t)]

}
=
{

k⋂
t=1

H0t

}

against H1 : {⋃t [X1(t)
d
< X2(t)]} = {

⋃
t [η1(t) < η2(t)]} = {

⋃
t H1t }, in which a stochastic dom-

inance problem and a suitable decomposition of hypotheses are highlighted. Observe that the
alternative is now broken down into k one-sided (restricted) sub-alternatives. Hence, for each
sub-hypothesis, a one-tailed partial test for comparison of two locations should be considered.

The overall solution for this is now straightforward because: (i) as the exchangeability of indi-
vidual profiles with respect to treatment levels is assumed in H0, the permutation principle applies;
(ii) the hypotheses are broken down into a set of sub-hypotheses; (iii) by assumption, for each
sub-hypothesis there exists a test which is exact, marginally unbiased, consistent, and significant
for large values. Hence, the sufficient conditions for the NPC method are satisfied and consequently
overall permutation solutions are exact, unbiased and consistent. In the present case, a set of permu-
tation partial test statistics might be {T ∗t = X̄∗2(t), t = 1, . . . , k}. These partial tests are marginally
unbiased, exact, significant for large values and consistent.

Extensions of the solution to V -dimensional repeated observations (V > 1) and to multi-aspect
testing procedures are left as exercises. Extensions to missing value situations are discussed in
Section 7.13.

7.4.3 Analysis of the Cross-Over (AB-BA) Design

The main feature of a cross-over design (see also Remark 5, 2.1.2) is that each patient receives
more than one of the treatments under study. In its complete version, patients in each group receive
each treatment. In order to evaluate patient response and treatment effectiveness, each patient is
randomized to receive one of the possible sequence of treatments. All possible sequences are
used. In this way, it is possible to obtain a measure of experimental control, thus providing a
valid statistical analysis of the results. In its simplest version, only two treatments (A and B)
are available: the so-called “two-period, two-treatment” cross-over or AB-BA design. A period
is each time interval in which one of the treatments under study is administered. In this design,
there are two treatment periods: in the first period patients randomized to the sequence AB receive
treatment A and those randomized to the sequence BA receive treatment B; in the second period,
the AB group receives B and the BA group receives A. Obviously it is of interest to compare
treatments A and B and, since this comparison is made within subjects, a reliable evaluation of
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treatment differences can be obtained, rather than considering two independent groups. Once the
first treatment cycle is completed, to avoid carry-over effects it is advisable to have a washout
period, allowing the first treatment administered to be eliminated (reduced until negligible) from
the body. Since two treatment sequences (AB and BA) are employed, the possibility of confusing
treatment effect with time period effect is minimized. If patients are randomized to receive one
or the other sequence, it is unlikely that all responsive subjects will receive the same sequence of
treatments, although it is possible to specify, when planning the design of the experiment, how
many of the n subjects receive AB. However, when randomization is not possible, data collected
during the experiment allow us to assess whether observed treatment differences are accidental or
causative. Although extensively used in clinical trials, since treatment sequences are administered
consecutively, these designs have often been criticized on ethical grounds.

7.4.4 Analysis of a Cross-Over Design with Paired Data

A cross-over design with paired observations may be seen as a particular case of an unbalanced
two-way ANOVA for twice repeated measurements. More specifically, let us suppose for example
that n experimental units are partitioned into two groups: those belonging to the first receive
placebo before treatment , and the others receive treatment before placebo. In this kind of cross-
over experiment, two rather different testing problems are generally of interest: (i) whether or not
treatment is effective; (ii) whether or not the two ways treatment is administered are equivalent.

Let us assume that response data behave according to

Yjti = µ+ αji + βjt + Zjti , i = 1, . . . , nj , t = 1, 2, j = 1, 2,

where µ is an unknown population constant; αji are the so-called individual effects, which are
generally considered nuisance entities and so are not of interest for analysis; βjt are (possibly
random) effects due to treatment t on the j th group; and Zjti are random errors assumed to be
independent with respect to but not within units. Within units, as observations are paired, differences
behave according to

Xjti = Yj1i − Yj2i = βj1 − βj2 + Zj1i − Zj2i = δj + σ(δj ) · Zji,

where individual nuisance effects are compensated, the δj represent incremental treatment effects,
Zji are the error components symmetrically distributed around 0, and σ(δj ) are scale coefficients,
which may depend on main effects but are invariant with respect to units.

The two separate sets of hypotheses of interest are H ′
0 : {δ1 = δ2 = 0} against H ′

1 : {(δ1 	=
0)
⋃
(δ2 	= 0)} and H ′′

0 : {X1
d= X2} = {δ1 = δ2} against H ′′

1 : {δ1 	= δ2}, where the second set
becomes of major interest especially when H ′

0 is false. But, of course, even if H ′
0 is accepted, we

do not know whether it is true or false. Hence, we must act independently and jointly for both
sub-problems (see Remark 5, 2.1.2).

A set of joint sufficient statistics for testing both sub-problems is X = {X1,X2}, which corre-
sponds to the whole set of differences partitioned into two groups. Note that to test H ′

0 against
H ′

1, data are exchangeable within each unit because this sub-problem is equivalent to testing for
symmetry of differences with respect to 0, so that there are 2n possible permutations in the related
permutation sample space (see Remark 3, 2.1.2). To test H ′′

0 against H ′′
1 , data are exchangeable

between two groups because this sub-problem is equivalent to testing for equality of locations (of
differences) in a two-sample problem and there are n!/(n1!n2!) possible permutations.

As a consequence, two separate permutation tests are: T ∗1 =
∑

i X1i · S∗1i −
∑

i X2i · S∗2i , where
S∗ji are random signs, and T ∗2 =

∑
i X

∗
1i/n1 −

∑
i X

∗
2i/n2; moreover, due to the way permutations

are obtained, two tests T ∗1 and T ∗2 are independent in H0.
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Remark 1. The permutation structures of two test statistics (see Remark 1, 2.7) are T ∗1 =∑
i (δ1 + σ(δ1)Z1i ) · S∗1i −

∑
i (δ2 + σ(δ2)Z2i ) · S∗2i and T ∗2 =

∑
i (δ

∗
1 + σ(δ∗1 )Z

∗
1i )/n1 −

∑
i (δ

∗
2 +

σ(δ∗2 )Z
∗
2i )/n2, respectively. Both structures, in the respective null sub-hypotheses, depend only

on permutations of exchangeable errors. Hence, both are exact permutation tests for H ′
0 and H ′′

0
against, respectively, H ′

1 and H ′′
1 . Moreover, in their respective alternatives, both permutation

structures are ordered with respect to treatment effects, so that they are unbiased and, if the errors
possess finite first moment, consistent (see Theorem 12, 4.5.2).

Remark 2. The multivariate extension of the present cross-over problem is straightforward. It can
be done by considering solutions to the testing problem with paired multivariate responses and by
the multivariate two-sample problem.

7.5 Testing for Repeated Measurements with Missing Data
The rest of this chapter provides solutions to problems with repeated measures when some of the
data are missing. Experimental units are partitioned into e ≥ 2 groups and the hypotheses to be
tested are whether the observed profiles of repeated measures over time are dependent on treatment
levels. The NPC solution is compared to two different parametric approaches to the problem
of missing values: Hotelling’s T 2 with deletion of units with at least one missing datum, and
Hotelling’s T 2 with data imputation by the EM algorithm (Dempster et al., 1977; Little and Rubin,
1987). We start by presenting characteristic features of the nonparametric permutation solution
for multivariate testing problems in the presence of missing data missing completely at random
(MCAR) and missing not at random (MNAR).

7.6 General Aspects of Permutation Testing with Missing Data
Here we introduce the permutation analysis of missing values for problems of multivariate testing
of hypotheses when, in the null hypothesis, both observed and missing data are assumed to be
exchangeable with respect to groups associated with treatment levels. Such multivariate testing
problems are solvable by the NPC of dependent permutation tests. In particular, the hypotheses are
presumed to be broken down into a set of sub-hypotheses, and related partial tests are assumed
to satisfy the conditions discussed in Chapter 4: specifically, they are assumed to be marginally
unbiased, significant for large values and consistent. Some of the ideas for the permutation analysis
of missing values were first introduced in Pesarin (1990b, 1991a, 2001), Giraldo and Pesarin (1992,
1993), Giraldo et al. (1994) and Bertacche and Pesarin (1997).

Although some solutions presented in this chapter are exact, the most important ones are approx-
imate because the permutation distributions of the test statistics concerned are not exactly invariant
with respect to permutations of missing data, as we shall see. However, the approximations are quite
accurate in all situations, provided that the number of effective data in all data permutations is not
too small. To this end, without relevant loss of information we may remove from the permutation
sample space, associated with the whole data set, all data permutations in which the actual sample
sizes of really observed data are not sufficient for approximations. We must establish a kind of
restriction on the permutation space, provided that this restriction does not imply biased effects on
inferential conclusions.

7.6.1 Bibliographic Notes

In statistical analyses the problem of missing data is very common and has various solutions
through a variety of approaches; see, for example, Rubin (1976), Dempster et al. (1977), Little
(1982), Schemper (1984), Wei and Lachin (1984), Wei and Johnson (1985), Servy and Sen (1987),
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Little and Rubin (1987), Laird (1988), Barton and Cramer (1989) and Maritz (1995). The large
majority of contributions to this problem concern the estimation of parameters or functionals, such as
regression coefficients and covariance matrices. Entsuah (1990) used a resampling procedure in an
examination of treatment-related withdrawals from a study. An interesting resampling contribution
was provided by Efron (1992), where imputation bootstrap methods were suggested, mainly for
interval estimation.

Greenlees et al. (1982), in the framework of income surveys, developed the so-called selection
model method for imputing missing values when the probability of non-response depends on the
variables being imputed. The missing data problem is viewed as parallel to that of parametric
estimation in a regression model with stochastic censoring of one dependent variable. Having solved
this estimation problem by numerical maximization of log-likelihood, they use a prediction approach
to impute logarithms of missing income values. Glynn et al. (1986) discuss the performance of two
alternative approaches: the selection model approach of Greenlees et al. (1982) and the mixture
model approach for obtaining estimates of means and regression coefficients when non-responses
depend on the outcome variables.

The case of categorical variables with outcomes subject to non-ignorable non-responses is exam-
ined in Fuchs (1982), Baker and Laird (1988), Fay (1986), Nordheim (1984), Oshungade (1989),
Mandel (1993), Phillips (1993), Park and Brown (1994), Conaway (1994) and, in a permutation
framework, Bertacche and Pesarin (1997).

The main, fundamental assumption in almost all solutions from the literature is that missing
data are missing completely at random . The definition of this is given in Rubin (1976). Roughly
speaking, it means that the probability that an observation is missing does not depend on the value
it would have assumed. When this rather strong assumption fails, it is necessary to specify the
process producing the missing data, and the consequent analysis in general becomes much more
difficult, especially within a parametric framework, unless the missing mechanism is well defined
and related nuisance parameters well estimated from the data.

Section 7.7 illustrates when the process producing the missing data can be ignored and when
the necessity to specify it occurs. Sections 7.8–7.10 discuss nonparametric solutions within a
permutation framework for some typical multivariate testing problems with data missing completely
at random and some quite general situations of data missing not at random. Section 7.11 presents
an example of an application in which the probability of missing data depends on treatment levels,
so that, in the alternative, data are not missing completely at random. Lastly, Section 7.12 presents
a problem in which missing data are assumed to be missing completely at random.

7.7 On Missing Data Processes
In all kinds of problems, missing data are usually assumed to originate from an underlying random
process, which may or may not be related to the observation process. Thus, within a parametric
approach, in order to make valid inferences in the presence of missing data, this process must in
general be properly specified. But when we assume that the probability of a datum being missing
does not depend on its unobserved value, so that the missing data are missing at random, then we
may ignore this process and so need not specify it. Rubin (1976) formalizes the definition of data
missing at random and gives conditions in which it is appropriate to ignore the process producing
missing data when making inferences about the distribution of observed data.

7.7.1 Data Missing Completely at Random

Let us use θ to denote the parameter regulating the distribution of the observable variable and φ

to denote that of the missing data process; thus, the vector (θ, φ) identifies the whole probability
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distribution of observed data within a family P of non-degenerate distributions. The ignorability
of the missing data process depends on the method of inference and on three conditions which the
data generating process must satisfy.

According to Rubin (1976):

The missing data are missing at random (MAR) if for each possible value of the parameter
φ, the conditional probability of the observed pattern of missing data given the missing data
and the value of the observed data, is the same for all possible values of the missing data.
The observed data are observed at random (OAR) if for each possible value of the missing
data and the parameter φ, the conditional probability of the observed pattern of missing data
given the missing data and the observed data, is the same for all possible values of the
observed data. The parameter φ is distinct from θ if there are no a priori ties, via parametric
space restrictions or prior distributions, between φ and θ .

If the missing data are MAR and the observed data are OAR, the missing data are missing com-
pletely at random (MCAR). In this case, missingness does not depend on observed or unobserved
values, and observed values may be considered as a random subsample of the complete data set.
In these situations, therefore, it is appropriate to ignore the process that causes missing data when
making inferences on θ .

7.7.2 Data Missing Not at Random

If the missing data are missing not at random (MNAR), then in order to make valid parametric
inferences the missing data process must be properly specified. Typically in experimental situations
this occurs when the treatment acts on the missingness mechanism through the probability of a
datum being missing or the probability of its being observed. In most observational situations,
missing data come from sample surveys where the circumstances behind non-responses are varied
and complex. In general, it is very unlikely that a single model may correctly reflect all the
implications of non-responses in all instances. Thus, the analysis of MNAR data is much more
complicated than that of MCAR data because inferences must be made by taking into consideration
the data set as a whole and by specifying a proper model for each specific situation. In any case,
the specification of a model which correctly represents the missing data process seems the only
way to eliminate the inferential bias caused by non-responses in a parametric framework.

In the literature, various models have been proposed, most of which concern cases in which
non-responses are confined to a single variable.

7.8 The Permutation Approach
Without loss of generality, we discuss the permutation solution by referring to a one-way MANOVA
layout, which is to test the equality of C ≥ 2 V -dimensional distributions, where some of the data
are supposed to be missing.

Suppose that we have C groups of V -dimensional responses Xj = {Xji = (Xhji, h = 1, . . . , V ),
i = 1, . . . , nj }, j = 1, . . . , C, respectively with distribution function Pj , Xji ∈ RV , where n =∑

j nj is the total sample size. As usual, we assume that the null hypothesis is H0 : {P1 = . . . =
PC = P } = {X1

d= . . .
d= XC} and the alternative is H1 : {H0 is not true}.

As regards the data, we assume that they are exchangeable with respect to C groups in the null
hypothesis. Note that this requirement concerns both observed and missing data. In addition, we
also assume that the model for treatment effects is such that resulting CDFs satisfy the pairwise
dominance condition, so that locations of suitable transformations ϕh, h = 1, . . . , V , of the data
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are useful for discrimination, where ϕh may be specific to the hth variable. This assumption leads
us to consider sample means of transformed data as proper indicators for treatment effects. The
reason for this kind of statistical indicator, and consequently for this kind of assumption, is that in
this situation we are able to derive an effective solution, as we shall see in Section 7.10. Therefore,
we assume that the analysis is based on the transformed data

Y = {Yhji = ϕh(Xhji), i = 1, . . . , nj , j = 1, . . . , C, h = 1, . . . , V }.
Hence, consequent permutation partial tests should be based on proper functions of sample totals
S∗hj =

∑
i≤nj Y

∗
hji , j = 1, . . . , C, h = 1, . . . , V .

In order to take into account that, for whatever reason, some of the data are missing, we must
also consider the associated inclusion indicator , that is, the complementary set of binary values

O = {Ohji, i = 1, . . . , nj , j = 1, . . . , C, h = 1, . . . , V },
where Ohji = 1 if Xhji has been observed and collected, otherwise Ohji = 0. Thus, the inclusion
indicator O represents the observed configuration in the data set. Hence, the whole set of observed
data is summarized by the pair of associated matrices (Y,O). Moreover, we define by νhj =∑

i Ohji , j = 1, . . . , C, h = 1, . . . , V , the actual sample size of the really observed data in the j th
group relative to the hth variable, and by νh· =

∑
j νhj , h = 1, . . . , V , the total actual sample size

of the really observed data relative to the hth variable.
Thus, assuming that data are jointly exchangeable in the null hypothesis with respect to groups

on both the Y and O components, we may express the hypotheses of interest as

H0 :
{
(Y1,O1)

d= . . .
d= (YC,OC)

}
against the alternative H1 : {H0 is not true}.

The hypotheses and assumptions are such that the permutation testing principle applies. Note
that in the present context P represents the joint multivariate distribution in the null hypothesis of
(Yj ,Oj ), j = 1, . . . , C. Also note that, with obvious notation, we may write P = PO · PY|O, where
the roles of the inclusion indicator O and of observed data Y, conditionally on O, are emphasized.
It should be noted that the whole set of observed data (Y,O) in the null hypothesis is a set of
jointly sufficient statistics for the underlying observed and missing data processes.

7.8.1 Deletion, Imputation and Intention to Treat Strategies

Most testing solutions within a parametric framework are based either on the so-called deletion
principle or on imputation methods , both useful in MCAR situations. The former considers the
part of the data set resulting from removing all incomplete vectors; the latter involves replacing
missing data by means of suitable functions of actually observed data, in accordance with an
imputation criterion.

Among deletion methods, we recall listwise deletion and pairwise deletion of the missing values.
According to the listwise deletion approach (also called complete case analysis) individuals with at
least one missing value are removed from the analysis. As a result, there is a considerable loss of
data and of information. In contrast, pairwise deletion removes only specific missing values from
the analysis and not the entire case, as the listwise method does. For example, in a multivariate
problem, if correlations are of interest, then bivariate correlations will be calculated using only
cases with valid data for those two variables. As a result, correlations will be calculated using
different sample sizes.

Many imputation techniques have been proposed in literature. Some of the most commonly used,
among them hot-deck imputation and regression imputation , will be discussed later. In a way, all
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these methods aim to satisfy the idea that analyses should be done on complete data sets because,
in general, all parametric approaches require such a condition.

Furthermore, in the parametric framework, both adherence and missing data issues are often
addressed using an approach based on the intention to treat (ITT) principle. We recall that in
clinical research adherence and data missingness are distinct problems. Even patients who have
dropped out may re-enter the study for final measurements, while adherent patients may be missed
during the course of the study. In longitudinal trials, patients, randomized to receive a specific
treatment, are repeatedly measured throughout the duration of the study. As unfortunately fre-
quently happens, many patients may be missed – for example, they may die, miss a visit, stop
taking their medication or just leave the trial at any time. Similar events must be considered
when comparing treatment performances, especially if they are suspected of influencing the final
outcome. Both explanatory and pragmatic analyses may be carried out when such off-treatment mea-
sures arise. While explanatory analyses aim to detect the biological effects of treatment, excluding
non-compliant patients from analysis if needed, pragmatic analyses focus on the utility and effec-
tiveness of the therapy. ITT analysis is an example of the latter. Hence, following the ITT principle,
missing data should be replaced with suitable values. This problem may be dealt with using the
last observation carried forward (LOCF) approach, where a patient’s last measurement is used
as the final one. Another strategy is to extrapolate missing values from the available data (e.g.
regression substitution). Among imputation methods, we recall the hot-hand or hot-deck approach,
whereby patients with missing data are assigned data values from other patients who share the
same characteristics, such as age, sex, height or weight. A traditional approach is the so-called
mean substitution , replacing the missing values with the mean of the observed values. Moreover,
propensity score methods for missing data may also be used. All these approaches are simply
different imputation methods, making use of the available observations to predict values for the
missing ones.

In summary, according to the ITT principle, treatment groups are compared in terms of the
treatment to which they were randomly assigned at the beginning of the study, regardless of
deviations from clinical trial protocol or patient non-compliance. The widespread use of this
approach is mostly due to the fact that ITT analysis preserves the randomized trial population
(e.g. including non-compliant patients, irrespective of protocol deviations), thus providing an unbi-
ased estimate of treatment effect and giving a clear overview of the real clinical situation. In this
way, it also avoids potential overestimates of treatment effectiveness deriving from the removal
of non-compliant patients – that is, ITT is a conservative data analysis approach. In conclusion,
a ‘quasi’ ITT approach, excluding ineligible patients from the study, is recommended, especially
when the proportion of ineligible participants is very high (Heritier et al., 2003).

However, the permutation approach considers data as they are, without deletion or imputation.
When deleting incomplete vectors we also remove the possible partial information they contain,
which may be valuable and useful for analysis. Furthermore, imputation methods may introduce
information bias which may negatively influence the analysis.

7.8.2 Breaking Down the Hypotheses

The complexity of this testing problem is such that it is very difficult to find a single overall test
statistic. In any case, as previously shown, the problem may be tackled by means of the NPC of a
set of dependent permutation tests.

Let us suppose that in the testing problem we are interested in V different aspects (note that
this corresponds to one aspect for each component variable; for an extension, see the example in
Section 7.11). Hence, we consider a set of V partial tests which, due to our assumptions, may
be simply reduced to V one-way bivariate ANOVAs, one for each marginal component in (Y,O),
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followed by their NPC. To this end, we observe that the null hypothesis may be equivalently written
in the form

H0 :

{
V⋂

h=1

[
(Yh1,Oh1)

d= . . .
d= (YhC,OhC)

]}
=
{

V⋂
h=1

H0h

}
,

where, as usual, a suitable and meaningful breakdown of H0 is emphasized. Hence, the hypothesis
H0 against H1 is broken down into V sub-hypotheses H0h against H1h, h = 1, . . . , V , in such a
way that H0 is true if all the H0h are jointly true and H1 is true if at least one among the H1h is
true, so that H1:

{⋃
h H1h

}
.

Thus, to test H0 against H1, we consider a V -dimensional vector of real-valued test statistics T =
{T1, . . . , TV }, the hth component of which is the univariate partial test for the hth sub-hypothesis H0h

against H1h. Without loss of generality, we assume that partial tests are non-degenerate, marginally
unbiased, consistent, and significant for large values. Hence, the combined test is a function of V

dependent partial tests. Of course, the combination must be nonparametric, particularly with regard
to the underlying dependence relation structure, because in this setting only very rarely may the
dependence structure among partial tests be effectively analysed.

7.9 The Structure of Testing Problems

7.9.1 Hypotheses for MNAR Models

Let us first consider an MNAR model for missing data. If the missing data are MNAR, then H0

must take into consideration the homogeneity in distribution with respect to the C samples of the
actually observed and collected data Y jointly with that associated with the missing data process
O because in this setting it is assumed that, in the alternative, the symbolic treatment may also
influence missingness. In fact, the treatment may affect the distributions of both variables Y and of
the inclusion indicator O. Hence, in the case of MNAR missing data, the null hypothesis requires
the joint distributional equality of the missing data process in the C groups, giving rise to O, and
of response variables Y conditional on O, that is,

H0 :
{[

O1
d= . . .

d= OC

]⋂[(
Y1

d= . . .
d= YC

)
|O
]}

.

The assumed exchangeability in the null hypothesis of the n individual data vectors in (Y,O)

with respect to the C groups implies that the treatment effects are null on all observed and
unobserved variables. In other words, we assume that there is no difference in distribution for the
multivariate inclusion indicator variables Oj , j = 1, . . . , C, and, conditionally on O, for actually
observed variables Y. As a consequence, it is not necessary to specify both the missing data
process and the data distribution, provided that marginally unbiased permutation tests are available.
In particular, it is not necessary to specify the dependence relation structure in (Y,O) because it is
nonparametrically processed. In this framework, the hypotheses may be broken down into the 2V
sub-hypotheses

H0 :

{[⋂
h

(
Oh1

d= . . .
d= OhC

)]⋂[⋂
h

(
Yh1

d= . . .
d= YhC

)
|O
]}

=
{
HO

0

⋂
H

Y|O
0

}
=
{(⋂

h

HO
0h

)⋂(⋂
h

H
Y|O
0h

)}
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against

H1 :

{(⋃
h

HO
1h

)⋃(⋃
h

H
Y|O
1h

)}
,

where HO
0h indicates the equality in distribution among the C levels of the hth marginal component

of the inclusion (missing) indicator process, and H
Y|O
0h indicates the equality in distribution of the

hth component of Y, conditional on O.
For each of the V sub-hypotheses HO

0h a permutation test statistic such as Pearson’s X2, or other
suitable tests for proper testing with binary categorical data, are generally appropriate (for testing
with categorical variables see Cressie and Read, 1988; Agresti, 2002; and Chapter 6 above). For
each of the k sub-hypotheses H

Y|O
0h , O is fixed at its observed value, so that we may proceed

conditionally. Proper partial tests are discussed in Section 7.10.

Remark 1. The NPC of 2V partial tests may be done in at least three different ways: (a) using
one single combining function on all 2V partial tests such as T ′′a = ψ(λO

1 , . . . , λ
O
V ;λY|O

1 , . . . , λ
Y|O
V );

(b) using V second-order combinations, one for each component variable, T ′′bh = ψh(λ
O
h ;λY|O

h ),
h = 1, . . . , V , followed by a third order combination, T ′′′b = ψ(λ′′b1, . . . , λ

′′
bV ); (c) using two second-

order combinations, T ′′cO = ψO(λ
O
1 , . . . , λ

O
V ) and T ′′cY|O = ψY(λ

Y|O
1 , . . . , λ

Y|O
V ), respectively on the

inclusion indicator O and on the actually observed data (Y|O), followed by a third order combina-
tion, T ′′′c = ψ(λ′′cO;λ′′cY|O). Note that if in all phases and in each of the three methods of combination
the same combining function ψ is used, then T ′′a , T ′′′b and T ′′′c are almost permutationally equivalent,
except for approximations due to finite simulations and nonlinearity of combining functions.

In addition, due to assumptions on partial tests, the second-level partial test T ′′cY|O is marginally
unbiased for

H
Y|O
0 :

{[(
Y1

d= . . .
d= YC

)
|O
]}

and so allows for a form of separate testing on actually observed data, conditional on O, even
though missing data are non-MAR. This is useful in many circumstances, especially when interest
centres on actually observed data. Note that this solution coincides formally with that of MCAR
problems (see the next subsection).

7.9.2 Hypotheses for MCAR Models

If the missing data are MCAR, we may, according to Rubin, proceed conditionally with respect to
the observed inclusion indicator O and ignore HO

0 because in this context we have assumed that O
does not provide any discriminative information about treatment effects. Thus, as sub-hypotheses
on O are true by assumption, HO

0 : {O1
d= . . .

d= OC} may be ignored. Hence, we may write the
null hypothesis in the relatively simpler form

H0 = H
Y|O
0 :

{⋂
h

[(
Yh1

d= . . .
d= YhC

)
|O
]}
=
{⋂

h

H
Y|O
0h

}
against

H1 :

{⋃
h

H
Y|O
1h

}
,

where the notation is the same as in Section 7.9.1. Of course, this problem is solved by the NPC

T ′′ = T ′′cY|O = ψY

(
λ

Y|O
1 , . . . , λ

Y|O
V

)
.
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7.9.3 Permutation Structure with Missing Values

In order to deal with this problem using a permutation strategy, it is necessary to consider the role of
permuted inclusion indicators O∗ = {O∗

hji , i = 1, . . . , nj , j = 1, . . . , C, h = 1, . . . , V }, especially
with respect to numbers of missing data, in all points of the permutation sample space (Y,O)/(Y,O)

associated with the pair (Y,O).
The permutation actual sample sizes of really valid data for each component variable within

each group, ν∗hj =
∑

i O
∗
hji , j = 1, . . . , C, h = 1, . . . , V , vary according to the random attribution

of unit vectors, and of relative missing data, to the C groups. This, of course, is because units with
missing data participate in the permutation mechanism as well as all other units.

Table 7.1 shows an example of how the permutation strategy applies to a bivariate variable
(W1,W2) when a generic permutation of data is considered and where some of the data are missing.
In the example there are two groups with n1 = n2 = 8, the missing data are denoted by ‘?’, and
the permutation considered is u∗ = (9, 15, 5, 6, 11, 13, 3, 14, 1, 8, 16, 10, 7, 2, 4, 12).

As the actual sample sizes of valid data vary according to the permutation of units with missing
data, the V × C matrix {ν∗hj , j = 1, . . . , C, h = 1, . . . , V } is not invariant in the permutation sample
space. In other words, and focusing on the hth variable, if for some j we have νhj < nhj , so that
the related number of missing data is positive, then the permutation probability Pr{⋂j (ν

∗
hj = νhj )}

of finding the C permutation of actual sample sizes of valid data all equal to those in (Y,O) is
strictly less than one.

For instance, in the example, the actual sample size of valid data of variable V in the first group
changes from three to four: ν11 = 3, while ν∗11 = 4, etc. In practice, for the data set of the same
example, the permutation actual sample size of valid data related to the first group satisfies the
inequalities 4 ≤ ν∗11 ≤ 8 and 3 ≤ ν∗21 ≤ 8.

Thus, the key to a suitable solution is to use partial test statistics, the permutation distributions
of which are at least approximately invariant with respect to the permutation of actual sample
sizes of valid data. This is done in the next section. However, these tests are also presented in
Pesarin (2001).

Table 7.1 Example of a permutation with missing values

i W1 W2 u∗i W ∗
1 W ∗

2

1 W1 W2 9 ? W2

2 W1 ? 15 W1 W2

3 ? W2 5 ? W2

I 4 W1 W2 6 ? W2

5 ? W2 11 W1 ?
6 ? W2 13 W1 ?
7 W1 W2 3 ? W2

8 W1 W2 14 W1 W2

9 ? W2 1 W1 W2

10 W1 W2 8 W1 W2

11 W1 ? 16 W1 ?
II 12 W1 ? 10 W1 W2

13 W1 ? 7 W1 W2

14 W1 W2 2 W1 ?
15 W1 W2 4 W1 W2

16 W1 ? 12 W1 ?
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Remark 1. When the missing data process is MCAR by assumption, so that treatment has no
influence on missingness or observation probabilities and data are unidimensional, then we may
ignore missing data, simply by discarding them from the data set, when testing H0 : {(Y1

d= . . .
d=

YC)|O} against H1 : {H0 is not true}. Thus, actual sample sizes are reduced to νj ≤ nj units. In such
a situation, when working with reduced data sets, we may obtain exact permutation solutions. Also
note that, in this context, a univariate MCAR model corresponds to a random censoring model .

7.10 Permutation Analysis of Missing Values

7.10.1 Partitioning the Permutation Sample Space

Here we summarize the main arguments for an approximate permutation solution. Let us first
consider an MCAR model and a vector of partial test statistics T, based on functions of sample
totals of valid data, and denote its multivariate permutation distribution by F [t|(Y,O)], t ∈ RV .
We observe that the set of permutations O∗ of O, that is, the set of possible permuted inclusion
indicators according to the random attribution of data to the C groups, induces a partition into
sub-orbits on the whole permutation sample space (Y,O)/(Y,O). These sub-orbits are characterized
by points which exhibit the same matrix of permutation actual sample sizes of valid data {ν∗hj ,
j = 1, . . . , C, h = 1, . . . , V }.

This partition is displayed in Figure 7.1, which shows that the two points (Y∗1,O∗
1) and (Y∗2,O∗

2)

lie on the same sub-orbit if the respective permutation actual sample sizes of valid data ν∗1hj =∑
i O

∗
1hji and ν∗2hj =

∑
i O

∗
2hji are equal for every h and j , h = 1, . . . , V , j = 1, . . . , C.

Of course, if the permutation sub-distributions of the whole matrix of sample totals {S∗hj =∑
i Y

∗
hji ·O∗

hji , j = 1, . . . , C, h = 1, . . . , V }, where it is assumed that O∗
hji = 0 implies Y ∗hji ·

O∗
hji = 0, are invariant with respect to the sub-orbits induced by O∗, then we may evaluate

F [t|(Y,O)] for instance by a simple CMC procedure, that is, by ignoring the partition into induced
sub-orbits.

The distributional invariance with respect to permuted inclusion indicators O∗ of sample totals
S∗ implies that the equality

F [t|(Y,O)] = F [t|(Y,O∗)]

is satisfied for every t ∈ RV , for every specific permutation O∗ of O, and for all data sets Y. Except
for some special situations (for one of these see Section 7.12) or for very large sample sizes, this
distributional invariance is extremely difficult to satisfy exactly when V > 1 and for all finite sample
sizes. Of course, when V = 1, so that the problem is one-dimensional, this distributional invariance

 • (Y*2, O*2)

 • (Y*1, O*1)

Figure 7.1 Partition of (Y,O)/(Y,O) into sub-orbits induced by O∗
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may become exact in MCAR models because, conditionally, we are allowed to ignore missingness
by removing all unobserved units from the data set.

Moreover, when problems involve multivariate paired data, so that numbers of missing differ-
ences are permutationally invariant quantities, then related tests become exact (see Section 7.12).
Therefore, in general, we must look for approximate solutions.

7.10.2 Solution for Two-Sample MCAR Problems

Let us denote by ν = {νhj , j = 1, . . . , C, h = 1, . . . , V } the V × C matrix of actual sample sizes of
valid data in the observed inclusion indicator O. We have assumed that our test statistics are based on
permutation sample totals of valid data {S∗hj =

∑
i Y

∗
hji ·O∗

hji , j = 1, . . . , C, h = 1, . . . , V }. Thus,
supposing that the permutation distribution of the sample total S∗hj , conditional on the whole data
set (Y,O) considered as a finite population, depends essentially on the number ν∗hj of summands,
the previous distributional equality becomes equivalent to

F [t|(Y, ν)] = F [t|(Y, ν∗)],

where ν∗ = {ν∗hj , j = 1, . . . , C, h = 1, . . . , V } represents the V × C matrix of permutation of
actual sample sizes of valid data associated with O∗. Hence, we have to find test statistics the
permutation null sub-distributions of which are invariant with respect to ν∗ and for all Y.

Again, only very rarely can this condition be satisfied exactly (see Section 7.12 for one situation in
which this condition is achieved). Therefore, in general, we must consider an approximate solution
based on the distributional invariance of means and variances of partial tests T with respect to ν∗.
In other words, we must look for statistics the means and variances of which are invariant with
respect to the sub-orbits induced by O∗ on permutation sample space (Y,O)/(Y,O).

For simplicity, and without loss of generality, let us first consider the case of a univariate variable
Y , so that we have only one test statistic T , and assume that the permutation tests to be considered
are based on univariate sample totals of valid data, S∗j =

∑
i Y

∗
ji ·O∗

ji , j = 1, . . . , C.

Of course, the overall total S =∑j Sj , which is assumed to be a non-null quantity, is permuta-
tionally invariant because in (Y,O)/(Y,O), the equation

S =
∑

ji
Yji ·Oji =

∑
j
S∗j

is always satisfied.
Let us now consider the two-sample case (C = 2) and assume that the test statistic for H

Y|O
0

against HY|O
1 is a linear combination of S∗1 and S∗2 . Thus, the test is expressed in the form

T ∗(a∗, b∗|ν∗) = a∗ · S∗1 − b∗ · S∗2 ,
where a∗ and b∗ are two coefficients which are independent of the actually observed data Y
but which may be permutationally non-invariant. These coefficients must be determined assuming
that, in the null hypothesis, the variance V[T ∗(a∗, b∗)|ν∗] = ζ 2 is constant, in the sense that it is
independent of the permutation of actual sample sizes ν∗j , j = 1, 2, and that the mean values should
identically satisfy the condition E[T ∗(a∗, b∗)|ν∗] = 0.

In accordance with the technique of without-replacement random sampling from (Y,O) which,
due to conditioning, is assumed to play the role of a finite population (see Section 2.1.3), we can
write the following set of equations:

ν∗1 + ν∗2 = ν,

S∗1 + S∗2 = S,
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E(S∗j ) = S · ν∗j /ν, j = 1, 2,

V(S∗j ) = σ 2 · ν∗j (ν − ν∗j )/(ν − 1) = V(ν∗), j = 1, 2,

where V is a positive function, and ν = ν1 + ν2, S = S1 + S2 and σ 2 = ∑ji(Yji − S/ν)2 ·Oji/ν

are permutationally invariant non-null quantities. Thus, for any given pair of positive permutation
actual sample sizes (ν∗1 , ν

∗
2 ), the two permutation sampling totals S∗1 and S∗2 have the same variance

and their correlation coefficient is ρ(S∗1 , S
∗
2 ) = −1, because their sum S is a permutation invariant

quantity. Hence, we may write

E[T ∗(a∗, b∗)] = a∗ · S · ν∗1 − b∗ · S · ν∗2 = 0,

V[T ∗(a∗, b∗)] = a∗2V (ν∗)+ 2a∗b∗V (ν∗)+ b∗2V (ν∗) = (a∗ + b∗)2V (ν∗).

The solutions to these equations are a∗ = (ν∗2/ν
∗
1 )

1/2 and b∗ = (ν∗1/ν
∗
2 )

1/2, ignoring an inessential
positive coefficient.

Hence, for C = 2 and V = 1, the test statistic, the sub-distributions of which are approximately
invariant with respect to permutation of actual sample sizes of valid data because they are permu-
tationally invariant in mean value and variance, takes the form

T ∗ = S∗1 · (ν∗2/ν∗1 )1/2 − S∗2 · (ν∗1/ν∗2 )1/2.

It is worth noting that, when there are no missing values, so that ν∗j = nj , j = 1, 2, the latter
test is permutationally equivalent to the standard two-sample permutation test for comparison of
locations T ∗ ≈∑i Y

∗
1i .

Remark 1. Since the test T ∗ is approximately exact, it is also approximately unbiased. In order
to prove consistency, we recall that the size of missing data ν∗ may diverge, provided that, as n

tends to infinity, lim ν∗/n ∈ (0, 1). Details are left to the reader.

Remark 2. In order for the given solution to be well defined, we must assume that ν∗1 and ν∗2
are jointly positive. This implies that, in general, we must consider a sort of restricted permutation
strategy which consists of discarding from the analysis all points of the permutation sample space
(Y,O)/(Y,O) in which even a single component of the permutation matrix ν∗, of actual sample sizes
of valid data, is zero. Of course, this kind of restriction has no effect on inferential conclusions.

7.10.3 Extensions to Multivariate C-Sample Problems

In the case of C > 2 and again with V = 1, one approximate solution is

T ∗C =
C∑

j=1

S∗j ·
(
ν − ν∗j
ν∗j

)1/2

− (S − S∗j ) ·
(

ν∗j
ν − ν∗j

)1/2


2

.

This test statistic may be seen as a direct combination of C partial dependent tests, each obtained
by a permutation comparison of the j th group with respect to all other C − 1 groups pooled together.
Also, in the case of complete data, when there are no missing values, this test is equivalent to the
permutation test for a standard one-way ANOVA layout, provided that sample sizes are balanced,
nj = m, j = 1, . . . , C, whereas in the unbalanced cases the two solutions, although not coincident,
are very close to each other.
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One more solution may be obtained by the direct NPC of all pairwise comparisons:

T ∗2C =
∑
r<j

(
T ∗rj
)2

,

where T ∗rj = S∗r · (ν∗j /ν∗r )1/2 − S∗j · (ν∗r /ν∗j )1/2, 1 ≤ r < j ≤ C.

Of course, if V > 1, a nonparametric combination will result. Hence, to test H0 : {⋂h H
Y|O
0h }

against H1 : {⋃h H
Y|O
1h }, the solution becomes T ′′ = ψ(λ1, . . . , λV ), where ψ is any member of

the class C, and λh is the partial p-value of either

T ∗Ch =
C∑

j=1

S∗hj ·
(
νh − ν∗hj

ν∗hj

)1/2

− (Sh − S∗hj ) ·
(

ν∗hj
νh − ν∗hj

)1/2


2

or

T ∗2Ch =
∑
r<j

S∗hr ·
(
ν∗hj
ν∗hr

)1/2

− S∗hj ·
(
ν∗hr
ν∗hj

)1/2
2

,

each relative to the hth component variable, h = 1, . . . , V .

7.10.4 Extension to MNAR Models

For MNAR models, again in a nonparametric way, we must also combine the V test statistics
on the components of the inclusion indicator O, provided that all partial tests are marginally
unbiased (see Section 4.2.1). More specifically, to test H0 : {[⋂h H

O
0h]
⋂

[
⋂

h H
Y|O
0h ]} against H1 :

{[⋃h H
O
1h]
⋃

[
⋃

h H
Y|O
1h ]} we must now combine V tests T ∗O

h and V tests T
∗Y|O
h , h = 1, . . . , V .

Hence (with obvious notation),

T ′′ = ψ(λO
1 , . . . , λ

O
V ;λY|O

1 , . . . , λ
Y|O
V ).

For each of the V sub-hypotheses HO
0h against HO

1h, a permutation statistic such as Pearson’s
chi-square or any other suitable test statistic for proper testing of categorical data may be used (for
instance, when C = 2 and restricted alternatives are of interest, Fisher’s exact probability test may
be appropriate). Instead, for V sub-hypotheses H

Y|O
0h against H

Y|O
1h , proper tests are discussed in

Section 7.10.3.
This combined permutation test has good general asymptotic properties. In particular, under very

mild conditions, if best univariate partial tests are used, then the combined test is asymptotically
best in the same sense.

Remark 1. Partial tests T ∗O
h on the components of O are exact, unbiased and consistent, whereas

T
∗Y|O
h on the components of Y are consistent but approximately exact and unbiased, so that the

combined test T ′′ is consistent and approximately exact and unbiased for all ψ ∈ C (see Remark 1,
7.10.2).

Remark 2. It is easy to extend the solution to problems with multivariate monotonic stochastic
ordering defined by

H0 :
{
(X1,O1)

d= . . .
d= (XC,OC)

}
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against for instance

H1 :

{
(X1,O1)

d≤ . . .
d≤ (XC,OC)

}
,

where at least one inequality is strict. Details are left to the reader.

7.11 Germina Data: An Example of an MNAR Model
The illustrative example in this section, with a few changes, comes from Pesarin (1991b). In it
n1 = 20 seeds of a given plant are sown in a standard (untreated) plot of soil and n2 = 20 more
seeds are sown in soil treated with a fertilizer. By assumption, seeds are randomized to treatments.
The expected treatment effects of interest are: (a) improved probability of germination, denoted by
the variable O; (b) improved index of production, indicated by the bivariate quantitative response
(X, Y ), where X is an index measured by the weight of adult plants and Y is an index of the total
surface area of their leaves.

Note that O is typically binary categorical, taking value 1 if the seeds germinate and 0 otherwise.
X and Y are positive quantities when O = 1. The underlying non-degenerate distribution P is
presumed to be unknown. O also plays the role of inclusion indicator of missing values with
respect to quantitative responses (X, Y ); the pair (Xji , Yji) is actually observed on the jith unit if
O = 1, whereas if O = 0, that is, the jith unit did not germinate, (Xji, Yji) cannot be observed
and so appears to be missing or censored, i = 1, . . . , n, j = 1, 2. In a way, the data here appears
to be jointly censored by a random mechanism, depending on treatment.

In such a context, we may write the test hypotheses as

H0 : {P1 = P2} = {(O1, X1, Y1)
d= (O2, X2, Y2)}

=
{[
{O1

d= O2}
]⋂[

(X1, Y1)
d= (X2, Y2)|O

]}
against

H1 :

{[
O1

d
< O2

]⋃[
(X1

d
< X2)|O

]⋃[
(Y1

d
< Y2)|O

]}
,

because, conditionally on germination, the expected treatment effects are assumed to produce higher
values in both component variables. Moreover, let us assume that partial expected effects on the
first component variable [X|O] are marginally homoscedastic and additive on location, whereas
effects on [Y |O] are presumed to act on both location and second moment (as in multi-aspect
testing problems, see Example 3, 4.6).

These side-assumptions are, on the one hand, consistent with the impression that observed second-
variable data show increments in both mean and variance; on the other hand, they are consistent with
the fact that most of the weight in this particular kind of plant comes from its leaves. In addition,
these side-assumptions contribute towards showing the versatility of NPC methods. Hence, the
set of sub-alternatives may be written as: HO

11 : {E(O1) < E(O2)}, H
(X,Y)|O
12 : {E(X1) < E(X2)},

H
(X,Y)|O
13 : {E(Y1) < E(Y2)} and H

(X,Y)|O
14 : {E(Y 2

1 ) < E(Y 2
2 )}.

Remark 1. In order to facilitate computation related to partial tests for quantitative responses
of actually observed units, which concern the variables X, Y and Y 2, the data set should be in a
unit-by-unit representation, (O,X,Y) = {(Oji , Xji, Yji , Y

2
ji), i = 1, . . . , nj , j = 1, 2}, such that

the record of the jith unit is the four-dimensional vector (Oji , Xji, Yji , Y
2
ji).
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Although, in this representation, the component Y 2
ji is apparently uninformative, being related to

Yji with probability one, it is useful to note that the related partial test possibly contains information
on second-order effects (see the notion of multi-aspect testing).

Remark 2. If treatment effects are also expected to act on cross-functionals, as in E[η(X1, Y1)] <
E[η(X2, Y2)], then it is straightforward to include the specific partial tests in the analysis. Related
computations may be facilitated if unit records are written as [Oji , Xji, Yji , Y 2

ji , η(Xji , Yji)],
i = 1, . . . , nj , j = 1, 2.

7.11.1 Problem Description

This example is a typical MNAR situation. We note that its solution within a parametric framework,
due to its complexity, if not impossible, is extremely difficult. On the other hand, the permutation
solution is relatively easy to obtain within the NPC methodology and the analysis of missing data.

The problem could be viewed as emblematic of a collection of rather difficult problems:

• analysis of four-dimensional restricted alternatives;
• analysis of data of mixed type (one categorical and two quantitative variables);
• analysis of MNAR missing values where, in H1, the missing mechanism is assumed to depend

on treatment;
• multi-aspect analysis on quantitative responses.

In a way, it was through dealing with this problem that we began to systematically study, develop
a coherent theory, and suggest non-standard proposals within the area of NPC methods of dependent
permutation tests.

In any case, it is worth noting that the key idea for a proper solution is that, in H0, both the
exchangeability and permutation principles are satisfied.

The data from two groups are reported in Table 7.2, where n = 20, ν1 = 12, and ν2 = 17
(νj =

∑
i Oji , j = 1, 2, is the number of germinated seeds in the j th group and represents the

actual sample size for quantitative responses).

7.11.2 The Permutation Solution

The hypotheses are decomposed into four sub-hypotheses in which the alternatives are all one-
sided. Thus, according to the previous theory, partial tests may be based on the following set of
statistics:

T ∗1 = ν∗2 ,

T ∗2 =
∑

i
X∗2i · γ ∗2 −

∑
i
X∗1i · γ ∗1 ,

T ∗3 =
∑

i
Y ∗2i · γ ∗2 −

∑
i
Y ∗1i · γ ∗1 ,

T ∗4 =
∑

i
Y ∗2

2i · γ ∗2 −
∑

i
Y ∗2

1i · γ ∗1 ,

where γ ∗j = (ν∗k /ν
∗
j )

1/2, k 	= j = 1, 2.
Note that all partial tests are significant for large values and that all are, at least approximately,

marginally unbiased because the expected treatment effect operates on all variables towards stochas-
tically larger values. Also note that T ∗1 is permutationally equivalent to Fisher’s exact probability
test on the 2× 2 table of germination frequencies, as reported in Table 7.3.
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Table 7.2 Two groups of seeds, (I) without and (II) with fertilizer

I II
i O1 X1 Y1 O2 X2 Y2

1 0 ? ? 0 ? ?
2 0 ? ? 0 ? ?
3 0 ? ? 0 ? ?
4 0 ? ? 1 3.31 18.49
5 0 ? ? 1 6.56 19.20
6 0 ? ? 1 3.16 9.85
7 0 ? ? 1 4.07 15.83
8 0 ? ? 1 2.09 6.16
9 1 6.03 12.54 1 6.72 17.58

10 1 4.20 14.81 1 3.93 19.29
11 1 4.49 16.71 1 2.56 10.77
12 1 2.00 7.53 1 8.30 18.31
13 1 2.84 7.02 1 4.21 10.56
14 1 3.88 8.09 1 1.86 9.48
15 1 2.04 5.76 1 3.09 12.54
16 1 5.48 18.01 1 5.09 18.35
17 1 2.31 8.81 1 4.08 11.84
18 1 1.90 8.17 1 3.63 11.44
19 1 1.75 6.62 1 2.61 7.66
20 1 3.02 7.69 1 5.21 12.00

Table 7.3 Germination data

20− ν ν

I 8 12

II 3 17

The complexity implied by the restricted alternatives, the particular treatment effects, which
need multi-aspect testing, and the unusual structure of the data are such that ordinary parametric
solutions are nearly impossible to apply.

Firstly, we wish to determine whether the fertilizer improves the probability of seed germination,
or adds weight to adult plants, or produces an increase in the total surface of their leaves (first
and second moments). Moreover, using the NPC methodology, we may be interested in evaluating
whether the use of fertilizer results in a general improvement of all the variables (see global
p-values).

As is shown in Table 7.4, we may conclude that fertilizer produces an increase in the total surface
of the leaves (first and second moments) and a significant global improvement may be found using
Fisher’s combining function λ̂′′ = 0.0201.

The combination problem may be dealt with in at least two different ways (see Figure 7.2).
As already seen, we may perform an NPC of four partial tests, as in T ′′ = ψ1(T1, T2, T3, T4),

giving each partial test the same weight, implicitly weighting the Y -component twice and the
others once. Of course, if this is compatible with the inferential objectives of the experimenter,
then this is the solution he or she is looking for. If the inferential objective considers the three
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Table 7.4 Testing equality in distribution for two
independent samples for continuous (or dichotomous)
variables (with or without missing values)

Variables Test p-value

Germinate T1 0.0810

Weight T2 0.0965

Surface T3 0.0264

Surface2 T4 0.0363

p-Global (Fisher) T ′′ 0.0201

O
T1 : Does the fertilizer improve
the probability of germination?

T1 : Does the fertilizer improve
the probability of germination?

T2 : Does it increase the weight
of adult plants?

T2 : Does it improve
the weight of the plant?

T3 : Does it increase the surface area
of the leaves (1st moment)?

T3 : Does it improve the
surface area of the
leaves (1st moment)?

T4 : Does it improve the surface area
of the leaves (2nd moment)?

X

Y

Y2

O

X

Y

Y2

T″ : Does it
produce a global
improvement

T″ Y : Does the fertilizer
improve leaf extension?

T″′ : Does it
produce a global
improvement?

T4 : Does it iimprove the surface area
of the leaves (2nd moment)?

Figure 7.2 Different analyses for ‘germina’ data

variables (O,X, Y ) as having the same importance, as seems reasonable in the present problem,
then the overall solution becomes T ′′′ = ψ3

[
T1, T2, T

′′
Y

]
, where T ′′Y = ψ2(T3, T4). Of course, in this

analysis ψ1, ψ2, ψ3 are suitable combining functions belonging to the class C, which may differ from
each other in accordance with specific combining properties. Table 7.5 reports the results of this
different analysis.

Table 7.5 A solution to the combination problem by
the multi-aspect approach

Variables Test p-value

Germinate T1 0.0810

Weight T2 0.0965

Surface+Surface2 T ′′Y 0.0305

p-Global (Fisher) T ′′′ 0.0205
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7.11.3 Analysis Using MATLAB

In order to carry out the analysis for the germina example, we give the corresponding MATLAB
code (the data set is in the Excel file germina.xls, available from the book’s website).

B=5000;

[D, germina]=xlsimport(’germina’);

[P T options]=np_2s(D(2:end),D(1),B,1);

reminD(D)

[P T options]=np_2s({’Germinated’,’Weight’,’Surface’,’Surface2’},

’Fertilizer’,B,1);

%p-values:

%VARIABLES Y

% Y1 Y2 Y3 Y4

%0.080992 0.09649 0.026397 0.036296

NPC(P,’F’,options);

%VARIABLE Y1 Y2 Y3 Y4

%p-value 0.0810 0.0965 0.0264 0.0363

%Comb Funct Fisher

%p-GLOBAL 0.0201

options.labels.dims{2}={’Surface’ ’Surface ˆ 2’};
options.labels.dims{3}=[D(1).name];

p_surf=NPC(P(:,[end-1:end]),’F’,options);

%VARIABLE Y1 Y2

%p-value 0.0264 0.0363

%Comb Funct Fisher

%p-GLOBAL 0.0305

options.labels.dims{2}=[D(2:3).name]

options.labels.dims{2}{3}=’Surface MA’;

options.labels.dims{3}=[D(1).name];

NPC_FWE([P(:,[1 2]) p_surf],’F’,options);

%VARIABLE Y1 Y2 Y3

%p-value 0.0810 0.0965 0.0305

%p-FWE 0.0810 0.0965 0.0444

%Comb Funct Fisher

%p-GLOBAL 0.0205

In the above code, xlsimport imports an Excel file of data; np_2s is used to test the equality in
distribution of two independent samples, whenever the data set contains continuous or dichotomous
variables and even in the presence of missing values; and NPC allows the NPC methodology to be
used and thus produces multivariate tests.

7.11.4 Analysis Using R

We now give the R code (data are contained in thegermina.csv file available from the book’s
website). As already stated, the data set contains data of a study on 40 seeds trees. Twenty seeds
were randomly chosen and treated with a placebo, while the remaining 20 seeds were treated with a
fertilizer. The following variables were recorded: germination of the seed (0 = no, 1 = yes), average
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weight and leaf surface given that the seed has germinated. A further variable is Surface2, the
square of Surface, which allows us to consider the second moment of Surface as well. Clearly,
the last two columns of data have the functional relationship Surface2 = Surface2, and the
data of Weight and Surface are not available if Germinated is equal to zero. Missing data are
indicated with the symbol Na (not available).

setwd("C:/path")

source("t2p.r")

data<-read.csv("germina.csv",header=TRUE,na.strings=" ")

We wish to establish whether the fertilizer has a positive impact on the tree growth. In particular,
we wish to evaluate whether the fertilizer has a significant effect not only in terms of tree growth,
but even on the germination of the seeds. Thus, if we denote by Oi the variable Germinated, by
Xi the weight and by Y the surface area of the leaves, we wish to assess the global null hypothesis,

H0 :
{
(O1

d= O0)
⋂

(X1
d= X0)

⋂
(Y1

d= Y0)
⋂

(Y 2
1

d= Y 2
0 )|O1

d= O0
}
,

against the alternative,

H1 :
{
(O1

d
>O0)

⋃
(X1

d
>X0)

⋃
(Y1

d
>Y0)

⋃
(Y 2

1
d
>Y 2

0 )|O1
d= O0

}
.

B=5000

n=dim(data)[1]

p=dim(data)[2]-1

T<-array(0,dim=c((B+1),p))

colnames(T)=c("O","X","Y","Y2")

As far as the quantitative variables are concerned, we take as our test statistic the weighted

difference T ∗j =
√
ν∗2

0 /ν∗2
1 Z̄∗1j −

√
ν∗2

1 /ν∗2
0 Z̄∗0j , j = 1, 2, 3, where Z is the matrix with the contin-

uous variable of the data set germina, and ν∗0 and ν∗1 are the number of germinated seeds in the
samples treated with placebo and fertilizer, respectively, after a random assignment of the sample
labels to the rows of data. Since we are performing a random assignment of the labels with respect
to germinated seeds, when writing the R code, we have to consider the data matrix without the
first column (i.e. data[,-1]). The number of non-missing observations on the observed data are
ν0 = 12 and ν1 = 17. As far as the variable O is concerned a directional statistic that can be con-
sidered is the odds ratio (OR). It is easy to see that the OR is permutationally equivalent to the
product of the main diagonal of the matrix O (a 2× 2 table with the distribution of the variable O

in the two samples). Of course, the test statistics T ∗j are computed on the non-missing observations
only.

O = table(data[,1],data[,2]);

Z = data[,-c(1,2)]

T[1,1] = prod(diag(O))

nu = O[,2] ;

contr = rep(c(-sqrt(nu[2]/nu[1]),sqrt(nu[1]/nu[2])),nu)

T[1,-1] = t(Z[data[,2]>0,])%*%contr

Since the variables are recorded on the same trees, they are dependent. We can obtain the
permutation distribution by considering B = 5000 random permutations of the rows of data (i.e.
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data[,-1]). That is, we fix the variable denoting the sample and permute the vectors whose
elements are in the remaining columns. Note that the number of non-missing data changes at each
permutation, and must be computed each time.

set.seed(10)

for(bb in 2:(B+1)){

data.star = cbind(data[,1], data[sample(1:n),-1])

O.star = table(data.star[,1],data.star[,2]);

Z.star = data.star[,-c(1,2)]

T[bb,1] = prod(diag(O.star))

nu = O.star[,2] ;

contr.star = rep(c(-sqrt(nu[2]/nu[1]),sqrt(nu[1]/nu[2])),nu)

T[bb,-1] = t(Z.star[data.star[,2]>0,])%*%contr

}

At this point, the first column of T has the null distribution of the test statistic
T ∗O =O.star[1,1]*O.star[2,2] and the remaining columns contain the null distribution
of T ∗j . Each test statistic considered is significant for large values. We apply the t2p function in
order to obtain the partial p-value:

P = t2p(T); cat("Partial p-values:","\n"); P[1,]

O X Y Y2

0.0758 0.0934 0.0256 0.0342

We can now combine the two partial tests related to the variable Surface and obtain a unique
test related to this aspect: we compute Fisher’s combining function on the elements of T[,3:4].

T.Y = apply(P[,3:4],1,function(x){-2*log(prod(x))})

P.Y = t2p(T.Y)

P=cbind(P[,1:2],P.Y) ; colnames(P)[3] = "Y"

cat("Partial p-values:","\n"); P[1,]

Partial p-values:

O X Y

0.0758 0.0934 0.0300

The p-values above are the partial results related to the three aspects considered: Germination,
Weight and Surface. We can run the function FWE.minP in order to control for the multiplic-
ity. The FWE.minP function performs a permutation Bonferroni–Holm step-down procedure and
combines the partial p-values with Tippett’s combining function.

source("FWEminP.r")

cat("Adjusted Partial p-values:","\n"); FWE.minP(P)

Adjusted Partial p-values:

[,1]

O 0.1474

X 0.1474

Y 0.0624
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To carry out a global test, we can combine the three partial tests with Fisher’s combining function:

T.G = apply(P,1,function(x){-2*log(prod(x))})

p.G = t2p(T.G)[1]; p.G

[1] 0.0176

From these results we can conclude that there is a significant effect of the fertilizer on tree
growth. The greatest effect seems to be related to the area of the leaves, rather than their weight.
The fertilizer does not seem to be significantly associated with the germination of the seeds. The
data set and the corresponding software codes are available from the germina folder on the book’s
website.

Remark 1. The data in the example appear randomly censored, where the censoring process
may depend on treatment, because effective observations are obtained on germinated seeds, when
O = 1, and no observation is possible on non-germinated seeds, when O = 0. The given solution
is coherent with the point of view of a ‘scientist’ who is interested in showing whether fertilizer is
effective by increasing the probability of germination and/or by increasing distributions of weight
and/or leaf surfaces. Also, he may be interested in showing which of three aspects is most influ-
enced by adjusting partial p-values according to solutions in Chapter 5. However, if the censoring
process is considered of no concern or if he may assume that there is no influence of treatment on
the probability of germination, so that the censoring processes may be ignored, then the present
problem admits two quite different exact permutation solutions. The first of these may be found by
considering the point of view of the ‘fertilizer manufacturer’ (which is similar to that of a ‘farmer’)
whose objective is to see whether fertilizer improves the production per sown seed. Accordingly,
he put production of 0 on both variables for non-germinated seeds, thus obtaining observed mixed
variables with some data concentration at zero. By applying the NPC with B = 10 000, we obtain
λX = 0.0148, λY = 0.0045, λY 2 = 0.0051, λ

′′
23 = 0.0041, and λglobal = 0.0069. The latter, agrees

with the hypothesis that the fertilizer is effective, as do all partial results. The second exact solution
supposes that if the inclusion indicator O can be ignored, then we may delete all non-germinated
units from the data set (see Remark 1, 7.9.3). Thus, actually observed data may be viewed as if
actual sample sizes were reduced from nj to νj , j = 1, 2. Of course, this exact conditional analysis
is only slightly different from that performed with T ′′′XY , in the sense that the latter, being valid even
for non-ignorable missing processes, corresponds to the point of view of a ‘user’ whose main objec-
tive is concerned with the so-called ‘visible productivity’ of the fertilizer. By still applying the NPC
after deleting missing data with B = 10 000, we obtain λX = 0.0981, λY = 0.0250, λY 2 = 0.0322,
λ
′′
23 = 0.0285, and λglobal = 0.0446. Of course, since they correspond to different objectives, the

three solutions give different results.

7.12 Multivariate Paired Observations
Suppose that a V -dimensional non-degenerate real variable X is observed on k different time
occasions on the same n units in two experimental situations, corresponding to two levels of a
symbolic treatment. The whole data set is again denoted by

X = {Xhjit , t = 1, . . . , k, i = 1, . . . , n, j = 1, 2, h = 1, . . . , V }
= {Xjit , t = 1, . . . , k, i = 1, . . . , n, j = 1, 2}
= {Xji , i = 1, . . . , n, j = 1, 2},



252 Permutation Tests for Complex Data

where X represents the V -variate response (X1, . . . , XV ), the V -variate time profile (X1, . . . ,Xk)

and the whole data set. Let us also suppose that some of the data are missing, giving rise to the
inclusion indicator set

O = {Ohjit , t = 1, . . . , k, i = 1, . . . , n, j = 1, 2, h = 1, . . . , V },
where Ohjit equals 1 if Xhjit is observed and 0 if it is missing.

Let us further assume that we are interested in testing for V effects δh irrespective of
time, underlying dependences, and unknown distributions. Thus, if the missing data follow an
MCAR model, then the hypotheses under consideration can be formally expressed (with obvious
notation) as

H0 :

{
k⋂

t=1

(
X1t

d= X2t

)
|O
}
=
{

k⋂
t=1

V⋂
h=1

H0ht

}
,

against alternatives of the form

H1 :

{
k⋃

t=1

(
X1t

d

< 	= > X2t

)
|O
}
=
{

k⋃
t=1

V⋃
h=1

H1ht

}
.

In this context, partial permutation tests have the form

T ∗ht = ϕht

[∑
i Yhit ·Ohit · S∗i(∑
i Y

2
hit ·O2

hit

)1/2

]
, t = 1, . . . , k, h = 1, . . . , V ,

where Yhit = Xh1it −Xh2it are unit-by-unit, time-to-time and variable-by-variable observed dif-
ferences, Ohit = Oh1it ·Oh2it equals 1 if and only if Xh1it and Xh2it are both observed, S∗i are
permutation signs, and functions ϕht correspond to the absolute value or to signs plus or minus,
according to whether the ht th sub-alternative H1ht is two-sided (‘	=’) or one-sided (‘>’ or ‘<’)
respectively.

Remark 1. Observe that all partial tests T ∗ht , t = 1, . . . , k, h = 1, . . . , V , are permutationally
exact, provided that actual sample sizes νht =

∑
i Ohit are positive, because νht are permutationally

invariant quantities and thus null distributions depend only on exchangeable errors. Moreover, they
have null permutation means and unit variances and are marginally unbiased. Hence, their NPC is
appropriate for multivariate testing.

Remark 2. Since all partial tests are expressed in standardized form, a direct combination is
possible, although other combining functions may work better. However, in the framework of direct
combination, for instance, we may have T ′′∗h =∑t T

∗
ht for testing within each variable irrespective

of time, and T ′′′ =∑h T
′′∗
h for overall testing.

Remark 3. The extension to MNAR models, provided that partial tests for the components of the
inclusion indicator O are marginally unbiased, is straightforward. Observe that if partial tests for
HO

0 : {⋂h H
O
0h} against HO

1 : {⋃h H
O
1h} are exact, then the NPC for H0 : {[⋂h H

O
0h]
⋂

[
⋂

h H
Y|O
0h ]}

against H1 : {[⋃h H
O
1h]
⋃

[
⋃

h H
Y|O
1h ]} is also exact.

7.13 Repeated Measures and Missing Data
We consider a two-sample test on n1 and n2 units. Measurements on a response variable are repeated
on the same units on fixed time occasions and the two samples have two levels of a treatment. The



Permutation Testing for Repeated Measurements 253

response model is that of Section 7.3.1. The hypotheses that we wish to test are

H0 :
{

X1
d= X2

}
=
 ⋂

1≤t≤k
[X1(t)

d= X2(t)]

 =
 ⋂

1≤t≤k
H0t


against: H1 : {H0 is not true}.

As some of the data are missing (see Section 7.8), we must also consider the associated inclusion
indicator (data configuration)

O = {Oji(t), i = 1, . . . , nj , j = 1, 2, t = 1, . . . , k},
where Oji(t) = 1 if Xji(t) is actually observed, and Oji(t) = 0 if it is missing. Thus, O represents
the time profile of inclusion indicator. Hence, the complete set of observed data is summarized
by the pair of associated matrices (X,O). Moreover, we denote by νj (t) =

∑
i Oji(t), j = 1, 2,

t = 1, . . . , k, the actual sample size of valid data in the j th group relative to the t th time, and by
ν·(t) =

∑
j νj (t), t = 1, . . . , k, the total sample size of valid data relative to the t th time.

Thus, assuming that in the null hypothesis there is no difference in distribution due to treatment,
jointly on all (X,O) components, we may express the null hypothesis as

H0 : {(X1,O1)
d= (X2,O2)}

against the alternative H1 : {H0 is not true}.
The hypotheses and assumptions are such that the permutation testing principle applies. In fact, in

H0, data are i.i.d., so that they are exchangeable with respect to the two groups. The null hypothesis
may also be written as

H0 :
{(

O1
d= O2

)⋂[(
X1

d= X2

)
| O
]}

=
{[

k⋂
t=1

(
O1(t)

d= O2(t)
)]⋂[

k⋂
t=1

(
X1(t)

d= X2(t) | O
)]}

.

If missing data are assumed MCAR, then
{

O1
d= O2

}
is true by assumption. Hence, this part of

the analysis is omitted. If missing data are MNAR, then this part should be considered because in
this context it is assumed that the O-components may contain useful information for discriminating
between the null and alternative hypotheses.

In the case of MCAR data, each of the k sub-hypotheses is reduced to a two-sample test
conditional on O, where partial tests are related to HX

0t : {X1(t)
d= X2(t)|O}, t = 1, . . . , k. Hence,

for partial testing of H0t against H1t , we may use any marginally unbiased test T (t) and, in
order to achieve a complete solution for H0 against H1, we must combine all partial tests through
any nonparametric combining function. When missing data are MNAR, we must jointly take into
consideration the k partial tests for HO

0t : {O1(t)
d= O2(t)}, t = 1, . . . , k, as well. For each t , the

latter may be Fisher’s exact probability test. Therefore, in order to solve the whole problem, we
must nonparametrically combine all 2k partial tests.

7.13.1 An Example

This example is concerned with a problem which is quite common, for instance, in clinical trials,
in which data are obtained by repeated measurements on a set of individuals at fixed time intervals
and individuals are partitioned into two or more levels of a symbolic treatment.
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Table 7.6 Two-sample repeated observations, with MCAR missingness

X1 X2

t = 0 1 2 3 4 0 1 2 3 4

89.15 78.66 72.25 ? 59.21 91.12 75.18 72.77 ? 60.71
91.54 77.67 77.74 70.00 61.89 77.34 70.01 66.44 60.16 56.35
99.55 ? 81.37 72.15 66.36 66.98 65.08 58.48 54.16 53.78
82.85 82.47 71.97 68.01 ? 70.46 65.65 64.26 58.68 58.42
96.77 85.01 77.14 67.99 60.72 82.05 73.99 66.54 63.05 60.09
79.03 71.03 ? 59.74 63.25 91.10 76.69 ? 59.81 59.34
67.08 64.78 72.85 66.17 62.93 88.24 75.92 71.67 63.01 59.80
78.27 73.45 68.11 67.34 62.91 76.73 ? 62.65 65.03 63.28
72.45 68.92 64.19 58.86 62.11 93.24 77.82 76.99 67.89 65.65

Imagine that n individuals, homogeneous with respect to a given blood variable whose values are
higher than normal, are randomized into two groups, the first of which (n1 units) receives treatment
A1 and the other A2. The aim of both treatments is to stabilize the variable by stochastically
reducing it towards normal values (reducing means and, possibly, variances). Data are presumed
to be observed at k + 1 fixed time intervals and are interpreted as profiles of a stochastic process
{Xji(t), i = 1, . . . , nj , j = 1, 2, t = 0, . . . , k}, where data at time 0 are taken as baseline values.
In addition, independently of time and treatment level, we assume an MCAR model for missing
values.

Suppose that the hypotheses of interest are

H0 :

{
k⋂

t=1

[
(X1(t)−X1(0))

d= (X2(t)−X2(0)) |O
]}

against

H1 :

{
k⋃

t=1

[
(X1(t)−X1(0))

d
< (X2(t)−X2(0)) |O

]}
,

indicating the more rapid effectiveness of treatment A2 than that of A1.
The problem may be solved by using k two-sample tests followed by their NPC. Partial tests

are

T ∗t = S∗2t · (ν∗1t /ν∗2t )1/2 − S∗1t · (ν∗2t /ν∗1t )1/2, t = 1, . . . , k,

where S∗j t =
∑

i

[
X∗ji(t)−X∗ji(0)

]
and ν∗j t =

∑
i O

∗
ji(t), j = 1, 2.

The data, which are assumed to behave in accordance with the model in Section 7.3.1, are shown
in Table 7.6, where missing data are denoted with ?.

With B = 2000 CMC iterations, the partial p-values are λ̂1 = 0.185, λ̂2 = 0.039, λ̂3 = 0.027 and
λ̂4 = 0.035; using Fisher’s combining function gives a combined p-value of λ̂′′ = 0.029. Hence,
H0 is rejected at α = 0.05.

7.14 Botulinum Data
We consider a real case study related to a preliminary double-blind, placebo-controlled, randomized
clinical trial with a six-month follow-up period, the aim of which is to assess the effectiveness of
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type A botulinum toxin in treating myofascial pain symptoms and to reduce muscle hyperactivity
in bruxers. Twenty patients (10 males and 10 females, aged between 25 and 45) with clinical
diagnosis of bruxism and with myofascial pain in the masticatory muscles were enrolled in the
trial, with a treatment group (10 subjects) treated with type A botulinum toxin injections and a
control group (10 subjects) treated with saline placebo injections. Several clinical variables (in
the medical literature, the same as end-points) were assessed at baseline, one-week, one-month
and six-month follow-up appointments, along with electromyography (EMG) recordings of muscle
activity in different conditions. Clinical end-points are as follows:

• pain at rest (DR), when phoning (DF) and when chewing (DM), assessed by means of a Visual
Analogue Scale (VAS) from 0 to 10, with the extremes being ‘no pain’ and ‘pain as bad as the
patient has ever experienced’, respectively;

• mastication efficiency (CM), assessed by a VAS from 0 to 10, the extremes of which were ‘eating
only semi-liquid’ and ‘eating solid hard food’;

• maximum non-assisted (Mas) and assisted (Maf) mouth opening (in millimetres), protrusive
(Mp) and laterotrusive left (Mll) and right (Mlr) movements (in millimetres);

• functional limitation (LF) during usual jaw movements (0, absent; 1, slight; 2, moderate; 3,
intense; 4, severe);

For further details on the case study, we refer to Arboretti (2008) and Guarda-Nardini et al. (2008).
At the same time as the clinical evaluations, all patients underwent EMG recordings of left and
right anterior and posterior temporalis muscles at rest (LTA, RTA, LTP, RTP, respectively) and left
and right masseter muscles at rest (LMM, RMM); left and right anterior temporalis muscles during
maximum voluntary clenching (LTA11, RTA11) and during clenching on cotton rolls (LTA11c,
RTA11c); masseter muscles during maximum voluntary clenching (LMM11, RMM11) and during
clenching on cotton rolls (LMM11c, RMM11c).

Hence, a V -dimensional non-degenerate variable is observed on k different time occasions on
n units in two experimental situations, corresponding to two levels of a symbolic treatment. In
our study, V = 24, k = 4, n1 = n2 = 10, n = 20. It is worth noting that in this longitudinal study
there is a major obstacle to applying classic parametric tests: the number of observed variables at
different time points is much higher than the number of subjects (V · k ! n). Furthermore, since
all variables may be informative for differentiating the two groups, the NPC approach properly
applies when analysing these data. Classic parametric tests or even rank tests in such situations
may fail to take into account the dependence structure across variables and time points.

The whole data set is denoted by:

X = {Xhji(t), t = 1, . . . , k, i = 1, . . . , nj , j = 1, 2, h = 1, . . . , V }
= {Xhji , i = 1, . . . , nj , j = 1, 2, h = 1, . . . , V },

where Xhji = {Xhji(t), t = 1, . . . , k}.
In order to take account of different baseline observations, assumed to have the role of covariates,

the k − 1 V -dimensional differences Dhji(t) = Xhji(1)−Xhji(t), t = 2, . . . , k, i = 1, . . . , nj , j =
1, 2, h = 1, . . . , V , are considered in the analysis. Hence, the hypothesis testing problem related
to the hth variable may be formalized as

H0h :

{
k⋂

t=2

[
Dh1(t)

d= Dh2(t)
]}
=
{

k⋂
t=2

H0ht

}
, h = 1, . . . , V ,

against the alternative

H1h :

{
k⋃

t=2

H1ht

}
, h = 1, . . . , V ,
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where H1ht :

{[
Dh1(t)

d
>Dh2(t)

]
or

[
Dh1(t)

d
< Dh2(t)

]}
according to which kind of stochastic

dominance is of interest for the hth variable. The alternative hypothesis is that patients treated with
the botulinum toxin had lower values than those treated with the placebo (i.e. differences between

baseline values and follow-up values tend to increase, for which the
d
> dominance is appropriate),

except for variables ME, Mas, Maf, Mp, Mll, Mlr, E, and T, where the placebo group is expected

to have lower values than the toxin group, for which the
d
< is then appropriate.

Permutation tests were used to test the partial null hypotheses, and Tippett’s combining function
was chosen to perform global tests. Data missing from the data set are assumed to be missing
completely at random (MCAR), but the presence of MNAR data could easily be checked. All the
analyses were performed both in MATLAB and R. In the following, we display both MATLAB
and R codes.

7.14.1 Analysis Using MATLAB

Table 7.7 shows the results of the analysis. Before adjusting p-values for multiplicity, variables
LTA11, RTA11, LMM11, LTA11c, RTA11c, LMM11c, RMM11c, DM, DR and Maf are found to be

Table 7.7 Global p-values

Comparison

Variables baseline–1week baseline–1month baseline–6months p-value p-FWE

LTA 0.5654 0.1319 0.6314 0.3856 0.6563
RTA 0.6344 0.0090 0.8302 0.1069 0.5574
LTP 0.4755 0.1129 0.1668 0.1878 0.6214
RTP 0.1818 0.2577 0.0589 0.1059 0.5574
LMM 0.2717 0.1958 0.4635 0.2767 0.6514
RMM 0.5495 0.1728 0.5005 0.3716 0.6563
LTA11 0.0470 0.0070 0.0190 0.0110 0.1638
RTA11 0.0190 0.0040 0.2438 0.0150 0.1978
LMM11 0.0120 0.0110 0.4306 0.0190 0.2218
RMM11 0.1449 0.0160 0.3786 0.0629 0.4955
LTA11c 0.0030 0.0060 0.0699 0.0030 0.0569
RTA11c 0.0010 0.0020 0.2917 0.0030 0.0569
LMM11c 0.0030 0.0010 0.2797 0.0010 0.0220
RMM11c 0.0010 0.0040 0.4006 0.0010 0.0220
CM 0.3397 0.0120 0.6743 0.0749 0.4955
DM 0.1459 0.0290 0.0020 0.0060 0.1029
DF 0.2847 0.0549 0.0450 0.0639 0.4955
DR 0.7902 0.0100 0.0539 0.0240 0.2677
LF 0.3487 0.0410 0.1169 0.0609 0.4955
Mas 0.1638 0.4196 0.0170 0.0669 0.4955
Maf 0.1199 0.0709 0.0040 0.0150 0.1978
Mp 0.4036 0.1668 0.0789 0.1349 0.5574
Mld 0.1948 0.3337 0.3027 0.2468 0.6514
Mls 0.2188 0.1179 0.1239 0.1209 0.5574

p-Global 0.0220
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significant. After adjustment (p-FWE), only two variables, LMM11c and RMM11c, are significant at
α = .05. The original data are contained in the file botulinum.xls and are available from the
botulinum folder on the book’s website.

B=1000;

[code,data]=xlsimport(’botulinum’);

options.labels.dims{2}=[code(5:end).name code(5:end).name

code(5:end).name];

Y=data(:,5:end);

baseline=Y(1:20,:);

FU1=Y(21:40,:);

FU2=Y(41:60,:);

FU3=Y(61:80,:);

Y2=zeros(20, 24*3);

Y2(:,1:24)=FU1-baseline;

Y2(:,25:48)=FU2-baseline;

Y2(:,49:72)=FU3-baseline;

group=data(1:20,4);

alt=[1*ones(1,19) -1*ones(1,5) 1*ones(1,19) -1*ones(1,5)

1*ones(1,19) -1*ones(1,5)];

[P, T, options] = NP_2s(Y2,group,B,alt,options);

P=reshape(P,B+1,24,3);

for i=1:24

options.labels.dims{2}{i}=options.labels.dims{2}{i}

(find((options.labels.dims{2}{i}==options.labels.dims{2}{24+i}).*

(options.labels.dims{2}{i}==options.labels.dims{2}{48+i})));

end

options.labels.dims{2}=options.labels.dims{2}(1:24);

options.labels.dims{3}={’baseline-1week’,

’baseline-1month’,’baseline-6months’};

%pMat_Show(P,.05,options.labels,1);

%combining times

options.Combdims=3;

P2=NPC(P,’F’,options);

%multiplicity control over variables

options.Combdims=2;

p2_FWE=NPC_FWE(P2,’T’,options);
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7.14.2 Analysis Using R

This is a multivariate case–control study with missing data and repeated measures. The aim of the
study is to assess the effect of botulinum, that is expected to have opposite effects on the set of
variables considered (i.e. we consider one-sided alternatives on each variable, following the ruke
that either large is significant or small is significant, as appropriate). We consider the difference
D between observations at time tk , k = 1, 2, 3, and the observations at time t0. We may organize
data in an n× p × 3 matrix, so the third dimension contains the differences Dijk related to the
ith subject on the j th variable at time k. This will be useful when a repeated measures analysis
is considered.

To begin with we read the data, collect information about samples (paz) and time (Time), and
then remove the relevant columns.

setwd("C:/path")

data<-read.csv("botulinum.csv",header=TRUE,na.strings=’ ’)

n = length(unique(data[,1]))

p = dim(data)[2]-4

paz = ifelse(data[,4]==’botox’,1,2)[1:20]

Time = data$Time+1

data=data[,-c(1:4)]

Now we put the record of each subject in an n× p matrix, so the third dimension contains the
repeated measures. Then we obtain the differences Dijk with respect to time zero observations and
remove the vector of observations at t0 (D[,,1]).

D=array(0,dim=c(n,p,4))

for(t in 1:4){ D[,,t]=as.matrix(data[Time==t,]) }

for(t in 2:4){ ### differences Tj-T0

D[,,t] = D[,,t]-D[,,1]

}

D = D[,,-1]

We first assess the effect of botulinum by performing a two-sample test with repeated measures.
This requires us to modify the test statistic according to the number of non-missing observations ν.
The vector alternative contains the directions of the alternative hypotheses. Since the distribution
of non-missing observations varies from variable to variable, we may consider one variable at time,
and do not record this information at any step. If a test for MAR observations is desired, this
information should be collected as well.

The vector O is the indicator function (missing/not missing) applied to each variable, the vector
nu contains the number of non-missing observations in the two samples, and y is the vector of
observations with missing data replaced by zeros. The previous vectors are related to each variable
at each time and are not saved. As usual, we store the observed values of the test statistic in the
first row of the matrix T. The test statistic for the j th variable is T ∗j =

∑3
k=1[γ ∗1jD

∗
1jk − γ ∗2jD

∗
2jk],

where γ ∗1j =
√
v∗2/v

∗
1 = (γ ∗2j )

−1. Note that we have already combined, for the sake of simplicity,
the repeated measures information with the direct combination (sum).
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B=2000

T<-array(0,dim=c((B+1),p))

alternative = c(rep(-1,19),rep(1,5))

for(j in 1:p){

for(t in 1:3){

O = ifelse(is.na(D[,j,t])==TRUE,0,1)

y = ifelse(is.na(D[,j,t])==TRUE,0,D[,j,t])

nu = table(O,paz)

if(dim(nu)[1]>1){nu=nu[2,]}

D1 = sum(y[paz==1]) ; D2 = sum(y[paz==2])

T[1,j] = T[1,j] + D1*sqrt(nu[2]/nu[1])-D2*sqrt(nu[2]/nu[1])

}

}

In order to obtain the null distribution, we permute observations in the usual way, by randomly
exchanging the rows of data (i.e. the first dimension of D). This ensures that the inner dependencies
among variables and due to the repeated mesures are maintained.

for(bb in 2:(B+1)){

D.star = D[sample(1:n),,]

for(j in 1:p){

for(t in 1:3){

O = ifelse(is.na(D.star[,j,t])==TRUE,0,1)

y = ifelse(is.na(D.star[,j,t])==TRUE,0,D.star[,j,t])

nu = table(O,paz)

if(dim(nu)[1]>1){nu=nu[2,]}

D1 = sum(y[paz==1]) ; D2 = sum(y[paz==2]);

T[bb,j] = T[bb,j] + D1*sqrt(nu[2]/nu[1])-D2*sqrt(nu[2]/nu[1])

}

}

print(bb)

}## end bb

We obtain the raw p-values by changing the signs of the columns of T according to the alter-

native vector and then apply the function t2p. We only show the results that are significant at
the 5% nominal level.

for(j in 1:p){ T[,j]=T[,j]*alternative[j] }

source("t2p.r") ; P=t2p(T)

res = data.frame(colnames(data),P[1,]);
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colnames(res) = c("Variable","Raw p-values")

res[res[,2]<.05,]

Variable Raw p-values

7 LTA11 0.0070

8 RTA11 0.0055

9 LMM11 0.0210

10 RMM11 0.0345

11 LTA11c 0.0000

12 RTA11c 0.0000

13 LMM11c 0.0010

14 RMM11c 0.0000

16 DM 0.0065

18 DR 0.0450

21 Maf 0.0145

If we wish to account for multiplicity, we use the function FWE.minP, which returns adjusted
p-values.

source("FWEminP.r")

p.adj = FWE.minP(P)

p.adj = data.frame(res[,1],p.adj)

colnames(p.adj) = colnames(res)

p.adj[p.adj[,2]<=0.05,]

Variable Raw p-values

11 LTA11c 0.000

12 RTA11c 0.000

13 LMM11c 0.019

14 RMM11c 0.000

7.15 Waterfalls Data

7.15.1 Analysis Using MATLAB

The R&D division of a home-care company is studying five possible new fragrances (labelled s,
t , v, w, x) of a given detergent to compare with their own presently marketed product (labelled
r). The experiment is designed as follows: after testing one given product (using sense of smell),
the panellist assigns three different scores to it, describing the three most important aspects of the
product: strength, pleasantness (on a scale from 1 to 7), and appropriateness (yes or no, coded 1
or 2, respectively). In the Excel file, strength has been shortened to Stren, pleasantness to Pleas,
and appropriateness to Appro. There are a total of seven panellists involved in the experiment. The
same experiment is replicated under different assessment conditions (Bloom, Dry, Long, Neat and
Wet), representing the situations in which customers will eventually make use of the product. In
the Excel file Bloom is shortened to Blo, Long to Lon, Neat to Nea. Thus we have:

• Panelist, a quantitative variable (taking an integer value between 1 and 7) indicating the panellist
doing the experiment;

• Fragr, a categorical variable denoting the fragrances, coded with the labels r , s, t , v, w, x;
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• Blo_Stren, a quantitative variable (between 1 and 7) denoting the strength aspect for the bloom
condition;

• Blo_Pleas, a quantitative variable (between 1 and 7) denoting the pleasantness aspect for the
bloom condition;

• Blo_Appro, a binary variable (taking value 1 or 2) denoting the appropriateness aspect for the
bloom condition;

• Dry_Stren, a quantitative variable denoting the strength aspect for the dry condition;
• Dry_Pleas, a quantitative variable denoting the pleasantness aspect for the dry condition;
• Dry_Appro, a binary variable denoting the appropriateness aspect for the dry condition;
• Lon_Stren, a quantitative variable indicating the strength aspect for the long condition;
• Lon_Pleas, a quantitative variable indicating the pleasantness aspect for the long condition;
• Lon_Appro, a binary variable indicating the appropriateness aspect for the long condition;
• Nea_Stren, a quantitative variable expressing the strength aspect for the neat condition;
• Nea_Pleas, a quantitative variable expressing the pleasantness aspect for the neat condition;
• Nea_Appro, a binary variable expressing the appropriateness aspect for the neat condition;
• Wet_Stren, a quantitative variable indicating the pleasantness aspect for the wet condition;
• Wet_Pleas, a quantitative variable indicating the pleasantness aspect for the wet condition;
• Wet_Appro, a binary variable indicating the appropriateness aspect for the wet condition.

Data are contained in the Waterfalls.xls file (17 variables and 42 observations in total). In
the following, we present results along with MATLAB and R codes.

The goal of this analysis is to compare the new fragrances with the baseline/standard one (r).
We expect new fragrances to be good competitors which may replace the standard product. This
is a particular case of repeated measures analysis, since the repetitions are due to the fact that the
same panellists evaluate each one of the five possible contrasts: r against each of the five possible
new fragrances in turn. To take into account the intrinsic dependence among judgements (i.e. the
evaluation of a product is obviously influenced by the previous product), we propose a stratified
repeated measures analysis, taking as our stratification variable the panellist and comparing the
standard fragrance to the new ones.

Let Xhjz be the score given by panellist z, z = 1, . . . , 7, on the variable h = 1, . . . , 15 for the
product j = r, s, t, v,w, x. Hence, the following hypotheses are of interest:

H0 :

{
15⋂
h=1

[
7⋂

z=1

(
Xh(j=r)z

d= Xh(j 	=r)z

)]
, j = r, s, t, v,w, x

}
,

meaning that new fragrances and standard product are equal in distribution, against the alternative

H1 :

{
15⋃
h=1

[
7⋃

z=1

(
Xh(j=r)z

d= Xh(j 	=r)z

)]
, j = r, s, t, v,w, x

}
,

stating that at least one new fragrance may replace (is better than) the standard one.
Let us define the index c, containing the five possible contrasts. We calculate the matrix of

statistics T, containing all the differences between the standard product r and the new products
(s, t, v,w, x), variable by variable, stratified by panellist:

T ∗chz = (Xh(j=r)z −Xh(j 	=r)z) · S∗hz,
z = 1, . . . , 7, h = 1, . . . , 15, j = r, s, t, v,w, x, c = 1, . . . , 5, where S∗hz is a random sign satisfy-

ing Pr{S∗hz = +1} = Pr{S∗hz = −1} = 1/2 (as in a classical multivariate paired data problem).
To do this in MATLAB, we use the function by_strata along with the function NP_ReM,

using the Bal option for the design matrix DES. Then, in order get the total score for a specific
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contrast/comparison, for each variable, we sum the scores given by the seven panellists. This will
be used as the test statistic for subsequent analyses, thus obtaining the matrix TT:

T T ∗ch =
7∑

z=1

T ∗chz, c = 1, . . . , 5, h = 1, . . . , 15.

As already mentioned, three aspects have been evaluated for each condition. Hence, it is also
of interest to evaluate the following hypotheses. Let us denote the aspects by the index a = 1, 2, 3
and the conditions by the index d = 1, . . . , 5. The same three aspects have been evaluated for each
condition. Thus h = 1, . . . , d · ad , where ad denotes the aspect a for the condition d .

H0cd =
{

3⋂
a=1

H0cda

}
, c = 1, . . . , 5, d = 1, . . . , 5,

where H0cda denotes the specific (partial) hypothesis for aspect a in condition d , against the alter-
native

H1cd =
{

3⋃
a=1

H0cda)

}
, c = 1, . . . , 5, d = 1, . . . , 5.

Tables 7.8 and 7.9 display the results obtained.
Alternatively, if we had ignored the fact that the same panellist evaluates the six products, hence if

we had ignored the embedded dependence in the judgement, we would have compared the six prod-
ucts by performing a MANOVA analysis, thus considering the fragrances as independent samples.

Table 7.8 Assessing statistical significance of variables within each contrast

Contrast

r v. s r v. t r v. v r v. w r v. x

Blo_Stren 0.9650 0.8601 0.5724 0.6014 0.9081
Blo_Pleas 1.0000 1.0000 0.0230 0.9940 1.0000
Blo_Appro 0.5275 0.1269 0.3656 0.5245 0.1269
Dry_Stren 0.8292 1.0000 0.1239 0.9540 1.0000
Dry_Pleas 0.8462 0.9311 0.0100 1.0000 0.5015
Dry_Appro 0.8711 0.9311 0.4815 1.0000 0.6663
Lon_Stren 0.9790 0.8332 0.7053 0.8492 1.0000
Lon_Pleas 0.3447 0.8382 0.2318 0.4216 0.9870
Lon_Appro 0.8332 0.5175 0.8182 0.7612 0.8881
Nea_Stren 0.2807 0.1788 0.3137 0.2607 0.1169
Nea_Pleas 0.8671 0.4645 0.6414 0.5215 0.4825
Nea_Appro 0.8841 0.9321 0.8871 0.8871 0.9740
Wet_Stren 0.0230 0.0609 0.0480 0.0160 0.0699
Wet_Pleas 0.6593 0.8312 0.4935 0.8701 0.2218
Wet_Appro 0.3297 0.5265 0.1409 0.1329 0.5175
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Table 7.9 Combining conditions within each aspect. Raw and adjusted p-values, as well as the
global p-value are given

Contrast

r v. s r v. t r v. v r v. w r v. x p-Global

Bloom p-value 0.9161 0.4476 0.0649 0.7463 0.4695
p-FWE 0.9161 0.7223 0.4176 0.8761 0.7223 0.4156

Dry p-value 0.9640 1.0000 0.0100 1.0000 0.7423
p-FWE 1.0000 1.0000 0.3886 1.0000 0.9770 0.3886

Long p-value 0.8282 0.8871 0.5395 0.7073 1.0000
p-FWE 0.9660 0.9810 0.9441 0.9660 1.0000 0.9231

Neat p-value 0.7253 0.3836 0.5465 0.4406 0.3147
p-FWE 0.7253 0.6254 0.7063 0.6963 0.6154 0.5914

Wet p-value 0.0160 0.1748 0.0180 0.0100 0.0579
0.0440 0.1748 0.0539 0.0330 0.1029 0.0160

[data,code]=xlsimport(’Waterfalls’);

B=1000;

Y=data(:,3:end);

X=data(:,2);

panel=data(:,1);

options.labels.dims{2}=[data(3:end).name];

[P, T, options]= by_strata(panel,’NP_ReM’,Y,X,’bal’,B,-1,0);

TT=zeros([B+1 5 15]);

for b=1:(B+1)

for j=1:5

for i=1:15

TT(b,j,i)=sum(-T(b,i,j,:));

end

end

end

[PP]=t2p(TT);

PP(B+1,:,:)

size(PP)

P=reshape(PP,[B+1 5 3 5]);

options.Combdims=3;

options.OUT=1;

P2=NPC(P,’F’,options);

size(P2)

options.Combdims=2;

P3=NPC_FWE(P2,’F’,options);
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7.15.2 Analysis Using R

This is an all-to-one comparison problem: there are six fragrances tested on five experimental
conditions, judged by l = 7 panellists. The aim of the study is to compare some new fragrances with
a baseline one. The judgement is based on three aspects (strength, pleasantness and appropriateness),
and therefore we have p = 15 response variables. Since the same panellist was asked to judge
each fragrance under each condition and aspect, dependencies among each panellist’s ratings are
assumed, whereas panellists’ judgements are assumed to be independent to each other.

We first read and organize the data into a three-dimensional matrix D, where the first dimension
refers to the C fragrances, the second refers to the p variables, and the third to the judgements of
the lth panellist.

Since our main interest is in comparing the new fragrances with a reference one (the first, named
r), we first consider the differences of scores of the mth fragrance and the first fragrance within
the same panellist’s judgements, m = 2, . . . , 6. Hence, after defining the auxiliary matrix DD (see
R code below) we end up with a new matrix D, whose dimension is (C − 1)× p × l, where the
element Dijk refers to the ith comparison on the j th variable made by the kth panellist.

setwd("C:path/")

data <- read.csv("Waterfalls.csv",header=TRUE)

B = 1000

attach(data)

data = data[,-c(1,2)]

L = unique(Panelist) ; l = length(L)

n = dim(data)[1] ; p = dim(data)[2] ; C = n/l

D = array(0,dim=c(C,p,l))

for(j in 1:l){

D[,,j]=as.matrix(data[Panelist==j,])

}

DD = D # auxiliary

for(i in 1:l){

for(j in 1:C){

DD[j,,i]=D[j,,i]-D[1,,i]

}

}

D = DD[-1,,]

The observed value of the test statistic of the ith comparison on the j th variable is Tij · =∑l
k=1 Dijk . Large (positive) values of Dijk indicate that the kth panellist gave a score for the

(i + 1)th fragrance that is better that the score for the reference one. Large values of Tij · are

significant in favour of the alternative hypothesis Xmj

d
>X1j , where Xmj is the score of the mth

fragrance on the j th variable.
Since each panellist makes a judgement on all C fragrances, we have to consider permutations

of a restricted kind to account for the dependence among the judgements of each panellist. Thus,
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we consider C − 1 comparisons and treat them as C − 1 paired observation problems. We consider
C − 1 independent permutations of paired observations. Thus, for each panellist we independently
generate a vector of C − 1 random signs S∗ij , where Pr{S∗ij = 1} = Pr{S∗ij = −1} = 1/2, and obtain

the permutation value of the test statistic as T ∗ij · =
∑l

k=1 DijkS
∗
ij .

T = array(0,dim=c((B+1),p,(C-1)))

for(j in 1:(C-1)){

T[1,,] = t(apply(D,c(1,2),sum))

}

for(bb in 2:(B+1)){

D.star=D

for(j in 1:l){

S.star = 1-2*rbinom((C-1),1,.5)

D.star[,,j] = D[,,j]*S.star

}

for(j in 1:(C-1)){

T[bb,,] = t(apply(D.star,c(1,2),sum))

}

print(bb)

}## end bb

source("t2p.r")

P=t2p(T)

partial.p = P[1,,]

rownames(partial.p) = colnames(data)

colnames(partial.p) = c(’s-r’, ’t-r’,’v-r’,’w-r’,’x-r’)

)

The matrix partial.p contains the raw p-value of each comparison and variable. Wishing to
combine the partial tests within the same experimental conditions:

dom = rep(c(1:5),each=3)

T.dom=array(0,dim=c((B+1),5,5))

for(d in 1:5){

T.dom[,d,] = apply(P[,dom==d,],c(1,3),function(x){-2*log(prod(x))})

}

P.dom = t2p(T.dom)

res = P.dom[1,,]

rownames(res) = c(’Bloom’,’Dry’,’Long’,’Neat’,’Wet’)

colnames(res) = c(’r-s’,’r-t’,’r-v’,’r-w’,’r-x’)

res

r-s r-t r-v r-w r-x
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Bloom 0.8836 0.5248 0.0660 0.7212 0.4786

Dry 0.9568 1.0000 0.0000 1.0000 0.7732

Long 0.8786 0.8710 0.5556 0.7228 0.9938

Neat 0.6198 0.3648 0.5602 0.4208 0.2894

Wet 0.0130 0.1650 0.0000 0.0000 0.0672

The data set and the corresponding software codes can be found in the waterfalls folder on
the book’s website.



8
Some Stochastic Ordering
Problems
In many physical and biological phenomena covering a wide variety of scientific research fields, it
is not unusual to encounter stochastic ordering problems where C groups (typically ordered with
respect to time) are observed along with a (continuous, numeric or ordinal categorical) response.
In multi-sample and multivariate problems, a parametric approach is usually very difficult to cope
with. In this chapter we present some permutation approaches dealing with hypothesis testing
for multivariate monotonic stochastic ordering with continuous and/or categorical variables and
umbrella testing. Two applications are also discussed: one concerning the comparison of cancer
growth patterns in laboratory animals and the other referring to a functional observational battery
study designed to measure the neurotoxicity of perchloroethylene, a solvent used in dry cleaning.

8.1 Multivariate Ordered Alternatives
Let us assume we are interested in evaluating the dose–effect relationship in an experiment
where C doses of a drug are administered to independent groups of patients. We denote by
Xji =

(
X1ji , . . . , XVji

) ∈ RV the vector of responses on V variables for the ith patient randomly
assigned to drug dose j , j = 1, . . . , C, i = 1, . . . , nj , and let the total number of observations
be n =∑C

j=1 nj . We assume that Xj1, . . . ,Xjnj are nj i.i.d. random vectors with a continuous
distribution function Fj defined on RV and finite mean E

(
Xj

) = µj , j = 1, . . . , C, and we use
Fhj to denote the hth marginal distribution for Fj , h = 1, . . . , V . When comparing increasing
doses of a treatment, the C distributions are usually assumed to be stochastically ordered. While
inference based on stochastically ordered univariate random variables has been studied extensively
in the literature (for additional information, see Ross, 1983; Stoyan, 1983; see also Example 7,
4.6 and Section 6.5), less attention has been paid to the study of stochastically ordered random
vectors (Marshall and Olkin, 1979). In fact, the C multivariate distributions are comparable for the

stochastic ordering
d≤, that is,

X1
d≤ . . .

d≤ XC

if and only if E[g(X1)] ≤ . . . ≤ E[g(XC)] holds for all increasing functions g : RV → R such that
the expectation exists. It is of interest to test the null hypothesis

H0 :
{

X1
d= . . .

d= XC

}
,

Permutation Tests for Complex Data: Theory, Applications and Software Fortunato Pesarin, Luigi Salmaso
 2010, John Wiley & Sons, Ltd
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stating the equality in distribution (
d=) of the Xj , j = 1, . . . , C, against the alternative H1: {X1

d≤
. . .

d≤ XC}, where at least one inequality is strict.
We point out that when applying a test of hypotheses, either H0 or H1 is assumed to be true, hence

we must make the prior assumption that X1
d≤ . . .

d≤ XC holds. From Corollary 3 in Bacelli and
Makowski (1989), it follows that under the above assumption, H0 holds if and only if X1, . . . ,XC

have the same marginal distributions, namely,

Fh1(t) = . . . = FhC(t), ∀ t ∈ R, h = 1, . . . , V .

As a consequence, H1 holds if and only if X1h
d≤ . . .

d≤ XhC , h = 1, . . . , V , and X1, . . . ,XC are
not equal in distribution, expressed as

Fh1(t) ≥ . . . ≥ FhC(t), ∀ t ∈ R, h = 1, . . . , V ,

with at least one strict inequality holding at some t ∈ R for at least one h. When dealing with more
complex problems, the previous hypotheses may be written in the form

H0 :

{
V⋂

h=1

(Fh1(t) = . . . = FhC(t), ∀ t ∈ R)

}
=
{

V⋂
h=1

H0h

}
and

H1 :

{
V⋃

h=1

(Fh1(t) ≥ . . . ≥ FhC(t), ∀ t ∈ R and not H0h)

}
=
{

V⋃
h=1

H1h

}
,

where a suitable and meaningful breakdown of H0 and H1 into a set of partial hypotheses is
emphasized. In the nonparametric framework, let us consider, for the sake of simplicity, the class
PC of all continuous distribution functions on RV . The simultaneous stochastically ordered random
variable model is

P⊗C
C = {F1, . . . ,FC ∈ PC : Fh1(t) ≥ . . . ≥ FhC(t), ∀t ∈ R, h = 1, . . . , V } ,

where the symbol ⊗ denotes the Kronecker product. If we assume that the distributions F1, . . . ,FC

differ only in their locations, that is, Fj (t) = F(t+ δj ), ∀F ∈ PC, ∀ t, δj ∈ RV , j = 1, . . . , C, then
the previous model comes down to the homoscedastic location model

Pδ =
{
F ∈ PC : F1(t− δ1) = . . . = FC(t− δC), ∀ t, δ1 ≤ . . . ≤ δC ∈ RV

}
,

where a ≤ b means ah ≤ bh for h = 1, . . . , V . Once more, for the sake of simplicity, effects
δj , j = 1, . . . , C, are assumed to be fixed given that in the parametric framework it is easier to
work with fixed effects than random effects. On the other hand, in the nonparametric framework,
this problem does not occur (see the next section for the extension to stochastic effects). Let
PNV

be the class of all V -variate normal distributions; the normal homoscedastic location model
corresponds to

PNV
= {F ∈ PNV

: F1(t− δ1) = . . . = FC(t− δC), ∀ x, δ1 ≤ . . . ≤ δC ∈ RV
}
.

Obviously, the inclusion relation PNV ⊆ Pδ ⊆ P⊗C
C holds true. Under the homoscedastic location

model, the testing problem becomes

H
†
0 :

{
V⋂

h=1

(µh1 = . . . = µhC)

}
=
{

V⋂
h=1

H
†
0h

}
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where µhj , h = 1, . . . , V , j = 1, . . . , C, is assumed finite, against

H
†
1 :

{
V⋃

h=1

(
µh1 ≤ . . . ≤ µhC, and not H †

0h

)}
=
{

V⋃
h=1

H
†
1h

}
.

In the literature a variety of statistics have been proposed for testing the equality of vector means
against a multivariate ordered alternative under the homoscedastic location model, that is, for testing
H 

0 against H 
1 . A brief outline of the literature is given in Finos et al. (2007). In particular, the

authors propose a further decomposition of the global problem into sub-hypotheses, such that each
component problem can be tested using simple two-sample test statistics for stochastic ordering
alternatives. As test statistics they use the permutation counterpart of the traditional one-sided
Student’s t test, denoted by Thk(X). They then combine all the partial p-values by means of NPC
methodology. As is well known, Tippett (ψT ), Fisher (ψF ) and Liptak (ψL) are other possible
combining functions. In order to emphasize the chosen combining functions, the notation T ′′oψsψf

and λ′′oψsψf
, where f, s ∈ {T , F,L}, is used.

Of course, the p-value λ′′oψsψf
of combined test T ′′oψsψf

depends in general on which combining
functions ψf and ψs are used because different admissible combining functions have different
convex acceptance regions. In particular they iterate the combining procedure (Salmaso and Solari,
2006) by applying the three combining functions T , F , L to the same partial tests, and then com-
bining the resulting p-values using one combining function. Fisher’s iterated combining function
is denoted by

ψI = ψF

(
λψT

, λψF
, λψL

)
.

For details, see Finos et al. (2007).

8.2 Testing for Umbrella Alternatives
In a one-way ANOVA design, the response may stochastically increase up to a point as the treatment
level increases, then decrease despite further increases in the treatment level. This up-then-down
behaviour is known in the literature as umbrella ordering (see Mack and Wolfe, 1981; Basso
and Salmaso, 2009a). In these circumstances it may be of interest to find the change-point group,
that is, the group in which an inversion in the trend of the variable under study is observed. A
change point is not merely a maximum (or minimum) of the regression function, since a further
requirement is that the trend is monotonically increasing prior to that point, and monotonically
decreasing afterwards. Despite the numerous solutions proposed in the parametric framework, there
is a lack of literature concerning nonparametric permutation proposals for umbrella alternatives,
apart from some hints in Manly (1997) and the recent paper by Neuhäuser et al. (2003). Basso and
Salmaso (2009a) provide a solution within a conditional approach, by considering some NPCs of
dependent tests for simple stochastic ordering problems. The proposed procedure is in fact found
to be very flexible and potentially adaptable to trend and/or repeated measures problems and works
even with very small sample sizes (says two replicates for each treatment) and/or in unbalanced
cases. Hence, its use is recommended when small sample sizes are present or when data cannot be
assumed to follow a known distribution. The context is that of a one-way ANOVA design, where
the experimental factor levels (time, increasing doses of a drug, etc.) determine the treatments
which identify the C groups.

Let us consider a fixed effects additive response model,

X = {Xji = µ+ δj + Zji, i = 1, . . . , nj , j = 1, . . . , C
}

= {Xj , j = 1, . . . , C
}
,
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where µ is the population mean, δj are fixed treatment effects which satisfy the contrast condition∑
j δj = 0, Zji are exchangeable errors with zero mean and finite variance σ 2 (typically i.i.d.

random variables, independent of the δj ), and nj are fixed sample sizes. Note that, in this model,
responses are assumed to be homoscedastic. For the sake of simplicity, fixed treatment effects have
been considered; however, the solution remains valid when assuming generalized models with
random effects �ji . Let Fj (x) be the CDF of the response variable in group j . Then we wish to
assess the null hypothesis of no treatment effect,

H0: {F1(t) = F2(t) = · · · = FC(t), ∀t ∈ R},

against the umbrella alternative hypothesis,

H1: {F1(t) ≥ · · · ≥ Fj−1(t) ≥ Fj (t)

≤ Fj+1(t) ≤ · · · ≤ FC(t)}

for some j ∈ {1, . . . , C}, and with at least one strict inequality. That is to say, the aim of the study
is to find the change-point group j (if it exists). In such problems, therefore, it is of interest to
determine whether there is an umbrella behaviour due to the experimental factor, and which is the
change-point group. A parametric solution to this problem is very difficult, especially when C > 2.
Mack and Wolfe (1981) suggested a nonparametric rank solution. In particular, they suggested a
test statistic for umbrella alternatives obtained as a weighted linear combination of standardized
Mann–Whitney statistics, along with their null distributions, in a wide variety of situations. Basso
and Salmaso (2009a) describe a permutation approach which is conditional on the observed data
considered as a set of sufficient statistics in H0 for the problem at hand. In fact, if the peak group is
known, say the ̂ th group, the problem of umbrella alternatives can be simplified in the intersection
of two simple stochastic ordering alternatives (one increasing and one decreasing) and detected by
combining two partial tests for simple stochastic ordering alternatives, that is,

H1 = H
↗
1̂

⋂
H
↘
1̂

where: H↗
1̂ : {F1(t) ≥ · · · ≥ F̂−1(t) ≥ F̂ (t)} and H

↘
1̂ : {F̂ (t) ≤ F̂+1(t) ≤ · · · ≤ FC(t)}.

8.2.1 Hypotheses and Tests in Simple Stochastic Ordering

Under the assumptions of the additive model with fixed effects previously discussed, let us con-
sider the simple stochastic ordering problem for the first ̂ samples to assess the null hypothesis
F1(t) = . . . = F̂ (t) against the alternative hypothesis F1(t) ≥ . . . ≥ F̂ (t). Note that under the null
hypothesis, all elements of the response X̂ are exchangeable. This will enable us to provide the
null distribution of a proper test statistic. If ̂ = 2, then the stochastic ordering problem reduces
to a two-sample problem with restricted alternatives. If ̂ > 2, then let us suppose that the whole
data set is split into two pooled pseudo-groups, where the first is obtained by pooling together data
from the first c groups (ordered with respect to the treatment levels), and the second by pooling
together the remaining observations.

Let Y(1)c = X1
⊎ · · ·⊎Xc be the first (ordered) pseudo-group and let Y(2)c = Xc+1

⊎ · · ·⊎X̂

be the second (ordered) pseudo-group, c = 1, . . . , ̂ − 1. Let Y1(c) and Y2(c) be the random variables
describing the generic observation of the pooled vectors Y(1)c and Y(2)c, respectively. In the null
hypothesis, data of every pair of pseudo-groups are exchangeable because the related variables

satisfy the relationships Y1(c)
d= Y2(c), c = 1, . . . , ̂ − 1. Under the alternative, let us assume Y1(c)

d≤
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Y2(c), that is, the monotonic stochastic ordering (dominance) between any pair of pseudo-groups
(i.e. for c = 1, . . . , ̂ − 1). Hence, it is possible to formulate the hypotheses as

H0 :

{⋂̂−1

c=1
(Y1(c)

d= Y2(c))

}
against

H
↗
1̂ :

{⋃̂−1

c=1
(Y1(c)

d≤ Y2(c))

}
,

where a breakdown into a set of sub-hypotheses is emphasized.

Let us turn our attention to the cth sub-hypothesis H0c : {Y1(c)
d= Y2(c)} against H1c : {Y1(c)

d≤
Y2(c)}. Note that the related sub-problem corresponds to a two-sample comparison for restricted
alternatives, a problem which has an exact and unbiased permutation solution. This solution may
be based (among others) on the test statistics:

T ∗c↗ =
Ȳ ∗2(c) − Ȳ ∗1(c)√

σ̂ 2
c

(
1

n(1)c
+ 1

n(2)c

) , c = 1, . . . , ̂ − 1,

where Ȳ ∗2(c) and Ȳ ∗1(c) are permutation sample means of the second and first pseudo-groups respec-
tively, σ̂ 2

c is the pooled estimate of the error variance, and n(1)c and n(2)c are the lengths of Y(1)c

and Y(2)c respectively. Note that standardized statistics are suggested here in order to apply the
direct combining function. Large values of the test statistics Tc↗ are significant against H0(c) :

{Y1(c)
d= Y2(c)} in favour of the alternatives H

↗
1(c) : {Y1(c)

d≤ Y2(c)}. The algorithm for obtaining the

permutation test for H0(c) against H↗
1(c) may easily be derived from the general algorithm for NPC.

8.2.2 Permutation Tests for Umbrella Alternatives

In practice, the peak group is generally unknown. Basso and Salmaso (2009a) therefore suggest
detecting it by repeating the procedure for the known peak as if every group were the known peak
group. In this context, we report only the algorithm and final results. However, we refer the reader
to the original paper for further details and theoretical matters.

For each j ∈ 1, . . . , C, let

ψ∗j↗ =
j−1∑
c=1

T ∗c↗ and ψ∗j↘ =
C−1∑
c=j

T ∗c↘

be two partial tests to assess H0k: {F1(t) = . . . = Fk(t)} against respectively H
↗
1k and H

↘
1k by

applying the direct NPC of the partial tests T ∗j↗ and T ∗j↘. Note that when k = 1 we actually test
for decreasing ordering only, whereas when k = C we only test for increasing ordering. The next
steps are as follows:

• Obtain the partial p-values to assess H0j against H↗
1j and H

↘
1j , respectively. Let (p′′j↗, p′′j↘) be

the pair of p-values from the observed data.
• Obtain the null distribution of the pair of p-values to assess H0j against H↗

1j and H
↘
1j , respec-

tively. This will be denoted by the pair (bp′′∗j↗, bp′′∗j↘), b = 1, . . . , B. That is, (bp′′∗j↗, bp′′∗j↘) is
obtained by applying the previous algorithm for simple stochastic ordering alternatives and by
replacing X with X∗b.
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• Obtain the observed value of the test statistic with Fisher’s NPC function,

�j = −2 log(p′′j↗ · p′′j↘).

• Obtain the null distribution of �j by computing

b�∗
j = −2 log(bp′′∗j↗ · bp∗′′j↘), b = 1, . . . , B.

• Obtain the p-value for the umbrella alternative on group j as:

λj =
#[b�∗

j ≥ �j ]

B
.

Note that if λj is significant, then there is evidence in the data of an umbrella alternative with peak
group j . In order to evaluate whether there is a significant presence of any umbrella alternative,
the p-values for the umbrella alternative of each group should be combined by means of NPC
methodology. Hence, the following steps should be followed:

• Obtain the null distribution of the p-value for the umbrella alternative on group j as

bλ∗j =
#[	∗ ≥ b�∗

j ]

B
, b = 1, . . . , B,

where 	∗ is the vector with the permutation null distribution of λj .
• Apply Tippett’s combining function to the λj , providing the observed value of the global test

statistic for the umbrella alternative in any group as λ = min(λ1, . . . , λC). Note that small values
of λ are significant against the null hypothesis.

• Calculate the null distribution of λ′′ given by bλ∗ = min(bλ∗1, . . . ,
bλ∗C), b = 1, . . . , B.

• Obtain the global p-value,

λ′′ = #[bλ∗ ≤ λ]

B
.

Note that the combining functions are applied simultaneously to each random permutation,
providing the null distributions of partial and global tests as well. The NPC methodology applies
three times:

1. when obtaining simple stochastic ordering tests to assess H↗
1j and H

↘
1j for the j th group (by using

the direct combining function), according to the multi-aspect procedure (see Example 3, 4.6);
2. when combining two partial tests for simple stochastic ordering alternatives, providing a test

for umbrella for each group as if it were the known peak group (here by applying Fisher’s
combining function);

3. when combining the partial test for umbrella alternatives on each group (by using Tippett’s
combining function).

A significant global p-value indicates that there is evidence in favour of an umbrella alternative.
The peak group is then identified by looking at the partial p-values for umbrella alternatives
{λ1, . . . , λk, . . . , λC}. The peak group (if any) is then the one with the minimum p-value.

The proposed algorithm may still apply with different combining functions in the first two steps,
but not in the third. This is because Tippett’s combining function is powerful even when only
one of its arguments is in the alternative. As regards our choices in the first two steps of the
algorithm, the direct combining function in step 1 was chosen for computational reasons, whereas
Fisher’s combining function in step 2 was applied because use of Fisher’s combining function is
recommended when no specific knowledge of the sub-alternatives is available.
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In comparison with the Mack–Wolfe test, the authors find that the rejection rates of the proposed
global test (Basso and Salmaso, 2009a), under the null hypothesis H0, are close to the nominal
rates and that, under the alternative hypothesis H1, the power of the Mack–Wolfe test is very close
to that of the proposed permutation test.

When simulating an anti-umbrella alternative, that is, data are not under the null hypothesis, but
the alternative hypothesis is not of the umbrella type, the authors show that the rejection rates of
the global tests are always lower than the related nominal levels.

Indeed, the simulations show that the probability of having ties (i.e. more than one estimated
peak group) is higher when the Mack–Wolfe test is applied (see the complete simulation study in
Basso and Salmaso, 2009a).

Umbrella alternative and trend problems are often associated with repeated measures experi-
ments, where n units are subjected to the same treatment (e.g. increasing doses of drugs) and the
response is measured at several time points. The permutation test for umbrella alternatives, pro-
posed in Basso and Salmaso (2009a), can easily be modified to account for repeated measures (by
changing the permutation strategy) and/or trend analysis (by looking at the first/last partial p-value).
With reference to this topic, the authors also provide a comparison with Page’s test (1963) for trend
analysis with correlated data. Under H0, they find that the permutation test controls the type I error,
both when data are uncorrelated and when they are correlated, while Page’s test seems to be con-
servative when data are uncorrelated. Under the alternative H1, Page’s test displays a gain in power
when considering correlated data (see the complete simulation study in Basso and Salmaso, 2009a).

8.3 Analysis of Experimental Tumour Growth Curves
The problem described in this section concerns an application of multidimensional permutation
methods to the comparison of cancer growth patterns in laboratory animals. The data come from
an experiment which aims to reveal the anti-cancer activity of a taxol-like synthetic drug (Barzi
et al., 1999a, 1999b).

The main characteristic of malignant tissue is rapid growth due to uncontrollable cellular division.
The drug under trial attaches itself to intracellular structures and kills the tumour cells at the moment
of their division, making cellular proliferation more difficult, if not impossible. This explains the
regression and delay phase of growth in treated tumours observed during the initial period. After a
certain time interval, tumour cells may show resistance to the taxol synthetic products and normal
proliferation may start again (regrowth phase). We are interested in testing whether the growth
inhibition effect of a treatment is statistically significant and, if so, evaluating how long the effect
remains significant. It is also of interest to assess differences among groups in time intervals between
drug administration and regrowth phase.

When comparing treated growths with untreated growths, several multivariate stochastic
ordering problems for repeated measurement designs arise. A parametric approach to hypothesis
testing is not possible because the number of experimental units is less than the number of
repeated measures (Crowder and Hand, 1990; Diggle et al., 2002). Furthermore, we cannot really
model the growth patterns as being Gompertz or exponential (Bassukas and Maurer-Schulze, 1988;
Bassukas, 1994) because of the initial regression and subsequent regrowth of tumour volumes in
treated groups. Hence, we propose a nonparametric permutation-based approach to analyse this
kind of growth pattern.

The animals used in the experiment were nude mice. Tumour specimens about 2–3 mm in
diameter were injected into both flanks of each animal. When tumour masses reached a diameter of
4–8 mm, the mice were randomized into four groups of six units each. The first (so-called control)
group was treated with a placebo; three other groups were treated with increasing doses of a taxol
synthetic product. Treatments were administered only three times at intervals of 4 days in order to
reduce possible toxic side-effects of the drugs.
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The tumour under study is a particular ovarian type which is resistant to the anti-tumour activity
of non-synthetic taxol. Tumour mass volumes were determined every 4 days by calibrated mea-
surements of two perpendicular diameters. Since not all the inoculated tumour specimens grew,
we obtained the following sample sizes for the four groups under study: n1 = 11, n2 = 9, n3 = 7,
n4 = 9. Measurements were repeated on all units on 18 time occasions. The response variable con-
sidered was the ‘relative volume’, Xjti = Vjti/Vj0i , i = 1, . . . , nj , t = 1, . . . , 17, j = 1, . . . , 4,
where Vj0i is the baseline volume and Vjti is the tumour volume for the ith individual at time t in
the j th group.

In order to test whether treatment significantly inhibits tumour growth or whether one treatment
is significantly more efficient than another, we can model the problem according to the hypotheses

H0 :

{
17⋂
t=1

(
X1t

d= . . .
d= X4t

)}

against

H1 :

{
17⋃
t=1

(
X1t

d
>X2t

d
>X3t

d
>X4t

)}
,

where the latter emphasizes the monotonic stochastic ordering of time profiles with respect
to increasing treatment levels. The related 17× 3 partial tests are T ∗tj =

∑
1≤i≤N1(j)

Y ∗1t (j)i ,
j = 1, . . . , 3, t = 1, . . . , 17, where Y1t (j) = X1t

⊎
. . .
⊎

Xj t and Y2t (j) = Xj+1t
⊎

. . .
⊎

X4t ,
j = 1, . . . , 3, are respectively the pseudo-groups obtained by an orderly pooling of the first j

groups into Y1t (j) and the others into Y2t (j), Xj t = {Xjit , i = 1, . . . , nj } is the data set in the j th
group at time t , and N1(j) =

∑
r≤j nr is the sample size of Y1t (j). As all these partial tests are

marginally unbiased under the stated conditions, NPC provides a proper solution.
We obtained the results shown in Table 8.1 using MATLAB with different combination functions

both for partial tests and for the overall test; the number of CMC iterations is B = 10 000. The
third-order combined p-value, using Fisher’s combination function, for the overall hypothesis gives
λ̂′′′F = 0.0030; using Tippett’s function it gives λ̂′′′T = 0.0010; and using Liptak’s it gives λ̂′′′L =
0.0040. This leads to the rejection of the null hypothesis of absence of a stochastic ordering at a sig-
nificance level of α = 0.001. From the above analysis we may conclude that the inhibitory effect of
the dose administered to the fourth group is significantly the most relevant, by controlling the FWE.

[D,data,code]=xlsimport(’rats’,’Foglio1’);

reminD(D)

[no Ts]=v(3:size(D,2));

[P,T] = NP_StOrd(Ts,’GROUP’,1000,-1,’F’,1);

pf=NPC(P,’F’);

pfFWE=NPC_FWE(P,’T’);

[P,T] = NP_StOrd(Ts,’GROUP’,1000,-1,’L’,1);

pl=NPC(P,’L’);

plFWE=NPC_FWE(P,’T’);

[P,T] = NP_StOrd(Ts,’GROUP’,1000,-1,’T’,1);

pt=NPC(P,’T’);

ptFWE=NPC_FWE(P,’T’);

We also show how to perform the same analysis using R. As already stated, the aim of the
analysis is to test whether there exists a stochastic ordering with respect to groups, time by time.
Here groups correspond to increasing doses of a new taxol synthetic product (group 1 was treated
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Table 8.1 Partial and adjusted p-values from the tumour growth data analysis

Fisher Liptak Tippett

p-value p-FWE p-value p-FWE p-value p-FWE

X1 0.7622 0.7622 0.8621 0.8621 0.6084 0.6084

X2 0.0010 0.0030 0.0080 0.0160 0.0030 0.0010

X3 0.0030 0.0060 0.0050 0.0140 0.0030 0.0010

X4 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

X5 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

X6 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

X7 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

X8 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

X9 0.0010 0.0030 0.0010 0.0040 0.0020 0.0020

X10 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

X11 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

X12 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

X13 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

X14 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

X15 0.0010 0.0030 0.0010 0.0040 0.0020 0.0020

X16 0.0010 0.0030 0.0010 0.0040 0.0030 0.0010

X17 0.0010 0.0030 0.0010 0.0040 0.0010 0.0010

Global (T) 0.0030 0.0040 0.0010

with a placebo). The alternative hypothesis is the existence of a significant decrease of the tumour
mass as the dose of the taxol synthetic product increases. The analysis is run with the aid of
the stoch.ord function, whose arguments are a vector of continuous data (here the columns
corresponding to each time), and a categorical variable indicating time or grouping (here the vector
g). Possible choices of the alternatives are alt = -1 (decreasing trend with respect to grouping)
and alt = 1 (increasing trend). The testing algorithm is described at the beginning of this section,
and we only considered Fisher’s combining function to collect the information of the pseudo-
groups. The function can process one variable at time; in order to maintain the dependence among
the response variables the function is always run with a common seed, which will be the input to
the set.seed function (thus providing exactly the same permutations each time).

setwd("C:/path")

source("t2p.r") ; source("stoch_ord.r") ; source("FWEminP.r")

data<-read.csv("rats.csv",header=TRUE)

g = data[,1]

B=10000

data=data[,-c(1,2)]

p=dim(data)[2]

P=array(0,dim=c((B+1),p))

for(j in 1:p){

P[,j] = stoch.ord(data[,j],g,alt=-1,B=B)
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cat(j,"variable/",p,"\n")

}

colnames(P)=colnames(data)

P.FWE = FWE.minP(P)

res = cbind(P[1,],P.FWE)

colnames(res)=c("Raw-p","Adj-p")

res

Raw-p Adj-p

T_1 0.7840 0.7840

T_2 0.0009 0.0016

T_3 0.0000 0.0000

T_4 0.0000 0.0000

T_5 0.0000 0.0000

T_6 0.0000 0.0000

T_7 0.0000 0.0000

T_8 0.0000 0.0000

T_9 0.0000 0.0000

T_10 0.0000 0.0000

T_11 0.0000 0.0000

T_12 0.0000 0.0000

T_13 0.0000 0.0000

T_14 0.0000 0.0000

T_15 0.0000 0.0000

T_16 0.0000 0.0000

T_17 0.0000 0.0000

The above results are raw and adjusted p-values assessing the alternative hypothesis of a decreas-
ing tumour mass as the dose of taxol synthetic product increases. It is evident that there is always
a significant reduction of the tumoral mass except at time 1. The data set and the corresponding
software codes can be found in the rats folder on the book’s website.

8.4 Analysis of PERC Data

8.4.1 Introduction

As is known, a more realistic assessment of the benefits or risks of a treatment and its association
with dose may be obtained by jointly considering the several collected variables, rather than ignoring
some or analysing them separately (Klingenberg et al., 2008). Moreover, due to the fact that a dose
effect may manifest itself in a subject in a wide variety of ways, it is crucial that these endpoints
are observed jointly so as not to miss out on any effects or interactions.

The functional observational battery (FOB; Moser, 1989, 1992) is a biological screening assay
comprising roughly 25 endpoints designed to evaluate neurophysiological effects in animals after
exposure to a toxin. In such studies, it is assumed that an adverse effect of a substance is manifested
as a distinct change in an animal’s physiological or behavioural response (Han et al., 2004).

The FOB tries to group endpoints by a common domain, each domain describing a possibly
distinct neurological function. It is often the case that some of the recorded endpoints are strongly
connected to each other, hence they may express similar effects and thus be redundant. For this
reason, Moser (1992) suggested grouping the individual endpoints into six domains, containing
both discrete and continuous endpoints, referring to precise areas of neurological dysfunction.
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Table 8.2 Variables and domains

Domain name Code Description

Autonomic lacrimation Lacrimation
palp_closure Palpebral closure
salivation Salivation
urination Urination
defecation Defecation
pupil Pupil response

Sensorimotor approach Approach response
touch Touch response
click Click response
tail_pinch Tail pinch response

Excitability removal Ease of removal
handling Handling reactivity
clonic_mvts Clonic movements
tonic_mvts Tonic movements
vocalizations Vocalizations
arousal Arousal

Activity hc_posture Home cage posture
rears Rearing
motor_activity Motor activity (counts)

Neuromuscular gait Gait score
mobility Mobility
righting Righting reflex
foot_splay Landing foot splay
forelimb_grip Forelimb grip strength
hindlimb_grip Hindlimb grip strength

Physiological piloerection Piloerection
weight Body weight
temperature Body temperature

These domains are assumed to be mutually exclusive, that is, each domain measures a specific
component of neurotoxicity (Han et al., 2004). However, particular care is required in grouping
these variables: if the endpoints are not properly grouped, this strategy may fail to identify true
effects, thus increasing dependence across domains.

The FOB discussed here comprises home cage, handling, open-field and manipulative behavioural
measures, as well as physiological measures (McDaniel and Moser, 1993). Table 8.2 summarizes
the variables involved in an FOB study designed to measure the neurotoxicity of perchloroethylene
(PERC), a solvent used in dry cleaning, which has many chlorinated hydrocarbons and is a central
nervous system depressant (also suspected to cause leukaemia).

A total of 36 animals were randomly assigned to either placebo or one of four PERC exposure
levels of (five dose groups in total: 0, 150, 500, 1500 and 5000g), and the FOB was administered at
several time intervals (0, 4 and 24 hours). Each animal was evaluated at 28 endpoints (22 ordinal
and 6 continuous). Hence, this data set comprises mixed variables. Moreover, the variables can
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be classified into six domains (autonomic, sensorimotor, excitability, activity, neuromuscular and
physiological). Since each mouse has been observed three times, we have 108 observations in total.
The statistical analysis of these data structures is challenging, since

• the endpoints are mixed in nature (continuous and discrete variables);
• the underlying contingency tables for the multivariate categorical responses are very sparse and

unbalanced;
• the endpoints are closely related to each other. As a consequence, determining the extent of

correlation between endpoints, within and across domains, is crucial to properly measure the
effects.

Hence, the presence of a large number of endpoints, repeated measures, and the mixed nature of
the variables evaluated in FOB studies complicate standard statistical analyses, making it necessary
to model complex correlation patterns.

Han et al. (2004) use data from an FOB analysis to illustrate methods for testing a dose–response
relationship with multiple correlated binary responses. They transformed the original ordinal
responses into binary ones (absence/presence of endpoint), thereby losing information on severity.
In fact, they propose an exact test for multiple binary outcomes under the assumption that the
correlation among these items is equal and that the endpoints are independent across different
domains (Han et al., 2004). This test is based both upon an exponential model described by
Molenberghs and Ryan (1999) and an exact test for exchangeable correlated binary data for groups
of correlated observations developed by Corcoran et al. (2001). Here we present a nonparametric
permutation analysis of this data set, treating data as multivariate responses (both ordinal and
continuous) with a general correlation structure that we do not need to model explicitly, since the
dependencies among variables are implicitly captured by the permutation process itself.

8.4.2 A Permutation Solution

The whole data set may be represented as

X = {Xhji(t), t = 1, . . . , k, i = 1, . . . , nj , j = 1, . . . , C, h = 1, . . . , V }
= {Xhji , i = 1, . . . , nj , j = 1, . . . , C, h = 1, . . . , V },

where Xhji = {Xhji(t), t = 1, . . . , k} denotes the hth response of the ith subject, at exposure level
j and time t . Hence, the global hypothesis testing problem may be expressed as

H0 :

{
k⋂

t=1

[
V⋂

h=1

(
Xh1(t)

d= . . .
d= XhC(t)

)]}
,

against

H1 :

{
k⋃

t=1

[
V⋃

h=1

(
Xh1(t)

d≥ . . .
d≥ XhC(t)

)]}
.

We are in fact in the context of testing multivariate ordered alternatives. Hence, by applying the
NPC methodology, we may further decompose the global null hypothesis, including, for example,
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the information on domains. As mentioned before, Moser (1989) introduced the domain approach,
thus classifying the endpoints into six mutually exclusive sets, which may be seen as latent variables,
representing distinct areas of neurological functioning. Readers are reminded that in this case
C = 5, because of the presence of five dose groups (0, 150, 500, 1500 and 5000g). Since three
measurements are available for each variable (at 0, 4 and 24 hours), the testing hypothesis problem
may be rewritten as

H0l :

{
3⋂

t=1

[
Vl⋂
h=1

(
Xl

h1(t)
d= . . .

d= Xl
h5(t)

)]}
, l = 1, . . . , 6,

against

H1l :

{
3⋃

t=1

[
Vl⋃
h=1

(
Xl

h1(t)
d
> . . .

d
>Xl

h5(t)

)]}
, l = 1, . . . , 6,

where Xl
j (t) =

{
Xl

1j (t) . . . ,Xl
jVl

(t)
}

represents the lth domain response for the j th exposure level
at time t .

In summary, for each of the three times, we test the monotonic stochastic ordering of responses
with respect to increasing exposure levels. Then, by means of the NPC methodology, for each
time, we evaluate this effect within each domain (six domains for each time) by combining the
variables belonging to the same domain. We then combine with respect to time and adjust the
p-values for multiplicity, thus obtaining the information for each domain. As usual, it is of interest
to know specifically what domains are statistically significant at level α after proper adjustment for
multiplicity. We apply Tippett’s MinP stepdown procedure. Finally, we may get global p-values
by combining the domains and testing the hypothesis

H0 :

{
6⋂

l=1

H0l

}

against

H1 :

{
6⋃

l=1

H1l

}
.

In the following sections we illustrate the results obtained for this analysis, and give the corre-
sponding MATLAB and R codes.

8.4.3 Analysis Using MATLAB

Results of interest are shown in Table 8.6, where it can be seen that, after adjustment for multiplicity,
domains 1 and 5 (respectively autonomic and neuromuscular) are significant, as well as the global
p-value. Tables 8.3–8.5 and Table 8.7 show further or intermediate analyses, time by time.

Part of the MATLAB code for carrying out the analysis is given below. We refer the reader to
the PERCH folder on the book’s website for the full version. We wish to emphasize that due to the
actual nature of the variables considered, to perform the stochastic ordering we need to separately
process continuous and categorical ordinal variables. In the former case, we apply the NP_StOrd
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Table 8.3 Results from stochastic ordering and
combination within domains, controlling FWE (time t0)

Time t0 Variable Domain

p-value p-FWE p-value p-FWE

lacrimation 0.4625 1.0000

palp_closure 1.0000 1.0000

salivation 1.0000 1.0000

urination 0.8502 1.0000

defecation 0.2358 0.9770

pupil 1.0000 1.0000 0.4955 0.9331

approach 0.5664 1.0000

touch 0.9461 1.0000

click 0.8921 1.0000

tail_pinch 0.9720 1.0000 0.9660 0.9980

removal 0.7543 1.0000

handling 0.1648 0.9021

clonic_mvts 0.7203 1.0000

tonic_mvts 1.0000 1.0000

vocalizations 1.0000 1.0000

arousal 0.0519 0.5355 0.2128 0.7353

hc_posture 0.6633 1.0000

rears 0.1449 0.8861

motor_activity 1.0000 1.0000 0.3237 0.8502

gait 1.0000 1.0000

mobility 1.0000 1.0000

righting 1.0000 1.0000

foot_splay 0.7063 1.0000

forelimb_grip 0.7832 1.0000

hindlimb_grip 0.6723 1.0000 0.9541 0.9980

piloerection 1.0000 1.0000

weight 0.7113 1.0000

temperature 0.8322 1.0000 0.9131 0.9980

p-Global 0.5355 0.7353
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Table 8.4 Results from stochastic ordering and
combination within domains, controlling FWE (time t4)

Time t4 Variable Domain

p-value p-FWE p-value p-FWE

lacrimation 0.9910 1.0000

palp_closure 1.0000 1.0000

salivation 1.0000 1.0000

urination 0.7602 0.9980

defecation 0.2138 0.9081

pupil 0.9850 1.0000 0.9111 0.9111

approach 0.0010 0.0170

touch 0.0110 0.1249

click 0.0010 0.0170

tail_pinch 0.0020 0.0300 0.0010 0.0060

removal 0.0739 0.5634

handling 0.0060 0.0779

clonic_mvts 0.3047 0.9351

tonic_mvts 1.0000 1.0000

vocalizations 1.0000 1.0000

arousal 0.0250 0.2607 0.0070 0.0210

hc_posture 0.5095 0.9870

rears 0.2218 0.9081

motor_activity 0.0010 0.0170 0.0030 0.0120

gait 1.0000 1.0000

mobility 1.0000 1.0000

righting 1.0000 1.0000

foot_splay 0.9970 1.0000

forelimb_grip 0.0010 0.0170

hindlimb_grip 0.0020 0.0300 0.0210 0.0410

piloerection 1.0000 1.0000

weight 0.5824 0.9920

temperature 0.0010 0.0170 0.0020 0.0100

p-Global 0.0170 0.0060
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Table 8.5 Results from stochastic ordering and
combination within domains, controlling FWE (time t24)

Time t24 Variable Domain

p-value p-FWE p-value p-FWE

lacrimation 0.9990 1.0000

palp_closure 1.0000 1.0000

salivation 1.0000 1.0000

urination 0.1029 0.6903

defecation 0.1918 0.7932

pupil 1.0000 1.0000 0.7053 0.7053

approach 0.7872 0.9960

touch 0.0020 0.0310

click 0.0040 0.0519

tail_pinch 0.0010 0.0180 0.0010 0.0050

removal 0.6464 0.9960

handling 0.0110 0.1279

clonic_mvts 0.0030 0.0430

tonic_mvts 1.0000 1.0000

vocalizations 1.0000 1.0000

arousal 0.0010 0.0180 0.0010 0.0050

hc_posture 0.8452 0.9960

rears 0.1578 0.7812

motor_activity 0.0080 0.0949 0.0230 0.0460

gait 0.9990 1.0000

mobility 1.0000 1.0000

righting 0.9920 1.0000

foot_splay 0.1738 0.7932

forelimb_grip 0.0010 0.0180

hindlimb_grip 0.0010 0.0180 0.0030 0.0110

piloerection 0.4476 0.9740

weight 0.1419 0.7812

temperature 0.0030 0.0430 0.0040 0.0120

p-Global 0.0180 0.0050
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Table 8.6 Combining domains among times, controlling FWE (time t24). ψ indicates the
combining function; in this case Tippett’s combining function has been used

t0 t4 t24 ψ(λt0 , λt4 , λt24) p-FWE

Domain 1 Autonomic 0.4955 0.9111 0.7053 0.8332 0.8332
Domain 2 Sensorimotor 0.9660 0.0010 0.0010 0.0020 0.0020
Domain 3 Excitability 0.2128 0.0070 0.0010 0.0030 0.0150
Domain 4 Neuromuscular 0.3237 0.0030 0.0230 0.0090 0.0220
Domain 5 Activity 0.9541 0.0210 0.0030 0.0070 0.0220
Domain 6 Physiologic 0.9131 0.0020 0.0040 0.0060 0.0220

p-Global 0.0020

Table 8.7 Combining variables among times, controlling FWE (time
t24). ψ indicates the combining function; in this case Tippett’s
combining function has been used

t0 t4 t24 ψ(λt0 , λt4 , λt24) p-FWE

lacrimation 0.4625 0.9910 0.9990 0.7802 0.9850
palp_closure 1.0000 1.0000 1.0000 1.0000 1.0000
salivation 1.0000 1.0000 1.0000 1.0000 1.0000
urination 0.8502 0.7602 0.1029 0.2657 0.9031
defecation 0.2358 0.2138 0.1918 0.4845 0.9650
pupil 1.0000 0.9850 1.0000 1.0000 1.0000

approach 0.5664 0.0010 0.7872 0.0030 0.0440
touch 0.9461 0.0110 0.0020 0.0060 0.0739
click 0.8921 0.0010 0.0040 0.0020 0.0170
tail_pinch 0.9720 0.0020 0.0010 0.0020 0.0170

removal 0.7543 0.0739 0.6464 0.2038 0.8881
handling 0.1648 0.0060 0.0110 0.0160 0.1598
clonic_mvts 0.7203 0.3047 0.0030 0.0080 0.0829
tonic_mvts 1.0000 1.0000 1.0000 1.0000 1.0000
vocalizations 1.0000 1.0000 1.0000 1.0000 1.0000
arousal 0.0519 0.0250 0.0010 0.0030 0.0440

hc_posture 0.6633 0.5095 0.8452 0.8581 0.9910
rears 0.1449 0.2218 0.1578 0.3656 0.9570
motor_activity 1.0000 0.0010 0.0080 0.0020 0.0170

(continued overleaf )
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Table 8.7 (continued )

t0 t4 t24 ψ(λt0 , λt4 , λt24) p-FWE

gait 1.0000 1.0000 0.9990 1.0000 1.0000
mobility 1.0000 1.0000 1.0000 1.0000 1.0000
righting 1.0000 1.0000 0.9920 0.9970 1.0000
foot_splay 0.7063 0.9970 0.1738 0.4276 0.9650
forelimb_grip 0.7832 0.0010 0.0010 0.0020 0.0170
hindlimb_grip 0.6723 0.0020 0.0010 0.0030 0.0440

piloerection 1.0000 1.0000 0.4476 0.6803 0.9780
weight 0.7113 0.5824 0.1419 0.2108 0.8881
temperature 0.8322 0.0010 0.0030 0.0030 0.0440

0.0170

function, in the latter we need to apply both the NP_Cs_Categ and expand_categ functions. By
means of the expand_categ function, doses are transformed into dummy variables.

[D]=xlsimport(’perch’);

reminD(D)

varYordinal=[5:22, 24:26, 30]

varYquant=[23, 27:29, 31:32]

B=1000

D_=D;

for i=1:length(D)

D(i).vals=D(i).vals(D_(4).vals==4);

end

reminD(D)

B=Space_perm(length(v(’dose’)),B);

[Pquant, T, options_q,p_sub, T_sub] = NP_StOrd(D(varYquant),

’dose’,B,-1,’F’);

[doseDUMMY, orig,w,labelsDUMMY] = expand_categ(’dose’,2);

options_o.labels.dims3=labelsDUMMY;

options_o.tail=-1;

[Pc, Tc, options_o, P_sub, T_sub] = NP_Cs_Categ(D(varYordinal),

doseDUMMY,B,2,’F’,options_o);

Pordinal=NPC(Pc,’F’,options_o);

options=options_o;
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options.Combdims=2;

options.labels.dims{2}=[D([varYordinal(:,1:18) varYquant(:,1)

varYordinal(:,19:21) varYquant(:,2:4) varYordinal(:,22)

varYquant(:,5:6)]).name];

P=[Pordinal(:,1:18) Pquant(:,1) Pordinal(:,19:21) Pquant(:,2:4)

Pordinal(:,22) Pquant(:,5:6)];

fprintf(’\n*************Results: time 4\n’)

P2=NPC_FWE(P,’T’,options);

domains=[1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 5 5 5 5 5 5 6 6 6];

%Domains

for i=1:6 %i domini

optionsD.labels.dims{2}=options.labels.dims{2}(domains==i)

PD(:,i)=NPC(P(:,domains==i),’F’,optionsD);

end

NPC_fwe(PD,’T’);

P_4=P; %storing results for time=4

PD_4=PD;

Repeat the same analysis for times 0 and 24 and then combine domains over times. Once again,
we refer the reader to the book’s website for the complete code.

%combining times over domains (analysis of interest)

PD_times(:,:,3)=PD_24;

PD_times(:,:,2)=PD_4;

PD_times(:,:,1)=PD_0;

fprintf(’\n*************Results: times combined\n’)

options.Combdims=3;

Pdomain=NPC(PD_times,’T’,options);

options.Combdims=2;

P2fwe=NPC_fwe(Pdomain,’T’,options);

%combining times over variables (an additional analysis)

P_times(:,:,3)=P_24;

P_times(:,:,2)=P_4;

P_times(:,:,1)=P_0;

fprintf(’\n*************Results: times combined\n’)

options.Combdims=3;

P=NPC(P_times,’T’,options);

options.Combdims=2;

P2fwe=NPC_fwe(P,’T’,options);



286 Permutation Tests for Complex Data

8.4.4 Analysis Using R

As already stated, the aim of the analysis is to test for the presence of a (decreasing) stochastic
ordering with respect to the increasing doses of the solvent.

We require the stoch.ord2 function, a modification of the stoch.ord function that accounts
for the presence of ordinal data. This function requires as entries one response variable y and one
ordinal variable x (typically time, dose in this example). What the function basically does is carry
out k − 1 two-sample tests (grouping the k categories of x into all two possible ordered pseudo-
groups), and test for the presence of at least one significant test (by applying Tippett’s combining
function). The test statistics we have considered for the two-sample tests are the t statistic when
the response variable is continuous and the statistic T ∗ =∑C

i=1 N
∗
2i[N

∗
·i (N −N∗

·i )]
−1/2 when it is

ordinal (see also Chapter 6); here C is the number of categories of the ordinal response variable.
The whole null distribution of the global test statistic MinP is returned by the function; its first
element is the global p-value assessing the presence of a decreasing/increasing stochastic ordering
(alt being set equal to −1 or 1) with respect to the ordered increasing categories of x.

We will carry out a stochastic ordering test to assess the effect of dose on the j th response at
the kth time, j = 1, . . . , p, k = 1, . . . , t . Thus, we will first combine the partial tests with respect
to the domains, and finally combine with respect to time.

The function can process one variable at time; in order to maintain the dependence among the
response variables the function is always run with a common seed, which will be the input to the
set.seed function (thus providing exactly the same permutations each time). We run the function
each time and store the vector of p-values returned by the stoch.ord2 function in the three-
dimensional array P. The option cat specifies whether the response variable considered is ordinal
(1) or continuous (0). The partial test is not carried out whenever the response is constant (thus we
initialize the elements of P equal to 1).

setwd("C:/path")

source("t2p.r") ; source("stoch_ord2.r")

class = c(rep("integer",2),rep("factor",23),rep("numeric",6))

data<-read.csv("perch.csv",header=TRUE,colClasses=class)

dose = data$dose

time = data$testtime

mouse = data$rat

data = data[,-c(1:3)]

B=1000

p=dim(data)[2]

t=length(unique(time))

P<-array(1,dim=c((B+1),p,t))

seed=101

for(k in 1:t){

tt = unique(time)[k] ; cat("Time = ",tt,"\n\n")

for(j in 1:p){

cat(’Processing variable:’,j,"\n")

cat = ifelse(is.factor(data[,j]),1,0)
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tab = table(data[time==tt,j])

if(length(tab[tab>0])>1){

dose.t = dose[time==tt]

P[,j,k] = stoch.ord2(data[time==tt,j],dose.t,alt=-1,B=B,

cat=cat,seed=seed)

}

}## end j

}## end k

The p × t matrix P[1,,] contains the observed p-values of each partial test. The raw p-values
are contained in the matrix res.

res=P[1,,]

rownames(res) = colnames(data)

colnames(res) = c(’T0’,’T4’,’T24’)

res

T0 T4 T24

lacrimation 0.439 0.998 1.000

palp_closure 1.000 1.000 1.000

salivation 1.000 1.000 1.000

urination 0.917 0.581 0.070

defecation 0.133 0.176 0.145

pupil 1.000 0.984 0.999

approach 0.653 0.000 0.809

touch 0.968 0.000 0.000

click 0.901 0.000 0.004

tail_pinch 1.000 0.000 0.000

removal 0.997 0.555 0.449

handling 0.186 0.000 0.000

clonic_mvts 0.705 0.308 0.002

tonic_mvts 1.000 1.000 1.000

arousal 0.062 0.000 0.000

vocalizations 1.000 1.000 1.000

hc_posture 0.282 0.735 0.344

rears 0.301 0.250 0.122

motor_activity 1.000 0.216 0.043

gait 1.000 1.000 0.998

mobility 1.000 1.000 1.000

righting 1.000 1.000 0.993

foot_splay 0.695 0.999 0.218

forelimb_grip 0.802 0.000 0.000

hindlimb_grip 0.666 0.000 0.000

piloerection 1.000 1.000 0.445

weight 0.687 0.554 0.159

temperature 0.762 0.000 0.000

We now combine, within each time, the response variables according to specified domains (see
Table 8.2). We apply Fisher’s combining function. The raw p-values of each domain/time are in
the matrix res.dom.

dom = c(rep(1,6),rep(2,4),rep(3,6),rep(4,3),rep(5,6),rep(6,3))
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T.dom=array(0,dim=c((B+1),6,t))

for(d in 1:6){

T.dom[,d,] = apply(P[,dom==d,],c(1,3),function(x){-2*log(prod(x))})

}

P.dom=t2p(T.dom)

res.dom = P.dom[1,,]

rownames(res.dom)=c(’Autonomic’,’Sensorimotor’,’Excitability’,

’Neuromuscular’,’Activity’,’Physiologic’)

colnames(res.dom)=c(’T0’,’T4’,’T24’)

res.dom

T0 T4 T24

Autonomic 0.337 0.846 0.618

Sensorimotor 0.977 0.000 0.000

Excitability 0.276 0.000 0.000

Neuromuscular 0.274 0.353 0.040

Activity 0.953 0.000 0.000

Physiologic 0.880 0.000 0.000

Finally, we combine with respect to time with Fisher’s combining function and adjust the raw
p-values for multiplicity by running the FWE.minP function.

T.time = array(0,dim=c(B+1,6))

for(d in 1:6){

T.time[,d] = apply(P.dom[,d,],1,function(x){-2*log(prod(x))})

}

P.time = t2p(T.time)

source("FWEminP.r")

res.glob.adj = FWE.minP(P.time)

res.glob = cbind(P.time[1,],res.glob.adj)

rownames(res.glob)=rownames(res.dom)

colnames(res.glob)=c(’p’,’p.adj’)

res.glob

p p.adj

Autonomic 0.692 0.692

Sensorimotor 0.000 0.000

Excitability 0.000 0.000

Neuromuscular 0.077 0.146

Activity 0.000 0.000

Physiologic 0.000 0.000



9
NPC Tests for Survival Analysis

9.1 Introduction and Main Notation
This chapter deals with permutation methods for problems of hypothesis testing in the framework
of survival analysis. The field of survival analysis involves methods for the analysis of data on
an event observed over time and the study of factors associated with the occurrence rates of this
event. Survival analysis is a branch of statistics which deals with death in biological organisms
and failure in mechanical systems. The same topic is called reliability theory or reliability analysis
in engineering and duration analysis or duration modelling in economics and sociology. In this
context, death or failure is considered an event . Therefore, we consider failure time data that arise
when items are placed at risk under different experimental conditions. Major areas of application
are biomedical studies of degenerative diseases and industrial life testing.

9.1.1 Failure Time Distributions

Let us assume that there is a given sequence of fixed probability spaces (�(n),A(n), P (n)),
where n ∈ N, along with a family of right-continuous, non-decreasing complete sub-σ -algebras{
A(n)

t : 0 ≤ t <∞
}

which correspond to the history of the survival study up to and including
time t , where n is the sample size of the study. In this chapter we assume that an individual can
experience an event at most once. Thus, suppose we have two independent samples of size n1 and
n2, respectively. Let n = n1 + n2 be the pooled sample size.

In the type I censoring model, Tmj (m = 1, . . . , nj , j = 1, 2) usually represents the true sur-
vival time being tested (the length of time to the event) with CDF Fj (where the survival function
Sj (t) = Pr

(
Tmj > t

) = 1− Fj (t)) and Cmj usually designates the censoring variable with distribu-
tion function Kj and censoring survival function Gj(t) = Pr

(
Cmj > t

) = 1−Kj(t) for the longest
time subject m can be observed. We assume that the censoring distributions are independent of the
failure time distributions.

A typical right-censored survival data set consists of n independent realizations of the random
pair (X,�); thus corresponding to subject m in sample j is the random vector (Xmj ,�mj ) for
j = 1, 2 and m = 1, . . . , nj . The variable Xmj represents the time for which subject m in group j

is under study. If at the end of the observation period the event of interest has occurred, Xmj is
said to be uncensored ; otherwise it is censored . Now, let Bj (t) = Pr(Xmj ≤ t). The variable �mj

is the censoring indicator, taking the value 1 if the observation on subject m is uncensored, and 0
otherwise. Briefly,

Permutation Tests for Complex Data: Theory, Applications and Software Fortunato Pesarin, Luigi Salmaso
 2010, John Wiley & Sons, Ltd
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Xmj = min(Tmj , Cmj ), �m = I(Tmj ≤ Cmj ),

where I(A) denotes the indicator function of the event A.
The CDF F(t) = Pr(T ≤ t) of T is of primary interest, while that of C, G(t) = Pr(C ≤ t), is

considered to be an unknown nuisance entity.
Furthermore, let t1 ≤ . . . ≤ tn denote the ordered pooled times (i.e. here the tm consist of both

event and censoring times) and t1 < . . . < tD denote the distinct event times in the pooled sample
(i.e. here we consider only event times ti). We shall take τ to be the largest of the observed event
times. Finally, in the random censoring model, we suppose that at time ti there are

dij (ti) = dij =
n∑

m=1

[I(Xmj = ti ,�mj = 1)]

events (sometimes simply referred to as deaths) and

cij (ti) = cij =
n∑

m=1

[I(Xmj = ti ,�mj = 0)]

censored observations, j = 1, 2, i = 1, . . . , D. Let

Yij (ti) = Yij =
n∑

m=1

[I(Xmj ≥ ti )]

be the number of individuals who are at risk at time ti . Furthermore, di = di1 + di2 and Yi =
Yi1 + Yi2 are respectively the total number of events and the number of subjects at risk in the
pooled sample at time ti . The quantity ĥj (ti ) = dij /Yij , the so-called hazard function , provides
an estimate of the conditional probability that an individual who survives just prior to time ti
experiences the event at time ti . This is the basic quantity from which we will construct estimators
of the survival function Sj (t), the censoring survival function Gj(t), and the cumulative hazard
rate Hj(t).

9.1.2 Data Structure

The whole set of observed data is summarized by the pair of associated matrices (X,�):

(X,�) = {(Xj ,�j ), j = 1, 2} = {(Xmj ,�mj ),m = 1, . . . , nj , j = 1, 2
}
.

Thus let us assume that observations from a random vector (X,�) = {(X1,�1)
⊎
(X2,�2)

}
on

n units are partitioned into two groups of n1 and n2 individuals respectively, corresponding to
two levels of a treatment. Let us also assume that the response variables in the two groups have
unknown distributions P1 = P1� · P1X|� and P2 = P2� · P2X|� (Pj ∈ P, where P is a possibly
unspecified nonparametric family of non-degenerate distributions), both defined on the same proba-
bility space (�,A), where � = (X,O) is the sample space and A is a σ -algebra of events. Hence, let
� = (X,O) be the support of the random vector (X,�) and �/(X,�) the permutation sample space
given (X,�). So (X,O)/(X,�) is the orbit associated with the data set (X,�) as the set containing
all permutations (X∗,�∗).

In the permutation setting, let (Xj ,�j ) be the observed data set of nj elements related to the j th

sample where j = 1, 2. Let us also use
{
(X∗bj ,�∗b

j ), j = 1, 2, b = 1, . . . , B
}

to denote a sample
from the permutation sample space.
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9.2 Comparison of Survival Curves
In survival analysis, it is often of interest to test whether or not two survival time distributions are
equal. We assume that observations are available on the failure time of n individuals usually taken
to be independent. Focusing on the case of two independent samples, the aim is often to compare
two therapies, two products, two processes, two treatments, etc. The two samples are denoted by
(X11, . . . , X1n1) and (X21, . . . , X2n2), respectively. The X1i constitute a random sample on the
random variable X1 with CDF F1, and the X2i a random sample on the random variable X2 with
CDF F2. One usually wishes to test the null hypothesis H0 : {F1(t) = F2(t),∀t ∈ R+}.

More precisely, the system of hypotheses of interest is

H0 : {P1(t) = P2(t) = P(t),∀t ≤ τ }
= {[S1(t) = S2(t)]

⋂
[K1(t) = K2(t)], ∀t ≤ τ },

against, in the case of treatment-independent censoring,

H1 : {P1(t) ≤	=≥ P2(t), some t ≤ τ }
= {S1(t) ≤	=≥ S2(t), some t ≤ τ }

or against, in the case of treatment-dependent censoring, as the censoring distributions Kj (with
j = 1, 2) may vary among treatments,

H1 :
{[
S1(t) ≤	=≥ S2(t)

]⋃[
K1(t) 	= K2(t)

]
, some t ≤ τ

}
.

Remark 1. As frequently occurs in survival studies, time to event data are characterized by
incompleteness due to censoring; in particular, right-censored data occur when the unobserved
and unknown time to the event of interest is longer than the recorded time for which an individual
was under observation. For instance, subjects in a survival study can be lost to follow-up due
to transfer to a non-participating institution, or the study can finish before all the subjects have
observed the event.

The focus here is the presence of complicated censoring patterns and, in particular, the type
of censoring. In the right-censored survival data framework, censored data are usually assumed to
originate from an underlying random process, which may or may not be related to treatment levels
or to event processes. When we assume that the probability of a datum being censored does not
depend on its unobserved value, then we may ignore this process and so need not specify it.

Nearly all statistical procedures for right-censored survival data are based on the assumption that
censoring effects are, in a very specific sense, non-informative with respect to the distribution of
survival time, that is, unaffected by treatment levels. If the censoring distributions are equal, the
censoring process does not depend on group, and observed values may be considered as a random
subsample of the complete data set. Thus, in these situations, it is appropriate to ignore the process
that causes censored data when making inferences on X. Therefore, in the case of a treatment-
independent censoring distribution, the process that causes censored data is called ignorable and
analysis may be carried out conditionally on the actually observed data.

In contrast, when the censoring patterns are treatment-dependent, the observation pairs from
the first sample do not have the same distribution as those from the second sample, even when
the null hypothesis on pure survival times is true. In the case of treatment-dependent censoring
distributions, in order to make valid inferences the censored data process must be properly specified.
Thus, the analysis of treatment-dependent censoring data is much more complicated than that of
treatment-independent censoring data because inferences must be made by taking into consideration
the data set as a whole and by specifying a proper model for the censoring pattern. In any case,
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the specification of a model which correctly represents the censored data process seems the only
way to eliminate the inferential bias caused by censoring.

If we assume that, in the null hypothesis, both event and censoring times are jointly
exchangeable with respect to groups, then such multivariate testing problems are solvable by the
NPC of dependent permutation tests. In particular, the hypotheses can be broken down into a set
of sub-hypotheses, and related partial tests are assumed to be marginally unbiased, significant for
large values and consistent.

Several solutions for permutation analysis of survival data analysis have been introduced in
Callegaro et al. (2003) and Bonnini et al. (2005).

Although some solutions presented in this chapter are exact, the most important of them are
approximate because the permutation distributions of the test statistics are not exactly invariant
with respect to permutations of censored data, as we shall see. However, the approximations are
quite accurate in all situations, provided that the number of observed data is not too small. To this
end, we may remove from the permutation sample space associated with the whole data set, all data
permutations where the permutation sample sizes of actually observed data are not large enough
for approximations. In a way, similarly to the permutation missing data analysis (see Section 7.9),
we must establish a kind of restriction on the permutation space, provided that this restriction does
not imply relevant bias our inferential conclusions.

9.3 An Overview of the Literature
In this section we briefly present the most widely used statistics for testing the equality of two
survival distributions based on independent randomly censored samples. The different nonpara-
metric approaches can be classified as asymptotic or permutation procedures. In the framework of
asymptotic nonparametric methods, several classes of tests have been described in the literature.

A first class of methods is based on integrated weighted comparisons of the estimated cumulative
hazard functions in the two-sample design under the null and alternative hypotheses, based on
the Nelson–Aalen estimator (Nelson, 1972; Aalen, 1978) within weighted log-rank statistics (or
weighted Cox–Mantel statistics). In particular, these methods are based on the weighted differences
between the observed and expected hazard rates. The test is based on weighted comparisons of the
estimated hazard rates of the j th population under the null and alternative hypotheses. An important
consideration in applying this class of tests is the choice of weight function to be used. Weights
are used to highlight certain pieces of the survival curves. A variety of weight functions have been
suggested in the literature, and, depending on the choice of weight function, the related tests are
more or less sensitive to early or late departures from the hypothesized relationship between the
two hazard functions (as specified in the null hypothesis). All these statistics are censored data
generalizations of linear rank statistics. For instance, the most commonly used rank-based test
statistic is the log-rank test proposed by Mantel (1966), Peto and Peto (1972) and Cox (1972), and
it is a generalization for censored data of the exponential ordered scores test of Savage (1956).
This statistic has good power when it comes to detecting differences in the hazard rates, when
the ratio of hazard functions in the populations being compared is approximately constant. Gilbert
(1962), Gehan (1965) and Breslow (1970) suggested a censored data generalization of the two-
sample Wilcoxon–Mann–Whitney rank test. Peto and Peto (1972) and Kalbfleisch and Prentice
(1980) described other generalizations of the Wilcoxon–Mann–Whitney test. They used a different
estimate of the survival function based on the combined sample. Tarone and Ware (1977) proposed
a class of multi-sample statistics for right-censored survival data that includes the log-rank test and
the censored data generalized Wilcoxon–Mann–Whitney procedures.

Harrington and Fleming (1982) introduced a very general class of tests which includes, as special
cases, the log-rank test and another version of the Wilcoxon–Mann–Whitney test. They use the
Kaplan–Meier estimate of the survival function based on the combined sample at the previous event
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time. More recently, Gaugler et al. (2007) proposed a modified Fleming–Harrington test very simi-
lar to the original version, which includes, as a special case, the Peto–Peto and Kalbfleisch–Prentice
test. Here the Peto–Peto and Kalbfleisch–Prentice estimate of the survival function is based on
the pooled sample at the current event time. Jones and Crowley (1989) introduced a more gen-
eral class of single-covariate nonparametric tests for right-censored survival data that includes
the Tarone–Ware two-sample class, the Cox (1972) score test, the Tarone (1975) and Jonckheere
(Gehan, 1965) C-sample trend statistics, the Brown et al. (1974) modification of the Kendall rank
statistic, Prentice’s (1978) linear rank statistics, O’Brien’s (1978) logit rank statistic and several
new procedures. This class can be generalized to include the Tarone–Ware C-sample class.

The statistical properties of the aforementioned test statistics have been studied by many authors.
Here we mention, among others, works by Gill (1980), Fleming and Harrington (1981), Breslow
et al. (1984), Fleming et al. (1987), Lee (1996), Korosok and Lin (1999), Shen and Cai (2001),
and Wu and Gilbert (2002).

A variety of weight functions W(ti) have been proposed in the literature (see Table 9.1, where
symbols have their obvious usual meanings).

These tests are sensitive to alternatives of ordered hazard functions (Fleming and Harrington,
1991). When they are applied in samples from populations where the hazard rates cross, they have
little power because early positive differences in favour of one group are compensated by late
differences in the rates with opposite signs, in favour of the other treatment.

A second class of procedures is based on the maximum of the sequential evaluation of the
weighted log-rank tests at each event time; these are referred to as Rényi-type statistics. Such
tests are presumed to have ‘good’ power to detect crossing hazards. These supremum versions
of the weighted log-rank tests were proposed by Gill (1980) and are generalizations of the
Kolmogorov–Smirnov statistic for comparing two censored data samples.

A third class of procedures is the weighted Kaplan–Meier (WKM) statistics based directly on
integrated weighted comparisons of survival functions (rather than based on ranks) in the two

Table 9.1 Different types of weight function

Zj(τ) =
∑D

i=1 W(ti)
{
dij − Ê

[
dij
]}

Weighted log-rank statistic

Q = Z1(τ)√
σ̂2

11

Weighted log-rank test

Weight function Test name

W(ti) = 1, ∀ti Log-rank test

W(ti) = Yi Gehan–Breslow test

W(ti) =
√
Yi Tarone–Ware test

W(ti) = S̃(ti ) Peto–Peto and Kalbfleisch–Prentice
test

W(ti) = S̃(ti )Yi
Yi+1 Modified Peto–Peto and

Kalbfleisch–Prentice test
(Andersen et al., 1982)

Wp,q(ti) = (Ŝ(ti−1)
p − (1− Ŝ(ti−1))

q , p ≥ 0; q ≥ 0 Fleming–Harrington test

Wp,q(ti) = (S̃(ti )
p − (1− S̃(ti ))

q , p ≥ 0; q ≥ 0 Modified Fleming–Harrington test
(Gaugler et al., 2007)
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samples under the null and alternative hypotheses, based on the Kaplan–Meier estimator. This
class of tests was initially proposed by Pepe and Fleming (1989), whereas more recently Lee
et al. (2008) studied an integrated version of the WKM. Note that two other versions of these
two statistics can be obtained by replacing the Kaplan–Meier estimators with the Peto–Peto and
Kalbfleisch–Prentice estimators. WKM statistics provide censored data generalizations of the two-
sample z- or t-test statistics. Asymptotic distribution properties of the WKM statistics can be found
in Pepe and Fleming (1989, 1991) and Lee et al. (2008).

A fourth class of procedures is a censored data version of the Cramér–von Mises statistics,
based on the integrated squared difference between the two estimated cumulative hazard rates,
based in turn on the Nelson–Aalen estimator. This is done to obtain a limiting distribution which
does not depend on the relationship between the event and censoring times and because such tests
arise naturally from counting process theory. Small-sample and asymptotic distribution properties
of three versions of this rank test statistic can be found in Koziol (1978) and Shumacher (1984).

A fifth class of test statistics is a generalization of the two-sample median statistics for censored
data, proposed by Brookmeyer and Crowley (1982), which is useful when we are interested in
comparing the median survival times of the two samples rather than the difference in the hazard
rate or the survival functions over time. Asymptotic distribution properties of the WKM statistics
can be found in Brookmeyer and Crowley (1982).

Other two-sample procedures have been suggested in the literature. The most recent works
include: a midrank modification of rank tests for exact, tied and censored data proposed by Hudgens
and Satten (2002); a nonparametric procedure for use when the distribution of time to censoring
depends on treatment group and survival time, proposed by DiRienzo (2003); an asymptotically
valid C-sample test statistic proposed by Heller and Venkatraman (2004); and the randomization-
based log-rank test proposed by Zhang and Rosenberger (2005).

9.3.1 Permutation Tests in Survival Analysis

When asymptotic tests are used to compare survival functions, it is possible to find situations in
which the number of failures of interest is so small that it is reasonable to question the validity of an
asymptotic test. In such situations the standard asymptotic log-rank test, for example, is frequently
replaced by its corresponding log-rank permutation test. This provides an exact small-sample test
when the censoring patterns in the two compared populations are equal. Indeed, when the censoring
patterns are treatment-dependent, the observation pairs from the first sample do not have the same
distribution as those from the second sample. The failure of the asymptotic log-rank test is not
only due to an inappropriate asymptotic approximation, which in turn can be replaced by an exact
evaluation, but it is also due to ignoring the interdependency of the observed risk sets Yij (ti), that
is, the risk sets in the 2× 2 contingency tables associated with the D event times (Heinze et al.,
2003). Furthermore, since the two group sizes may be unbalanced, the asymptotic test may not
be appropriate. Therefore, also their asymptotic distributions under the null hypothesis may not
be appropriate. Some authors, among them Kellerer and Chmelevsky (1983), Chen and Gaylor
(1986), Ali (1990) and Soper and Tonkonoh (1993), have suggested so-called exact procedures.
These provide exact small-sample tests when the censoring patterns in the samples being compared
are treatment-independent.

In situations like these, permutation tests may be helpful. In this chapter we give a brief descrip-
tion of methods that require extensive computing. In the survival analysis framework, we present
a review of the most common two-sample permutation tests which have been suggested in the
literature. The only assumptions that are necessary are the model assumptions (independence of the
pairs

(
Xmj ,�mj

)
and independence of Xmj and Cmj ).

There are three different unidimensional exact conditional procedures analogous to the asymp-
totic log-rank test and suitable for situations of treatment-dependent censoring. The first method
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was proposed by Heimann and Neuhaus (1998), while the other two were proposed by Heinze et al.
(2003). Callegaro et al. (2003) proposed an exact Rényi-type test based on Rényi-type statistics and
suitable in the case of treatment-dependent censoring where it is assumed that, in the alternative
hypothesis, treatment may also influence the censoring process. An interesting permutation contri-
bution is given by Galimberti and Valsecchi (2002) who introduced a multidimensional permutation
test to compare survival curves for matched data when the number of strata increases, the stratum
sizes are small, and the proportional hazard model is not satisfied.

9.4 Two NPC Tests
In the framework of permutation methods, it is possible to consider an analysis approach incor-
porating two successive stages, the first focusing on the D observed distinct event times in the
pooled sample, and the second focusing on the combination of these D tests into an overall test
for comparing the survival curves.

Therefore, the NPC procedure for dependent tests may be viewed as a two-phase (or multi-phase)
testing procedure. In the first phase, let us suppose that �i : (X,O) −→ R1 (i = 1, . . . , D) is an
appropriate univariate partial test statistic for the ith sub-hypothesis H0i against H1i , for which
(without loss of generality) we assume that �i is non-degenerate, marginally unbiased, consistent
and that large values are significant, so that they are stochastically larger in H1i than in H0i in
both conditional and unconditional senses. In the second phase, we construct the global test statistic
�′′ = ψ(̂λ1, . . . , λ̂i , . . . , λ̂D) by combining the permutation p-values λ̂i = λ̂�i

associated with the
D partial tests through a suitable combining function ψ ∈ C. Hence, the combined test is a function
of D dependent partial tests.

Remark 1. When there is a more complex data configuration (where the more interesting cases
are given by testing in the presence of stratification variables, closed testing, multi-aspect testing
and repeated measures), however, the NPC may be like a multi-phase procedure characterized by
several intermediate combinations, where we may, for instance, first combine partial tests with
respect to variables within each stratum s (with s = 1, . . . , S), and then combine the second-order
tests with respect to strata into a single third-order combined test.

Indeed, in the analysis of survival right-censored data, we can view censored data as a missing
data problem. In this sense, we can carry out a multidimensional permutation test based on the
theory of permutation testing with missing data. In fact, if we assume that once we have fixed an
observed time ti , i = 1, . . . , D, the data already censored may be considered similarly to missing
data, then it is possible to extend the theory of permutation analysis of missing values set out in
Chapter 7 to the right-censored survival analysis.

9.4.1 Breaking Down the Hypotheses

It is generally of interest to test for the global (or overall) null hypothesis that the two groups have
the same underlying distribution,

HG
0 :

{
(X1, �1)

d= (X2,�2)
}
,

against a one-sided (stochastic dominance) or a two-sided (inequality in distribution) global alter-
native hypothesis,

HG
1 :

{
(X1,�1)

d

≤	=≥ (X2,�2)

}
.
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Let us assume that under the null hypothesis the data (X,�) are jointly exchangeable with respect
to the two groups on both X and � components. It is important to note that the pooled set of observed
data (X,�) in the null hypothesis is a set of jointly sufficient statistics for the underlying observed
and censored data process. Moreover, HG

0 implies the exchangeability of individual data vectors
with respect to groups, so that the permutation multivariate testing principle is properly applicable.

The complexity of this testing problem is such that it is very difficult to find a single overall
test statistic. However, the problem may be dealt with by means of the NPC of a set of dependent
permutation tests.

Hence, we consider a set of D partial tests followed by their NPC. To this end, we observe that
the null hypothesis may be equivalently written in the form

HG
0 :

{
D⋂
i=1

[
(Xi1,Oi1)

d= (Xi2,Oi2)
]}
=
{

D⋂
i=1

H0i

}
,

equivalent to

HG
0 :

{[
D⋂
i=1

(
O1i

d= O2i

)]⋂[
D⋂
i=1

(
X1i

d= X2i

)
|O
]}

= HO
0

⋂
H

X|O
0 ,

where a suitable and meaningful breakdown of HG
0 is emphasized. The overall alternative hypothesis

may be written as

HG
1 =

{
D⋃
i=1

[
(X1i , O1i )

d

≤ ˙	= ≥ (X2i , O2i)

]}
=
{

D⋃
i=1

H1i

}

=
{[

D⋃
i=1

(
O1i

d

≤ ˙	= ≥ O2i

)]⋃[
D⋃
i=1

(
X1i

d

≤ ˙	= ≥ X2i

)
|O
]}

= HO
1

⋃
H

X|O
1 .

The hypothesis HG
0 against HG

1 is thus broken down into D sub-hypotheses H0i against H1i ,
i = 1, . . . , D, in such a way that HG

0 is true if all the H0i are jointly true and HG
1 implies that the

inequality of the two distributions entails the falsity of at least one partial null hypothesis. Finally,
note that the hypotheses and assumptions are such that the permutation testing principle applies.

Thus, to test HG
0 against HG

1 , we consider a D-dimensional vector of real-valued test statis-
tics � = {�1, . . . ,�D}, the ith component of which is the univariate partial test for the ith
sub-hypothesis H0i against H1i . Without loss of generality, we assume that partial tests are non-
degenerate, marginally unbiased, consistent, and significant for large values. Hence, the combined
test is a function of D dependent partial tests and, of course, the combination must be nonparametric,
particularly with regard to the underlying dependence relation structure.

9.4.2 The Test Structure

Let us consider t(1) < . . . < t(D), i = 1, . . . , D, the ordered and distinct observed times of the
event of interest. For each subject m within the j th group (m = 1, . . . , nj , j = 1, 2) and each ti
we calculate Vmji as

Vmji =
 1 if Xmj > ti

0 if Xmj ≤ ti and Xmj = Tmj
C if Xmj ≤ ti and Xmj = Cmj ;
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and Omji as

Omji =
{

0 if Vmji = C

1 otherwise.

Let us then define νji =
∑nj

m=1 Omji as the number of observations that have not already been
censored at time ti in the j th group, and νi =

∑2
j=1 νji as the number of observations that have

not already been censored at time ti in the pooled sample.

9.4.3 NPC Test for Treatment-Independent Censoring

In this section we consider a multidimensional permutation test in the case of treatment-independent
censoring (TIC-NPC). This test, proposed by Callegaro et al. (2003), is based on the assumption
that censoring effects are non-informative with respect to the distribution of survival time. In the
present context, we are interested in testing the global null hypothesis,

HG
0 :

{[
S1(ti) = S2(ti) ∀ti , i = 1, . . . , D

]⋂[
�1

d= �2

]}
=
{[

X1
d= X2

]⋂[
�1

d= �2

]}
,

against the overall alternative,

HG
1 : {S1(ti) ≤	=≥ S2(ti) ∀ti , ∃ti : S1(ti ) < 	= >S2(ti)}

=
{
X1

d

≤	=≥ X2

}
.

If the censored data are treatment-independent, we may proceed conditionally on the observed
censoring indicator O and ignore HO

0 because in this context we have assumed that O does not pro-
vide any information about treatment effects. The global null and alternative hypotheses are broken
down into D sub-hypotheses, one for each D time t(1) < . . . < t(D). Hence, we may equivalently
write the null hypothesis in the relatively simpler form

HG
0 = H

X|O
0 :

{
D⋂
i=1

[(
Xi1

d= Xi2

)
|O
]}
=
{⋂

i
H

X|O
0i

}
against

HG
1 :

{
D⋃
i=1

H
X|O
1i

}
,

The partial permutation test statistics for testing the sub-hypothesis H
X|O
0i against the sub-

alternative H
X|O
1i then take the form

�
X|O∗
i = S̄∗2 (ti)

√
ν∗1i
ν∗2i
− S∗1 (ti)

√
ν∗2i
ν∗1i

,

where S∗j (ti) =
∑nj

m=1 V
∗
mjiO

∗
mji is a proper function of the univariate sample totals of valid data

(see Section 7.10.2).
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Note that each test statistic �
X|O∗
i is permutationally invariant, in mean value and variance, with

respect to the sample size ν∗ji =
∑nj

m=1 O
∗
mji , that varies according to the random attribution of units

to the two groups, because units with censoring data participate in the permutation mechanism
as well as all other units. Also note that when there are no censoring values, so that ν∗ji = nj ,
j = 1, 2, the tests are permutationally equivalent to the traditional two-sample permutation test for
comparison of locations.

Remark 1. Since the tests �∗i are approximately exact, they are also approximately unbiased. In
order to prove consistency, we recall that the size of missing data ν∗ may diverge, provided that
as n tends to infinity, lim ν∗i ∈ [0, 1].

Remark 2. In order for the given solution to be well defined, we must assume that ν∗1i and ν∗2i
are jointly positive. This implies that, in general, we must consider a sort of restricted permutation
strategy which consists of discarding from the analysis all points of the permutation sample space
(X,O)/(X,O) in which even a single component of the permutation matrix ν∗, of actual sample sizes
of valid data, is zero. Of course, this kind of restriction has no effect on inferential conclusions.

Therefore, the survival analysis may be solved by NPC �′′ = �
′′X|O
ψ = ψX

(̂
λ

X|O
1 , . . . ,

λ̂
X|O
D

)
, where

λ̂i =
1
2 +

∑B
b=1 II

{
�∗bi ≥ �O

i

}
B + 1

is the p-value function estimate for each �∗i , �O
i is the observed value, and ψXψ ∈ C.

Note that according to Rubin (1976), we may ignore the variable � because in this context we
have assumed that � does not provide any information about symbolic treatment effects (since we
are dealing with treatment independent censoring). Thus, we can ignore the process that causes
censoring data and analysis can be carried out conditionally on the actually observed data.

9.4.4 NPC Test for Treatment-Dependent Censoring

In this section we consider a multidimensional permutation test in the case of treatment-dependent
censoring (TDC-NPC). This test, initially due to Bonnini et al. (2005), is a conditional test based
on the probability of failure and on the distribution of observed time to failure. Note that in the
case of treatment-dependent censoring, it is assumed that in the alternative hypothesis the symbolic
treatment may also influence the underlying censoring process. In fact, the treatment may affect
both the distributions of variable X and censoring indicator �.

In the present setting, we are interested in testing the global null hypothesis,

HG
0 :

{[
S1(ti ) = S2(ti ), ∀ti , i = 1, . . . , D

]⋂[
�1

d= �2

]}
=
{[

X1
d= X2

]⋂[
�1

d= �2

]}
,

against the overall alternative,

HG
1 :

{[
S1(ti ) ≤	=≥ S2(ti), ∀ti , ∃ti : S1(ti) < 	= >S2(ti)

]⋂[
�1

d

	= �2

]}
=
{[

X1

d

≤	=≥ X2

]⋂[
�1

d

	= �2

]}
.
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In the case of treatment-dependent censoring, HG
0 must take account of homogeneity in dis-

tribution with respect to the two samples of the actually observed and collected data X jointly
with that associated with the censored data process O, because in this setting it is assumed that,
in the alternative, treatment may also influence the censoring process. In fact, the treatment may
affect both the distributions of variables X and the censoring indicator O. Hence, in the case of
the treatment-dependent censoring data model, the null hypothesis requires the joint distributional
equality of the censored data processes in the two groups, giving rise to O, and of response data
X conditional on O, i.e.

HG
0 :

{[
O1

d= O2

]⋂[(
X1

d= X2

)
|O
]}

.

The assumed exchangeability, in the null hypothesis, of the n individual data vectors in (X,O),
with respect to the two groups, implies that the treatment effects are null on all observed and
unobserved variables. In other words, we assume that there is no difference in distribution for
the multivariate censoring indicator variables Oj , j = 1, 2, and, conditionally on O, for actually
observed data X. As a consequence, it is not necessary to specify both the censored data process
and the data distribution, provided that marginally unbiased permutation tests are available. In
particular, it is not necessary to specify the dependence relation structure in (X,O) because it is
nonparametrically processed.

In this framework, the global null and alternative hypotheses may be broken down into the 2×D

sub-hypotheses

HG
0 :

{[
D⋂
i=1

(
Oi1

d= Oi2

)]⋂[
D⋂
i=1

(
Xi1

d= Xi2

)
|O
]}

=
{
HO

0

⋂
H

X|O
0

}
=
{(

D⋂
i=1

HO
0i

)⋂(
D⋂
i=1

H
X|O
0i

)}
against

HG
1 :

{(
D⋃
i=1

HO
1i

)⋃(
D⋃
i=1

H
X|O
1i

)}
,

where HO
0i refers to the equality in distribution among the two levels of the ith marginal component

of the censoring indicator (censoring) process, and H
X|O
0i refers to the equality in distribution of

the ith component of X, conditional on O.
For treatment-dependent censoring models we must also combine the D test statistics on the

components of the censoring indicator O, provided that all partial tests are marginally unbiased.
More specifically, to test HG

0 : {[⋂i H
O
0l ]
⋂

[
⋂

i H
X|O
0l ]} against HG

1 : {[⋃i H
O
1l ]
⋃

[
⋃

i H
X|O
1l ]} we

must now combine D tests �∗O
i and D tests �

∗X|O
i , i = 1, . . . , D. Hence,

�′′ = ψ(̂λO
1 , . . . , λ̂

O
D; λ̂X|O

1 , . . . , λ̂
X|O
D ).

Remark 1. Notice that the NPC of 2×D partial tests may be done in at least three different ways:

(a) by taking one single combining function on all 2×D partial tests such as �′′a = ψ

(λO
1 , . . . , λ

O
D;λX|O

1 , . . . , λ
X|O
D );

(b) by taking D second-order combinations, one for each component variable, �′′bi = ψi(λ
O
i ; λX|O

i ),
i = 1, . . . , D, followed by a third-order combination T ′′′b = ψ(λ′′b1, . . . , λ

′′
bD) – this is the

procedure presented above.
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(c) by taking two second-order combinations, �′′cO = ψO(λ
O
1 , . . . , λ

O
D) and �′′cX|O = ψX

(λ
X|O
1 , . . . , λ

X|O
D ) respectively on the censoring indicator O and on the actually observed

(X|O), followed by a third-order combination �′′′c = ψ(λ′′cO; λ′′cX|O).

If in all phases and with each of the three methods of combination the same combining function
ψ is used, then �′′a , �′′′b and �′′′c are almost permutationally equivalent, except for approximations
due to finite simulations and nonlinearity of combining functions.

In addition, due to assumptions on partial tests, the second-level partial test �′′cX|O is (approx-

imately) marginally unbiased for H
X|O
0 :

{[(
X1

d= . . .
d= XC

)
|O
]}

and so allows for a form of
separate testing on actually observed data, conditional on O, even under treatment-dependent censor-
ing. This is useful in many circumstances, especially when interest centres on actually observed data.

For each of the D sub-hypotheses HO
0i against HO

1i , a permutation statistic such as Fisher’s exact
probability test or any other suitable test statistic for proper testing of binary data is generally
appropriate (see Section 2.8 and Chapter 6). Hence, the partial permutation test statistics for testing
the sub-hypothesis HO

0i against the sub-alternative HO
1i take the form

�O∗
i =

n2∑
m=1

O∗
m2i .

This partial test is permutationally equivalent to Fisher’s exact probability test. For each of the
D sub-hypotheses H

X|O
0i , O is fixed at its observed value, so that we may proceed conditionally.

Proper partial tests are also discussed in Chapter 7.

Remark 2. Partial tests �O∗
i on the components of O are exact, unbiased and consistent, whereas

�
X|O∗
i on the components of X are consistent but approximately exact and unbiased. Thus the

combined test T ′′ is consistent and approximately exact and unbiased for all ψ ∈ C (see also
Sections 7.9 and 7.10).

A comprehensive simulation study on these tests can be found in Campigotto (2009).

9.5 An Application to a Biomedical Study
Tricuspid valve replacement (TVR) has historically been associated with high mortality and mor-
bidity, and current knowledge of long-term results of TVR is limited. We report the results of an
experiment (Garatti et al., 2009) in a high-risk patient population with an emphasis on postopera-
tive or in-hospital mortality and long-term survival following a well-known risk factor known as
the New York Heart Association (NYHA) functional classification before surgery. This provides a
simple way of classifying the extent of heart failure. It is a severity index which places patients into
one of four categories based on how limited they are during physical activities, with limitations
or symptoms related to normal breathing and varying degrees of shortness of breath and/or angina
pain. In this study 16 patients were in the class II functional capacity group (28%), 30 were in
class III (54%) and 10 were in class IV (18%). We compared the group of individuals in NYHA
class III or IV (group of interest) and the group of patients in class II (control group).

The aim of a study carried out at the San Donato Hospital in Milan (Italy) was survival analysis
related to overall mortality (either perioperative mortality or long-term follow-up (FU) mortality
after discharge). Perioperative mortality was classed as post-operative and in-hospital mortality
(all deaths occurring at the hospital) and 30-day mortality (all deaths occurring within 30 days
of surgery).
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This was a retrospective study where 56 patients underwent TVR at the San Donato Hospital
over a 15-year period from June 1990 to December 2005. During the study period, 21 (37.5%)
deaths occurred, 8 (38%) at the hospital and 13 (62%) during the follow-up. Figure 9.1 shows the
survival curves for the two samples.

The data set is relatively small (containing 56 subjects with approximately balanced sample
sizes) with moderate to heavy treatment-dependent censoring. In this application the hazard rates
seem to be proportional.

In order to find possible significant risk factors affecting survival analysis, we performed both
the traditional asymptotic log-rank test and the four proposed permutation tests (see Table 9.2). A
p-value < 0.05 was considered statistically significant. As regards the four permutation solutions,
we used B = 10 000 conditional Monte Carlo iterations (CMC).

We refer the reader to the NHYA folder on the book’s website for MATLAB code that can be
used to carry out the analysis.

Table 9.2 Results of survival analysis for NYHA. Department of Cardiovascular Disease,
Policlinico S. Donato, Milan, June 1990 to December 2005

Permutation tests Asymptotic tests
Alternatives TIC-NPC WKN

Two-sided 0.020 0.027

Kaplan-Meier estimates of survival function by NYHA
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Figure 9.1 Kaplan–Meier survival estimates by NYHA. Department of Cardiovascular Disease,
Policlinico S.Donato, Milan, June 1990 to December 2005





10
NPC Tests in Shape Analysis

10.1 Introduction
Statistical shape analysis is a cross-disciplinary field characterized by flexible theory and techniques,
potentially adaptable to any appropriate configuration matrix. Specific applications of shape analy-
sis may be found in archaeology, architecture, biology, geography, geology, agriculture, genetics,
medical imaging, security applications such as face recognition, the entertainment industry (movies,
games), computer-aided design and manufacturing, and so on. David Kendall and Fred Bookstein
are without doubt the pioneers in this field. The statistical community has shown increasing interest
in shape analysis in the last decade, and particular efforts have been made to develop powerful sta-
tistical methods based on models for shape variation of entire configurations of points corresponding
to the locations of morphological landmarks.

Inferential methods known in the shape analysis literature make use of configurations of
landmarks optimally superimposed using a least-squares procedure, or analyse matrices of
inter-landmark distances, for example by means of Euclidean distance matrix analysis (EDMA).
In the two-sample case, a practical method for comparing the mean shapes in the two groups is
to use Procrustes tangent space coordinates and, if data are concentrated (i.e. close in shape or
showing only small variations in shape), calculate the Mahalanobis distance and then Hotelling’s
T 2 test statistic. Under the assumption of isotropy, another simple approach is to work with
statistics based on the squared Procrustes distance and then calculate Goodall’s F test statistic
(Goodall, 1991).

These tests are based on quite stringent assumptions, such as the equality of covariance matrices,
the independence of variation within and among landmarks and the multinormality of the model
describing landmarks.

As pointed out in Good (2000), the assumption of equal covariance matrices may be unreasonable
in certain applications, the multinormal model in the tangent space may be doubted, and some-
times there may be fewer individuals than landmarks, implying over-dimensioned spaces (curse of
dimensionality) and loss of power for Hotelling’s T 2 test (Blair et al., 1994). Hence, an alternative
is to consider a permutation approach. Further limitations of traditional inferential procedures have
been highlighted in Terriberry et al. (2005). Actually, useful shape models contain parameters lying
in non-Euclidean spaces (in this context the term ‘parameters’ is used in place of ‘variables’).
More specifically, in morphometrics, four kinds of parameters should be taken into account: nui-
sance parameters (e.g. translation and rotation); geometric parameters, such as shape coordinates;
statistical parameters, such as mean differences or correlations; and finally, another set of geomet-
ric parameters, such as partial warp scores or Procrustes residuals (Slice et al., 1996). Some of
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these parameters may have a large variance, may be highly correlated, or have completely different
scales, thus invalidating analyses and final results. Hence traditional statistical tools designed for
Euclidean spaces must be used with particular care if they are applicable. In contrast, permuta-
tion tests are appealing because they make no distributional assumptions, requiring only that the
data in each group are exchangeable under the null hypothesis. Terriberry et al. (2005) presented
an application of NPC methodology in shape analysis, but the properties of the method itself are
not investigated further. On the strength of these considerations, we suggest an extension of the
NPC methodology to shape analysis. Under very mild and reasonable conditions, the NPC method
is found to be consistent, unbiased and extendable to unconditional inferences. We remark that
in the parametric approach, this extension is possible when the data set is randomly selected by
well-designed sampling procedures on well-defined population distributions. When similarity and
conditional unbiasedness properties are jointly satisfied, and if correctly applicable, permutation
tests allow for inferential extensions at least in a weak sense (Pesarin, 2002; Ludbrook and Dudley,
1998; see also Section 3.5 above).

We emphasize that permutation tests require homogeneous covariance matrices in order to guar-
antee exchangeability only in H0, thus relaxing more stringent assumptions required by parametric
tests since they do not require homoscedasticity in the alternative.

We begin with a review of inferential methods from the shape analysis literature, highlighting
some drawbacks to the use of Hotelling’s T 2 test. Then, focusing on the two-sample case, through
an exhaustive comparative simulation study, we evaluate the behaviour of traditional tests along
with nonparametric permutation tests using multi-aspect (MA) procedures (see Example 3, 4.6) and
domain combinations. In this nonparametric framework we also analyse the case of heterogeneous
and dependent variation at each landmark. Furthermore, we examine the effect of superimposition
on the power of NPC tests. Due to their nonparametric nature, we may assert that the suggested
tests provide efficient solutions which allow us to deal with data sets including many informative
landmarks and few specimens.

10.2 A Brief Overview of Statistical Shape Analysis
Statistical shape analysis relates to the study of random objects, the concept of shape corresponding
to some geometrical information that is invariant under translation, rotation and scale effects. An
intuitive definition of shape is given by Kendall (1977).

Definition 1. Shape is all the geometrical information that remains when location, scale and rota-
tional effects are filtered out from an object .

Hence two objects have the same shape if they are invariant under the Euclidean similarity
transformations of translation, scaling and rotation (Dryden and Mardia, 1998).

Definition 2. Size and shape represent all the geometrical information that remains when location
and rotational effects are filtered out from an object .

Thus, in order to have the same size and shape, two objects are required to be rigid body
transformations of each other (Dryden and Mardia, 1998).

10.2.1 How to Describe Shapes

‘Landmark-based’ analysis, where shapes are represented by a discrete sampling of the object
contours (Dryden and Mardia, 1998; Small, 1996), has played a substantial role in shape analysis
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research. Bookstein and his colleagues recommended the use of landmarks for the analysis of
biological features and constrained the choice of landmarks to prominent features of the organism
or biological structure (Dryden and Mardia, 1998). Hence, these points are biologically active sites
on organisms and are defined in Dryden and Mardia (1998) as follows.

Definition 3. A landmark is a point (locus) of correspondence on each object that matches between
and within populations .

These loci have the same name (they are homologous), as well as Cartesian coordinates, and
correspond in some sensible way over the forms of a data set. We recall that in geometric mor-
phometrics the term ‘homologous’ has no meaning other than that the same name is used for
corresponding parts in different species or developmental stages (Slice et al., 1996). Moreover,
these points represent a foundation for the explanations of the biological processes, and still today
many of the explanations of form accepted as epigenetically valid adduce deformations of the
locations of landmarks (Bookstein, 1986). Srivastava et al. (2005) emphasized some limitations
to the landmark-based representations. Despite the effectiveness of this approach in applications
where landmarks are readily available (e.g. physician-assisted medical image analysis), automatic
detection of landmarks is not straightforward and the resulting shape analysis is greatly determined
by the choice of landmarks. In addition, shape interpolation with geodesics in this framework lacks
a physical interpretation.

Landmarks can basically be classified into three groups: anatomical, mathematical, and
pseudo-landmarks.

• An anatomical landmark is a point assigned by an expert that corresponds between organisms
in some biologically meaningful way (e.g. the corner of an eye or the meeting of two sutures on
a skull).

• Mathematical landmarks are points located on an object in accordance with some mathematical
or geometrical property of the figure (e.g. at a point of high curvature or at an extreme point).
Mathematical landmarks are particularly useful in automatic recognition and analysis.

• Pseudo-landmarks are constructed points on an organism, located either around the outline or
in between anatomical or mathematical landmarks. Continuous curves can be approximated by
a large number of pseudo-landmarks along the curve. Also, pseudo-landmarks are useful in
matching surfaces when points can be located on a regular grid over each surface.

They can be grouped into three further types (Dryden and Mardia, 1998).

• Type I landmarks (usually the easiest and the most reliable to locate) are mathematical points
whose homology is reinforced by the strongest evidence, such as a local pattern of juxtaposition
of tissue types or a small patch of some unusual histology.

• Type II landmarks are defined by local properties such as maximal curvatures (i.e. they are math-
ematical points whose homology is strengthened only by geometric, not histological, evidence),
for instance the sharpest curvature of a tooth.

• Type III landmarks are the most difficult and the least reliable to locate. They occur at extremal
points or constructed landmarks (e.g. maximal diameters and centroids) and have at least one
deficient coordinate, such as either end of a longest diameter, or the bottom of a concavity. They
characterize more than one region of the form and could be treated by geometric morphometrics
as landmark points, even if they can be tricky because of the deficiency they embody.

Anatomical landmarks are usually of type I or II and mathematical landmarks are usually of
type II or III. Pseudo-landmarks are commonly taken as equi-spaced along outlines between pairs
of landmarks of type I or II, and in this case the pseudo-landmarks are of type III.
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Along with landmarks, it is possible to collect semi-landmark points. These are located on a
curve and allowed to slip a small distance with respect to another corresponding curve. The term
‘semi’ is used because the landmarks lie in a lower number of dimensions than other types of
landmarks, for example along a one-dimensional curve in a two-dimensional image (Dryden and
Mardia, 1998). Semi-landmarks are defined in relation to other landmarks (e.g. ‘midway between
landmarks 1 and 2’). Indeed, they have no anatomical identifiers but remain corresponding points
in a sense satisfactory for subsequent morphometric interpretation (Bookstein, 1997). Hence, these
loci fail to be true landmarks since they do not enjoy the homology property in its traditional sense
(i.e. they lie on homologous curves while their exact position along these usually smooth regions
or curves is unclear). Defining semi-landmarks may be useful in studying substantial regions in an
object that cannot be defined by simply using anatomical or mathematical landmarks, or a region
which consists of two or more real landmark points (Adams et al., 2004).

On the basis of these considerations, Katina et al. (2007) give another landmark classification,
including the information carried by semi-landmarks on curves and surfaces. In particular, it is
possible to define the following landmark types:

• Type 1 : discrete juxtaposition of tissues.
• Type 2 : extreme of curvature characterizing a single structure.
• Type 3 : landmark points characterized locally by information from multiple curves and surfaces

and by symmetry:
– Type 3a: intersection of a ridge curve and the midcurve on the same surface;
– Type 3b: intersection of an observed curve and the midcurve;
– Type 3c: intersection of a ridge curve and an observed curve on the same surface.

• Type 4 : semi-landmarks on ridge curves and symmetric curves (midsagittal curve).
• Type 5 : semi-landmarks on surfaces.
• Type 6 : constructed semi-landmarks.

10.2.2 Multivariate Morphometrics

Morphometrics is the study of shape variation and its covariation with other variables and represents
an integral part of the biology of organisms (Adams, 1999). Its goal is the objective description
of the changes in the form of an organism – its shape and size – during ontogeny or during the
course of evolution (Bookstein, 1986). Databases of landmark locations are usually processed
using techniques such as multivariate morphometrics and deformation analysis. In fact we can
evaluate configurations of landmark points by means of variables expressing aspects of the size
or shape of single specimens, such as distances or ratios of distances, or can directly measure the
relation between one form and another as a deformation (Dryden and Mardia, 1998). Both strategies
are useful tools for examining group differences in size and shape or between size change and
shape change (Bookstein, 1986). With reference to multivariate morphometrics, this approach is
often applied without regard to homology, that is, it does not require size or shape measures to
derive from the locations of homologous landmarks. As a consequence, the homology of linear
distances is difficult to assess because many distances (e.g. maximum width) are not defined by
homologous points. The large amount of measurements obtained through this method are analysed
using standard multivariate statistical methods (canonical variates analysis, principal components
analysis, factor analysis, linear modelling, discriminatory analysis, component extraction) and any
findings are separately interpreted coefficient by coefficient. However, the geometric origin of
the variables measured is generally not exploited further. Moreover, visualizing results through
graphical representations of shape is very demanding because the geometric relationships among
the variables (linear distances) are not preserved, thus losing some aspects of shape.
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On the other hand, deformation analysis has been introduced into descriptive biology by Thomp-
son (1961) under the label of ‘Cartesian transformation’. We recall the notion of deformation as
given in Dryden and Mardia (1998).

Definition 4. A deformation is a mapping which takes neighbouring points to neighbouring points
and which alters lengths of little segments by factors which never get too large or too small. It is an
informal version of what mathematicians call a diffeomorphism, a one-to-one transformation which,
along with its inverse, has a derivative at every point of a region and its image.

Thompson (1961) suggested directly observing a comparison of biological forms as a geometric
object of measurement in its own right, rather than as the mere numerical difference of measures
taken separately upon forms. In particular he proposed to represent the form change as a deformation
of the picture plane corresponding closely to what biologists already knew as homology: the smooth
mapping of one form onto the other sending landmarks onto their homologues and interpolated
suitably in between (Bookstein, 1986).

But the field of morphometrics has lately experienced a revolution. During the 1980s various
authors, among them Fred Bookstein and James Rohlf, proposed to combine traditional multivariate
morphometrics and deformation analysis, calling this synthesis geometric morphometrics . The term
‘geometric’ relates to the geometry of Kendall’s shape space, that is, the estimation of mean
shapes and the description of sample variation of shape using the geometry of Procrustes distance.
Multivariate morphometrics is usually carried out in a linear tangent space to the non-Euclidean
shape space in the vicinity of the mean shape. It could be defined as a collection of approaches
for the multivariate statistical analysis of Cartesian coordinate data, often limited to landmark point
locations. More directly, it is described as the class of morphometric methods that capture the
geometry of the morphological structures of interest and preserve complete information about the
relative spatial arrangements of the data throughout the analyses. As a consequence, results of high-
dimensional multivariate analyses can be mapped back into physical space to achieve appealing
and informative visualizations, contrary to alternative traditional methods (Slice, 2005).

The direct analysis of databases of landmark locations is not convenient because of the presence
of nuisance parameters, such as position, orientation and size. In order to carry out a useful sta-
tistical shape analysis, a generalized least-squares (GLS) or generalized Procrustes analysis (GPA)
superimposition is performed to eliminate non-shape variation in configurations of landmarks and
to align the specimens to a common coordinate system (Rohlf and Slice, 1990). Along with GPA,
we mention another registration method, the two-point registration, that provides Bookstein’s shape
coordinates. The aligned specimens identify points in a non-Euclidean space, which is approximated
by a Euclidean tangent space for standard multivariate statistical analyses (Slice et al., 1996; Rohlf,
1999). With reference to the GPA superimposition method, first the centroid of each configuration
is translated to the origin, and configurations are scaled to a common unit size (by dividing by
centroid size; see Bookstein, 1986). Finally, the configurations are optimally rotated to minimize
the squared differences between corresponding landmarks (Gower, 1975; Rohlf and Slice, 1990).
This is an iterative process, useful for computing the mean shape.

Generalized resistant-fit (GRF) procedures, making use of median and repeated median-based
estimates of fitting parameters rather than least-squares estimates, are also available (Slice et al.,
1996). In particular, they are more efficient for revealing differences between two objects when
the major differences are mostly in the relative positions of a few landmarks (Rohlf and Slice,
1990). Even if they lack the well-developed distributional theory associated with the least-squares
fitting techniques, being robust, these methods seem to be protected against departure from the
assumptions of the analysis (e.g. independent, identically and normally distributed errors) and seem
to be unresponsive to the potentially strong influences of atypical or incorrect data values (Siegel
and Benson, 1982).
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In the presence of semi-landmarks, a method worthy of note is that of ‘sliding semi-landmarks’,
allowing outlines to be combined with landmark data in one analysis, providing a richer description
of the shapes. The iterative procedure involves first sliding the semi-landmarks to the left or right
along a curve during the GPA superimposition in an attempt to minimize the distance between
the adjusted position and the corresponding point in the consensus or to reduce the overall
bending energy required to fit the specimens to the sample average configuration. Computations
are iterative and the algorithm provides smooth and interpretable deformation grids among the
forms. For details, see Bookstein (1997), Adams et al. (2004), Slice et al. (1996) and the TpsRelw
software guide by Rohlf (2008a).

After superimposition, differences in shape can be described either in terms of differences in
coordinates of corresponding landmarks between objects (Bookstein, 1996) or in terms of differ-
ences in the deformation grids representing the objects, for example using the thin-plate spline
method (Bookstein, 1991). The thin-plate spline is a global interpolating function that maps the
landmark coordinates of one specimen to the coordinates of the landmarks in another specimen; it
is a mathematically rigorous realization of Thompson’s (1961) idea of transformation grids, where
one object is deformed or ‘warped’ into another. The parameters describing these deformations
(partial warp scores) can be used as shape variables for statistical comparisons of variation in shape
within and between populations (Adams, 1999; Rohlf, 1993). As a result, thin-plate splines can be
interpreted as one method for generating a coordinate system for the above-mentioned tangent space.

Along with the superimposition methods, several alternative procedures for obtaining shape
information from landmark data have been proposed (Adams et al., 2004). Here we mention EDMA
methods proposed by Lele and Richtsmeier (1991), a related approach using standard multivariate
methods on logs of size-scaled inter-landmark distances (Rao and Suryawanshi, 1996) and methods
based on interior angles (Rao and Suryawanshi, 1998).

10.3 Inference with Shape Data
Rohlf (2000) reviews the main tests used in the field of shape analysis and compares the statistical
power of the various tests that have been proposed to test for equality of shape in two populations.
Although his work is limited to the simplest case of homogeneous, independent, spherical variation
at each landmark and the sampling experiments emphasize the case of triangular shapes, it allows
practitioners to choose the method with the highest statistical power under a set of assumptions
appropriate for the data. By means of a simulation study, he found that Goodall’s F test had the
highest power followed by the T 2 test using Kendall tangent space coordinates. Power for T 2 tests
using Bookstein shape coordinates was good if the baseline was not the shortest side of the triangle.
The Rao and Suryawanshi shape variables had much lower power when triangles were not close
to being equilateral. Power surfaces for the EDMA-I T statistic revealed very low power for many
shape comparisons, including those between very different shapes. Power surfaces for the EDMA-II
Z statistic depended strongly on the choice of baseline used for size scaling (Rohlf, 2000).

All these tests are based on quite stringent assumptions. In particular, the tests based on the
T 2 statistic – for example, T 2 tests using Bookstein, Kendall tangent space coordinates, and Rao
and Suryawanshi (1996, 1998) shape variables – require independent samples and homogeneous
covariance matrices in both H0 and H1, and shape coordinates distributed according to the mul-
tivariate normal distribution. We remark that Hotelling’s T 2 is derived under the assumption of
population multivariate normality and it is not recommended unless the number of subjects is much
larger than that of landmarks (Dryden and Mardia, 1998). It is well known that Hotelling’s T 2 test
is formulated to detect any departures from the null hypothesis and therefore often lacks power to
detect specific forms of departures that may arise in practice – that is, the T 2 test fails to provide
an easily implemented one-sided (directional) hypothesis test (Blair et al., 1994).
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Goodall’s F test requires a restrictive isotropic model in which configurations are isotropic
normal perturbations from mean configurations, and it assumes that the distributions of the squared
Procrustes distances are approximately chi-squared distributed.

Turning to methods based on inter-landmark distances, EDMA-I T assumes independent samples
and the equality of the covariance matrices in the two populations being compared (Lele and Cole,
1996), while EDMA-II Z assumes only independent samples and normally distributed variation at
each landmark.

In order to complete this review on main tests used in shape analysis, we recall the piv-
otal bootstrap methods for k-sample problems, in which each sample consists of a set of real
(the directional case) or complex (the two-dimensional shape case) unit vectors, proposed in
the paper by Amaral et al. (2007). The basic assumption here is that the distribution of the
sample mean shape (or direction or axis) is highly concentrated. This is a substantially weaker
assumption than is entailed in tangent space inference (Dryden and Mardia, 1998) where obser-
vations are presumed to be highly concentrated. For mathematical, statistical and computational
details we refer to Amaral et al. (2007). We have already drawn attention to Good’s (2000)
observation that the assumption of equal covariance matrices may be unreasonable, especially
under the alternative, the multinormal model in the tangent space may be doubted and some-
times there are few individuals and many more landmarks, implying over-dimensioned spaces and
loss of power for Hotelling’s T 2 test. Hence, when sample sizes are too small, or the number
of landmarks is too large, it is essentially inefficient to assume that observations are normally
distributed. An alternative procedure is to consider a permutation version of the test (see Good,
2000; Dryden and Mardia, 1993; Bookstein, 1997; Terriberry et al., 2005). Permutation methods
are distribution-free and allow for quite efficient solutions which may be tailored for sensitivity to
specific treatment alternatives providing one-sided as well as two-sided tests of hypotheses (Blair
et al., 1994).

In the wake of these considerations, we propose an extension of the NPC methodology in Chapter
4 to shape data. Generally, permutation tests require homogeneous covariance matrices under H0

in order to guarantee exchangeability, thus relaxing the stringent assumptions of parametric tests.
This is consistent with the notion that the true H0 implies the equality in multivariate distribution
of observed variables.

10.4 NPC Approach to Shape Analysis

10.4.1 Notation

Let X1 be the n1 × (k ×m) matrix of aligned data (e.g. specimens or individuals) in the tangent
space in the first group. By ‘aligned’ we mean that we are considering the shape coordinates
obtained through GPA. We recall that the direct analysis of databases of landmark locations is not
convenient because of the presence of nuisance parameters, such as position, orientation and size.
Usually, in order to carry out a valuable statistical shape analysis, a GLS or GPA superimposition
is performed to eliminate non-shape variation in configurations of landmarks and to align the
specimens to a common coordinate system (Rohlf and Slice, 1990). Hence the GPA procedure is
performed to estimate a mean shape and to align the specimens to it.

Similarly, X2 is the n2 × (k ×m) matrix of aligned specimens in the tangent space, that is, the

second group of subjects. Let X =
(

X1

X2

)
be the n× (k ×m) matrix of aligned specimens in the

tangent space, that is, our data set may be written as X = X1
⊎

X2, where n = n1 + n2. Hence, X
is a matrix of data with specimens in rows and landmark coordinates in columns. The unit-by-unit
representation of X is then

{
Xhji, i = 1, . . . , n, j = 1, 2, h = 1, . . . , km; n1, n2

}
.
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For simplicity, we may assume that the landmark coordinates in the tangent space behave accord-
ing to the model Xhji = µh + δhj + σhZhji, i = 1, . . . , n, j = 1, 2, h = 1, . . . , km, where:

• k is the number of landmarks in m dimensions;
• µh is a population constant for the hth variable;
• δhj represents treatment effect (i.e. the non-centrality parameter) in the j th group on the hth

variable which, without loss of generality, is assumed to be δh1 = 0, δh2 ≥ ( or ≤) 0;
• σh is the scale coefficient specific to the hth variable;
• Zhji are random errors assumed to be exchangeable with respect to treatment levels, independent

with respect to units, with null mean vector (E(Z) = 0) and finite second moment.

With reference to the scale coefficients σh, we observe that these parameters may be very
useful since they reflect the ‘intrinsic’ biases in the registration of landmarks. There are in fact
landmark points readily available, hence easier to capture than others by the operator or machine.
As a consequence, they are less variable in their location. Hence, landmark coordinates in the first
group differ from those in the second group by a ‘quantity’ δ, where δ is the km-dimensional
vector of effects.

{
X∗hji , i = 1, . . . , n, j = 1, 2, h = 1, . . . , km; n1, n2

}
denotes a permutation of

the original data.
Therefore, the specific hypotheses may be expressed as

H0 :

{
km⋂
h=1

[
Xh1

d= Xh2

]}
against H1 :

{
km⋃
h=1

[
Xh1

d

>(<)Xh2

]}
,

where
d
> stands for distribution (or stochastic) dominance.

Let T ∗h = Sg(δh)
∑

i≤n1
X∗h1i , h = 1, . . . , km, be the km partial tests where Sg = +1 if δh > 0 and

−1 otherwise. All these tests are exact, marginally unbiased and consistent, and significant for large
values, so that the NPC theory properly applies. The hypothesis testing problem is broken down
into two stages, considering both the coordinate and the landmark level (and, if present, the domain
level). We actually refer to domains as subgroups of landmarks sharing anatomical, biological or
locational features. However, we remark that a domain may be seen as a latent variable.

Hence, we formulate partial test statistics for one-sided hypotheses and then consider the global
test T ′′ obtained after combining at the first stage with respect to m, then with respect to k (of
course, this sequence may be reversed). We may also apply the MA procedure to each coordinate of
a single landmark and then consider their combination. For example, if we consider four landmarks,
first of all we can consider a test for each coordinate (x and y coordinates in the 2D case) of each
landmark. Once the aspects of interest have been decided (e.g. the first two moments), we can focus
on the coordinate level, or on the landmark level after combining coordinates, or on the domain
level as well, and finally on the global test (see Figure 10.1).

One of the main features and advantages of the proposed approach is that by using the MA
procedure and the information about domains, we are able to obtain not only a global p-value,
as in traditional tests, but also a p-value for each of the defined aspects or domains. Hence, our
procedure makes it possible to construct a hierarchical tree, allowing for testing at different levels
of the tree (see Figure 10.1). On the one hand, partial tests may provide marginal information for
each specific aspect; on the other, they jointly provide information on the global hypothesis. In this
way, if we find a significant departure from H0, we can investigate the nature of this departure
in detail. Furthermore, we can move from the top of the tree to the bottom and, for interpreting
results in a hierarchical way, from the bottom to the top. It is worth noting that “intermediate” level
p-values need to be adjusted for multiplicity.
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Figure 10.1 Different levels of combination

10.4.2 Comparative Simulation Study

Let us assume that our samples consist of configurations of k = 8 landmarks in m = 2 dimensions
characterized by slightly different means. Suppose that we are dealing with male and female skull
configurations of a particular animal created ad hoc, representing the two independent samples
(see Table 10.1). Since sample means differ slightly from each other in 6 out of 16 coordinates
(highlighted in bold in Table 10.1), we have generated data using such a configuration in order to
evaluate the power of the competing tests.

In all simulations we have B = 1000 CMC iterations and MC = 1000 Monte Carlo runs.
Throughout the simulation study, we have selected both Liptak and Fisher combining functions.

Table 10.1 Hypothetical mean configurations

Domain No. Lnd. name Male Female

x y x y

1 1 nasion 65.00 223.00 65.00 222.85

1 2 basion 54.00 −40.00 53.75 −40.00

2 3 staphylion 0.00 0.00 0.00 0.00

2 4 prosthion 0.00 35.00 0.00 34.50

2 5 nariale 19.00 121.00 18.90 121.00

3 6 bregma 70.00 203.00 70.00 203.00

3 7 lambda 110.00 112.00 109.95 112.00

3 8 opisthion 104.00 17.00 104.00 16.88
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Focusing on the two-sample case, we have carried out the simulation study under the same
conditions of homogeneous, independent, spherical variation at each landmark, as described in
Rohlf (2000). In the complete simulation study (Brombin, 2009) we have compared, in terms of
statistical power, traditional approaches for the statistical analysis of shape, such as

• Hotelling’s T 2 test using approximate tangent space coordinates and Bookstein shape coordinates,
• Goodall’s F test,
• EDMA-I (Lele and Richtsmeier, 1991) and EDMA-II tests (Lele and Cole, 1995; 1996),
• T 2 test using Rao and Suryawanshi (1996, 1998) shape variables only for large sample sizes,

e.g. n1 = n2 = 50.

As regards permutation tests, we have in particular considered (i) permutation Hotelling’s T 2, (ii)
permutation global tests with and without domains using Liptak and Fisher combining functions,
(iii) permutation MA tests with and without domains, considering location and scale aspects and
using Liptak and Fisher combining functions.

Let nj , j = 1, 2, be the sample sizes of the two samples and let the landmark coordinates be
multivariate normally distributed. Three domains have been considered, i.e. baseline (nasion and
basion), face (staphylion, prosthion and nariale), and braincase (bregma, lambda and opisthion). We
use G to denote the global test obtained after combining all partial tests, and G_d to denote the
global test that takes into account the information about domains (hence obtained after combining
partial tests on chosen domains). MA, if present, indicates that the MA procedure has been applied.
T 2,perm indicates the nonparametric permutation counterpart of Hotelling’s T 2.

We wish to point out that in this simulation study we only show global p-values. Hence, in
this case, we do not need to cope with the multiplicity problem. For the sake of space, we report
only the results of NPC tests with small sample sizes (n1 = n2 = 10, σ 2 = 0.25). In Table 10.2, the
better-performing tests are highlighted in bold. In particular, we show that the global nonparametric
test using Fisher’s combining function, in its standard, domain and MA versions, has better power
in almost all situations.

Our simulation study emphasizes the good behaviour in terms of power and the flexibility of
the nonparametric permutation solution in shape analysis, since it allows us to carry out a shape
analysis even in the presence of small sample sizes and a large number of shape variables. We
wish to highlight that, under the null hypothesis, the proportion of test rejections is very close to
the given significance level (see Table 10.2).

10.5 NPC Analysis with Correlated Landmarks
In this framework we analyse the case of heterogeneous and dependent variation at each landmark,
and evaluate the power and attained α-level. The superimposition step has been included in the
routine since GPA superimposition may modify dependency structures among landmarks (Rohlf,
2008b). In order to obtain a non-singular covariance matrix, we have performed an eigenvalue
decomposition of the original variance–covariance matrix and transformed the original eigenval-
ues λ. We have considered transformations such as λ1/3 and λ1/10, rescaled by their trace (see
the effect of transforming eigenvalues on the scatterplot in Figure 10.2). Then we have recalcu-
lated the covariance matrix �†, using the relation �† = V�†V�, where �† is a diagonal matrix
with the transformed eigenvalues, V is an orthogonal matrix containing the corresponding eigen-
vectors, and V� is V transposed. Under the alternative, data have been generated using different
means and the same covariance matrix �†. In Table 10.3 we display hypothetical mean con-
figurations, representing 3D male and female Macaca fascicularis monkey skulls (for details,
see Frost et al., 2003).
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Table 10.2 Attained α-level and power behaviour: n1 = n2 = 10, B = CMC = 1000, σ 2 = 0.25

Attained α-level

α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.30 α = 0.50

T 2,perm 0.011 0.056 0.112 0.211 0.300 0.506

G (Liptak) 0.017 0.054 0.107 0.215 0.307 0.512

G_d (Liptak) 0.014 0.055 0.115 0.213 0.304 0.512

G (Fisher) 0.014 0.058 0.120 0.208 0.307 0.506

G_d (Fisher) 0.013 0.057 0.121 0.205 0.313 0.490

G (Liptak, MA) 0.016 0.051 0.109 0.217 0.311 0.516

G_d (Liptak, MA) 0.013 0.046 0.116 0.218 0.310 0.514

G (Fisher, MA) 0.010 0.058 0.118 0.214 0.311 0.504

G_d (Fisher, MA) 0.012 0.061 0.115 0.210 0.317 0.484

Power

α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.30 α = 0.50

T 2 ,perm 0.087 0.229 0.320 0.496 0.611 0.775

G (Liptak) 0.054 0.172 0.279 0.434 0.549 0.741

G_d (Liptak) 0.048 0.165 0.265 0.419 0.526 0.724

G (Fisher) 0.079 0.214 0.326 0.480 0.615 0.769

G_d (Fisher) 0.067 0.203 0.302 0.452 0.581 0.753

G (Liptak, MA) 0.056 0.175 0.275 0.440 0.549 0.748

G_d (Liptak, MA) 0.052 0.170 0.265 0.419 0.527 0.723

G (Fisher, MA) 0.075 0.218 0.312 0.477 0.604 0.767

G_d (Fisher, MA) 0.071 0.203 0.290 0.447 0.568 0.755

Table 10.3 Configurations

Landmark Male Female

No. Lnd. name xM yM zM xF yF zF

1 Inion 17.7752 18.9981 6.9585 17.5252 18.9981 6.9585

2 Bregma 15.9101 16.3499 9.2159 15.9101 16.4499 9.2159

3 Glabella 13.6833 12.7086 7.6433 13.6833 12.7086 7.6433

4 Nasion 13.6799 12.6892 7.5628 13.8299 12.6892 7.5628

5 Rhinion 12.9273 11.2649 5.1792 12.9273 11.2149 5.1792

6 Nasospinale 12.6114 10.5523 3.6257 12.6114 10.5523 3.6257

7 Prosthion 12.4725 10.233 2.8531 12.4725 10.2330 2.8531

8 Opisthion 17.1882 17.8852 5.0014 17.1882 17.8852 5.1514

9 Basion 16.5070 16.7665 4.4799 16.5070 16.7165 4.4799

10 Staphylion 14.6975 13.8755 4.1783 14.6075 13.8755 4.1783

11 Incisivion 13.2442 11.4665 3.5466 13.2442 11.4665 3.5166
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Figure 10.2 Original eigenvalues (a) λ, (b) λ1/3, and (c) λ1/10

Let nj , j = 1, 2, denote the sample size in the two groups. In particular, we have considered the
settings n1 = n2 = 5, n1 = n2 = 10, n1 = 5, n2 = 10. In the simulation study we have evaluated
the power and attained α-level when the number of 3D landmarks k was, in turn, equal to 3, 6,
9, 11. Three domains have been considered: the first includes landmarks 1, 2 and 11; the second
includes landmarks 3–7; the third includes landmarks 8–10.

We use T 2,perm to denote Hotelling’s T 2 permutation counterpart, with G the combination of all
partial tests, and G_d the combination using domains. For the sake of space, we present simulation
results only for the case in which the number of 3D landmarks k is equal to 6, n1 = n2 = 10 and
transformed λ is λ1/3(see Table 10.4).

In all the simulations under H0, when using a global test with Fisher’s combining function, MA
procedure and domain information, the type I error rate was too large, thus invalidating inferential
conclusions. For example, in Table 10.4, focusing on α = 0.05, GMA,F has a corresponding attained
α = 0.112 and Gd,MA,F has a corresponding attained α = 0.122. Recall that at the beginning we
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Table 10.4 Attained α-level and power behaviour: n1 = n2 = 10, λ1/3, k = 6, m = 3,
B = CMC = 1000

Attained α-level

Test 0.01 0.05 0.10 0.20 0.30 0.50

T 2,perm 0.012 0.056 0.102 0.204 0.295 0.493

GT 0.000 0.052 0.088 0.195 0.290 0.489

Gd,T 0.004 0.038 0.103 0.195 0.288 0.475

GF 0.011 0.055 0.099 0.197 0.292 0.504

Gd,F 0.011 0.050 0.098 0.196 0.293 0.496

GMA,T 0.008 0.031 0.065 0.136 0.206 0.350

Gd,MA,T 0.008 0.027 0.073 0.143 0.216 0.345

GMA,F 0.041 0.112 0.164 0.266 0.340 0.508

Gd,MA,F 0.043 0.122 0.185 0.305 0.402 0.550

G(µ,Md),F 0.012 0.055 0.099 0.190 0.288 0.466

Gd,(µ,Md),F 0.011 0.054 0.098 0.191 0.300 0.479

G(µ,µ2),F 0.010 0.048 0.109 0.195 0.286 0.509

Gd,(µ,µ2),F 0.009 0.043 0.096 0.192 0.287 0.485

Power

Test 0.01 0.05 0.10 0.20 0.30 0.50

T 2,perm 0.337 0.621 0.757 0.888 0.930 0.981

GT 0.000 0.538 0.709 0.855 0.923 0.978

Gd,T 0.123 0.478 0.683 0.828 0.902 0.971

GF 0.299 0.564 0.709 0.858 0.916 0.973

Gd,F 0.286 0.547 0.679 0.819 0.898 0.962

GMA,T 0.234 0.456 0.636 0.754 0.851 0.945

Gd,MA,T 0.255 0.401 0.600 0.755 0.824 0.923

G(µ,Md),F 0.284 0.571 0.711 0.853 0.918 0.969

Gd,(µ,Md),F 0.164 0.431 0.596 0.797 0.880 0.952

G(µ,µ2),F 0.224 0.467 0.612 0.740 0.833 0.922

Gd,(µ,µ2),F 0.137 0.369 0.495 0.663 0.782 0.903

decided to evaluate location (mean) and distributional (Anderson–Darling statistic) aspects. Hence,
GPA superimposition may modify dependency structures, thus altering the final distribution. Fisher’s
combining function is more sensitive with MA procedures than Tippett’s combining function.
However, if we change the aspects (e.g. if we consider mean µ and median Md or mean and
second moment µ2), the proportion of rejection of the tests GMA,F and Gd,MA,F now achieves the
given significance α-level. These results highlight the fact that GPA affects the initial distribution
of the data, hence particular care is needed when an MA procedure is carried out.
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10.6 An Application to Mediterranean Monk Seal Skulls

10.6.1 The Case Study

The Mediterranean monk seal (Monachus monachus) is believed to be the world’s rarest pinniped
and one of the most endangered mammals in the world, with fewer than 600 individuals currently
surviving (Johnson et al., 2006).

The data we have at hand refer to 17 M. monachus skulls. Information about sex and age
category has been collected by Mo, in collaboration with the staff of the Department of Experimental
Veterinary Sciences of the University of Padua (Mo, 2005). In particular, 4 of the seals are male (1
young, 2 old and 1 with unknown age) and 5 are female (1 young, 4 old). For 8 of them we do not
have information about sex (and for 5 of them we do not have information about age). For technical
details on the methods for the biological determination of age category used by veterinarians, see
Mo (2005). However, to give an idea, age categories up to 4 include specimens aged between 0
and 4 months (from newborns to fat short pups), and age categories 5–9 include specimens older
than 5 months (from weaned youngsters to black adult males).

Left-lateral, frontal, posterior, dorsal and ventral views of the skull are available for each subject.
It is of interest to assess whether there is a shape difference between the sexes and the ages, which
parts determine these possible differences and how shape relates to size and other covariates. It
is worth noting that combining shape analysis with nonparametric permutation techniques may be
useful when dealing with small samples.

Initially we tried to find differences between male and female groups. Given the low sample size
and the fact that using information on sex we have only two young specimens out of nine whose
sex is known, it is very hard to detect a sexual dimorphism and if there is one, it is masked by age
effects. This confirms claims by Mo (2005) and Marchessaux (1989) that there is no apparent sexual
dimorphism although it is likely that the number of adult males reaching their maximum size is
higher than that of adult females. Also, where it is found, dimorphism is related more to the length
of body or to the coloration of the pelage than to cranial differences (Brunner et al., 2003). For
all these reasons, we apply the nonparametric methodology previously discussed in order to detect
differences between different age categories. We can thus obtain a sample of 12 specimens, 4 of
which are considered young (i.e. of age category less than or equal to 4) and 8 are considered adult
(i.e. of age category greater than 4). We have chosen eight anatomical landmarks in 2D – auricular
(au), mastoidal (ms), bregma (b), rhinion (rhi), nasospinale (ns), prosthion (pr), canine base (cb)
and canine tip (ct), as shown in Figure 10.3. We have also defined two domains: the midsagittal and
nasal (b, rhi, ns, pr) and the canine tooth (cb, ct). Landmarks have been digitized using tpsDig2
software (Rohlf, 2007).

Using the NPC methodology (with B = 10 000) we obtain the following p-values: p = 0.0080
(adjusted p = 0.0158) for the auricular landmark point, p = 0.0014 for the mastoidal (adjusted
p = 0.0038), p = 0.0011 (adjusted p = 0.0026) for the first domain and p = 0.0311 (adjusted
p = 0.0311) for the second domain. The global p-value is p = 0.0026. Further results are shown
in Tables 10.5 and 10.6.

Hence, even if we cannot find sexual dimorphism in our data, we are able to find a significant
difference between young and adult specimens studying landmarks and combinations with domains
other than evaluating the global test.

To complicate the analysis a little, thus illustrating how the MA procedure works, we carried
out a similar analysis to that presented above, introducing a step allowing us to perform an MA
analysis. In particular, we examined three aspects: scatter (by means of second moment, denoted by
µ2), location (median, Md) and distribution (by means of a Kolmogorov–Smirnov statistic, KS).
The results of this further analysis are displayed in Tables 10.7–10.9. We emphasize that when
adjusting p-values at coordinate level, the correction (adjustment) is more ‘severe’. Hence, the tree
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Figure 10.3 Landmarks: au, ms, b, rhi, ns, pr, cb and ct

Table 10.5 Controlling FWE at different levels of the analysis

Landmarks Coordinate NPC p-value p-value FWE NPC p-value p-value FWE

coordinate coordinate landmark landmark

bregma x1 0.5624 0.8903

y1 0.0020 0.0198 0.0040 0.0202

rhinion x2 0.0438 0.2769

y2 0.9602 0.9916 0.0876 0.0876

ns x3 0.0007 0.0041

y3 0.9291 0.9916 0.0008 0.0026

pr x4 0.3360 0.7938

y4 0.0046 0.0453 0.0089 0.0353

cb x5 0.0079 0.0733

y5 0.5042 0.8903 0.0157 0.0432

ct x6 0.1709 0.5980

y6 0.0246 0.1895 0.0482 0.0855

au x7 0.1044 0.4720

y7 0.0042 0.0449 0.0080 0.0353

ms x8 0.5226 0.8903

y8 0.0007 0.0041 0.0014 0.0065

Global 0.0041 0.0026
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Table 10.6 Controlling FWE at domain level

NPC p-value p-value FWE

domain domain

midsagittal & nasal 0.0011 0.0026

canine teeth 0.0311 0.0311

au 0.0080 0.0158

ms 0.0014 0.0038

Global 0.0026

Table 10.7 An example of the MA procedure using the Monachus data set

Statistic bregma x bregma y rhinion x rhinion y ns x ns y pr x pr y

µ2 0.5014 0.0028 0.0413 0.9230 0.0010 0.8897 0.3308 0.0058

Md 0.5362 0.2087 0.0679 0.8030 0.2003 1.0000 0.7171 0.0716

KS 0.5546 0.0454 0.0101 0.2651 0.0419 1.0000 0.9721 0.0445

Global (over
aspects)

0.7176 0.0044 0.0200 0.5248 0.0010 0.9916 0.6518 0.0078

p-FWE (adjusted
global p-values)

0.9931 0.0511 0.1562 0.9716 0.0079 0.9931 0.9931 0.0760

Statistic cb x cb y ct x ct y au x au y ms x ms y

µ2 0.0106 0.5536 0.1579 0.0295 0.1101 0.0041 0.5067 0.0021

Md 0.0661 0.7209 0.1755 0.4479 0.0703 0.1400 0.7662 0.4461

KS 0.1167 0.5570 0.5502 0.2631 0.1262 0.0104 0.5560 0.0028

Global (over
aspects)

0.0203 0.8255 0.2988 0.0388 0.1550 0.0061 0.7527 0.0021

p-FWE (adjusted
global p-values)

0.1562 0.9931 0.8631 0.2742 0.6287 0.0677 0.9931 0.0209

Table 10.8 Obtaining information on
landmarks (raw and adjusted p-values)

p-value p-FWE

bregma 0.0087 0.0488

rhinion 0.0318 0.0823

ns 0.0010 0.0041

pr 0.0156 0.0570

cb 0.0397 0.0823

ct 0.0748 0.0823

au 0.0121 0.0570

ms 0.0028 0.0148

Global 0.0041
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Table 10.9 Obtaining information on domains (raw
and adjusted p-values)

NPC p-value p-value FWE

domain domain

midsagittal & nasal 0.0028 0.0105

canine teeth 0.0734 0.0734

au 0.0121 0.0228

ms 0.0028 0.0105

Global 0.0105

level at which to apply the control for multiplicity should be conveniently chosen, depending on
the goal of the analysis.

10.6.2 Some Remarks

The case study has shown that NPC tests, due to their nonparametric nature, may be computed
even when the number of covariates exceeds the number of cases. With reference to the problem of
small sample sizes, we recall that the results obtained within the NPC framework can be extended
to the corresponding reference population. In Section 3.5 it is proved that it is possible to extend the
permutation conditional to unconditional or population inferences since permutation tests are pro-
vided with similarity and conditional unbiasedness properties. In the parametric field, this extension
is in fact possible when the data set is randomly selected by well-designed sampling procedures
on well-defined population distributions, provided that their nuisance parameters have boundedly
complete statistics in the null hypothesis or are provided with invariant statistics. In practice, this
situation does not always occur and parametric inferential extensions might be incorrect or even
misleading. Permutation tests allow for such extensions, at least in a weak sense, requiring that the
similarity and conditional unbiasedness properties are jointly satisfied. Moreover, we have shown
how the NPC methodology enables the researcher to give a local assessment using a combination
within domains. We feel confident that developing geometric morphometrics techniques in a non-
parametric permutation framework makes it possible to obtain valid solutions for high-dimensional
and small sample size problems.

10.6.3 Shape Analysis Using MATLAB

In order to carry out the two applications discussed in Section 10.6.1, we first used some freely
distributed dedicated software by James Rohlf (e.g. tpsUtil, tpsDIG2, tpsRelw, available at
http://life.bio.sunysb.edu/morph/) to perform various utility operations, useful for data
acquisition or providing statistical analyses using partial warp scores as shape variables and/or
expressing the results of a morphometric analysis as a shape deformation.

tpsUtil is a utility program for creating an empty TPS file from a directory with image files.
Having obtained this file containing the images, it is necessary to get landmark and semi-landmark
coordinates. The coordinate locations of landmarks and semi-landmarks, representing the raw data,
were digitized using tpsDIG2 software (Rohlf, 2007). However, since the direct analysis of databases
of landmark locations is not appropriate because of the presence of nuisance parameters, such as
location, rotation and scale, to carry out a valid statistical shape analysis a generalized least-squares
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superimposition (or generalized Procrustes analysis) was carried out to eliminate non-shape variation
in configurations of landmarks and to align the specimens to a common coordinate system. The data
we used for our analyses are the coordinates of landmarks and semi-landmarks, after sliding semi-
landmarks and performing superimposition (hence we have considered shape variables). tpsRelw
(Rohlf, 2008a) allows the sliding of semi-landmarks, thus obtaining shape variables. The procedure
involves first sliding the semi-landmarks to the left or right along a curve so as to minimize the
amount of shape change between each specimen and the Procrustes average of all the specimens.

Inferential analyses were carried out using MATLAB routines. Since in both cases we simply
deal with a two independent sample problem, we have used four MATLAB functions:

• np_2s, which tests the equality in distribution in two-sample designs, whenever the data set
contains continuous or dichotomous variables and even in the presence of missing values;

• np_2s_MA, which performs a one-way multi-aspect ANOVA for continuous variables, testing
the equality in distribution in two-sample designs, whenever the data set contains continuous or
dichotomous variables and even in the presence of missing values;

• NPC, allowing us to apply the NPC methodology, thus combining the hypotheses of interest and
producing a multivariate test;

• NPC_FWE, performing a closed testing procedure that controls the FWE (i.e. the probability of
finding at least one type I error in all the tests carried out).

Input data for performing the analyses are provided in a standard Excel format, in a file called
monachus.xls. MATLAB code is given below.

[D,data,code]=xlsimport(’monachus’);

reminD(D)

[D.name]

[no Ts]=v(2:size(D,2));

[P T options]=NP_2s(Ts,’group’,10000,0);

[bregma p_glob_bregma]=NPC(P(:,1:2),’T’);

[rhinion p_glob_rhinion]=NPC(P(:,3:4),’T’);

[ns p_glob_ns]=NPC(P(:,5:6),’T’);

[pr p_glob_pr]=NPC(P(:,7:8),’T’);

[cb p_glob_cb]=NPC(P(:,9:10),’T’);

[ct p_glob_ct]=NPC(P(:,11:12),’T’);

[au p_glob_au]=NPC(P(:,13:14),’T’);

[ms p_glob_ms]=NPC(P(:,15:16),’T’);

%%%%

% code useful when performing MA analysis

stats={’:Y.^2’,’Me’,’KS’}

[P_MA T_MA options]=NP_2s_MA(Ts,’group’,10000,stats,’T’,0);

[bregma p_glob_bregma]=NPC(P_MA(:,1:2,4),’T’);

[rhinion p_glob_rhinion]=NPC(P_MA(:,3:4,4),’T’);

[ns p_glob_ns]=NPC(P_MA(:,5:6,4),’T’);

[pr p_glob_pr]=NPC(P_MA(:,7:8,4),’T’);

[cb p_glob_cb]=NPC(P_MA(:,9:10,4),’T’);

[ct p_glob_ct]=NPC(P_MA(:,11:12,4),’T’);

[au p_glob_au]=NPC(P_MA(:,13:14,4),’T’);

[ms p_glob_ms]=NPC(P_MA(:,15:16,4),’T’);

%%%%
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midsagittal=NPC([bregma,rhinion,ns,pr],’T’);

canine=NPC([cb,ct],’T’);

globalAN1_2=NPC_FWE([midsagittal,canine,au,ms],’T’);

global2AN1_2=NPC_FWE(P,’T’);

global3AN1_2=NPC_FWE([bregma,rhinion,ns,pr,cb,ct,au,ms],’T’);

10.6.4 Shape Analysis Using R

The same analysis was performed in R. As already stated, this data set comprises some anthro-
pological measurements taken on the skulls of two groups of seals. Each variable consists of two
measurements, with respect to the x and y axes. This is an example of a two-sample multivariate
test, where we have to combine the information within each variable first (i.e. combine the tests
on the x and y axes), and there is a further requirement that the tests on the variables must be
combined according to some pre-specified domains. We consider the difference in means as the
test statistic in each aspect/variable.

setwd("C:/path")

data<-read.csv("monachus.csv",header=TRUE)

p = dim(data)[2]-1

n = table(data[,1]) ; n

0 1

8 4

contr = rep(c(1/sum(n[2]),-1/sum(n[1])),n[2:1])

contr

[1] 0.250 0.250 0.250 0.250 -0.125 -0.125 -0.125 -0.125 -0.125

[10] -0.125 -0.125 -0.125

B = 5000

T=array(0,dim=c((B+1),p))

g = data[,1]; data = data[,-1]

T[1,] = t(data)%*%contr

for(bb in 2:(B+1)){

data.star=data[sample(1:sum(n)),]

T[bb,] = t(data.star)%*%contr

}

source("t2p.r")

P = t2p(abs(T)); colnames(P)=colnames(data);

cat("Rough p-values \n");t(t(P[1,]))

Rough p-values

[,1]

bregma_x 0.5694
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bregma_y 0.0010

rhinion_x 0.0358

rhinion_y 0.9596

ns_x 0.0016

ns_y 0.9172

pr_x 0.3480

pr_y 0.0096

cb_x 0.0046

cb_y 0.4970

ct_x 0.1694

ct_y 0.0262

au_x 0.1058

au_y 0.0052

ms_x 0.5244

ms_y 0.0012

The results above are the p-values related to each aspect (X or Y ) in each variable. Now
we wish to combine the X and Y information, using Fisher’s combining function. The null
hypothesis to be assessed is H0j : {[Xj1

d= Xj2]
⋂

[Yj1
d= Yj2]}, where Xj1 and Yj2 respectively

denote the X and Y measurement of the j th variable, j = 1, . . . , p. The alternative hypothe-

sis is H1j : {[Xj1
d
>Xj2]

⋃
[Yj1

d
>Yj2]}. The test statistics are in accordance with the rule large is

significant .

p=p/2 ; T.xy = array(0,dim=c((B+1),p))

for(j in 1:p){

T.xy[,j] = -2*log(P[,((2*j)-1)]*P[,(2*j)])

}

P.xy = t2p(T.xy) ;

colnames(P.xy)=c(’bregma’,’rhinion’,’ns’,’pr’,’cb’,’ct’,’au’,’ms’)

cat("Combined tests on each variable: \n");P.xy[1,]

Combined tests on each variable:

bregma rhinion ns pr cb ct au ms

0.0036 0.1858 0.0072 0.0232 0.0188 0.0180 0.0022 0.0024

Now we wish to combine the information of the partial tests on each variable into four domains:
the first domain D1 covers the variables bregma, rhinion, ns, and pr; the second domain D2

covers the variables cb and ct; the third domain is just the variable au and the fourth is the variable
ms. We apply Fisher’s combining function to the p-values within each domain.

dom=c(rep(1,4),c(2,2),3,4)

D = length(table(dom))

T.dom = array(0,dim=c((B+1),D))

for(d in 1:D){

ID = dom%in%d

if(sum(ID)>1){T.dom[,d] = apply(P.xy[,ID],1,function(x){-2*log(prod(x))}) }

if(sum(ID)==1){T.dom[,d] = -2*log(P.xy[,d]) }

}
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P.dom = t2p(T.dom) ; colnames(P.dom) = c(’D1’,’D2’,’D3’,’D4’)

P.dom[1,]

D1 D2 D3 D4

0.0008 0.0086 0.0050 0.0246

The partial p-values show that the greater differences between the two groups are related to D1

and D2. If multiplicity control is required, apply the function FWE.minP.

source("FWEminP.r")

FWE.minP(P.dom)

D1 0.0022

D2 0.0172

D3 0.0144

D4 0.0246

The data set and the corresponding software codes can be found in the monachus folder on the
book’s website.





11
Multivariate Correlation Analysis
and Two-Way ANOVA
In this chapter we present two real case studies in ophthalmology, concerning complex repeated
measures problems, carried out at the Department of Ophthalmology, University of Padua (see
Midena et al., 2007a, 2007b). For each data set, different analyses have been suggested in order to
emphasize, from time to time, specific aspects of the data structure itself. In this way we enable
the reader to choose the most appropriate analyses for his/her research purposes.

The first case study concerns a clinical trial in which 13 patients with bilateral age-related macular
degeneration were evaluated. Their eyes were observed at k = 66 different and fixed positions.
Hence repeated measures issues arise. Five outcome variables were recorded and analysed.

The second case study concerns a clinical trial with a five-year follow-up period, the aim of which
is to evaluate the long-term side-effects of mitomycin C (MMC) assisted photorefractive kerate-
ctomy (PRK) on corneal keratocytes of highly myopic eyes. At baseline, one eye was randomly
assigned to receive topical MMC treatment (treated eye, T) and the other eye was treated without
MMC, using standard corticosteroid treatment (non-treated eye, NT). Corneal keratocyte density
was quantified by corneal confocal microscopy at baseline and 5 years after surgery. Fourteen
variables and four domains in total were analysed.

MATLAB and R codes, as well as raw data (.xls and .csv files), for carrying out both the analyses
can be found on the book’s website.

11.1 Autofluorescence Case Study
We consider a real case study in ophthalmology concerning a clinical trial in which 13 patients (3
men and 10 women) with bilateral age-related macular degeneration (AMD) were evaluated. Their
eyes (7 left and 6 right eyes) were observed at k = 66 different and fixed positions each. Hence,
repeated measures issues arise. Responses are in fact considered consecutive with respect to the
conventional ordering: from the centre to the boundary and clockwise (see Figure 11.1) in order to
maintain correspondence of responses to positions. Since these positions are a priori well defined,
they may be seen as a special case of landmarks (see Chapter 10 for details of landmark definitions).

More precisely, 61 repeated measures of each variable at different locations were collected; 66
measures in total, 5 of which overlap in correspondence with the central point 255 (see Figure 11.1).

Early AMD has been correlated with different functional alterations, but it remains unclear
how fundus lesions and overlying sensitivity are connected to each other. We observe that this
data set was previously analysed in Midena et al. (2007a), in order to compare fundus-related
sensitivity (microperimetry) and fundus autofluorescence of the macular area with drusen and
pigment abnormalities in early AMD. In particular, all the microperimetry data were analysed

Permutation Tests for Complex Data: Theory, Applications and Software Fortunato Pesarin, Luigi Salmaso
 2010, John Wiley & Sons, Ltd
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Figure 11.1 A microperimetric customized radial grid pattern of 61 positions. The positions are
projected randomly onto the 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ axes, 1◦ apart

using a traditional ANOVA test for repeated measures and a Bonferroni test. On the other hand,
the autofluorescence data were examined using the chi-square test and, in order to assess inter-
observer variability, Cohen’s kappa statistic (Altman, 1991) was computed. Here we deal with this
multivariate problem by using a nonparametric permutation approach instead of traditional methods.
In particular, the primary goal of the study is to assess the relationships (correlations) among some
variables with repeated observations (Roy, 2006). When dealing with this kind of study, it may
be of interest not only to characterize changes in the repeated values of the response variable,
but also to determine the explanatory variables most associated with any change (Der and Everitt,
2006). Moreover, it is interesting to establish whether there is a monotonic stochastic ordering of
the response variables as the categories of each explanatory variable increases. In particular, the
following outcome variables were recorded and analysed:

• OCT retinal thickness (denoted by O), expressed in micrometers (µm), was quantitatively mea-
sured by optical coherence tomography (OCT);

• retinal sensitivity (M ), expressed in decibels (dB) and measured by microperimetry examination;
• autofluorescence (A), an ordinal covariate with three levels, 0 = not present, 1 = hypo (less than

normal), 2 = hyper (more than normal);
• pigment abnormalities (P ), a binary covariate with values 0 = absent, 1 = present.
• drusen(D), an ordinal covariate with four levels, 0 = absent, 1 = small (<63 µm),

2 = intermediate (63–125 µm), 3 = large (>125 µm). Drusen are subretinal pigment epithelial
deposits that are characteristic of but not uniquely associated with AMD.

O and M are the variables of interest (according to the standard terminology for multivariate
linear regression, they are analogous to independent variables). Atrophy has not been considered.

11.1.1 A Permutation Solution

Each eye has been observed at k = 66 different and fixed positions. Three covariates X (i.e. A, P
and D) and two responses Y (i.e. O and M ) have been collected. The set of X and Y variables
may be denoted by
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Y = {Ywit , i = 1 . . . , n, w = 1, 2, t = 1, . . . , k} ,
X = {Xhit , i = 1 . . . , n, h = 1, . . . , 3, t = 1, . . . , k} .

We recall that we are dealing with repeated measures in space (different positions/landmarks in
the eye).

The first analysis we carried out is illustrated in Figure 11.2. In particular, for each t we calculated
Pearson’s correlation coefficient ρ between A, P and D (X variables) and O and M (Y variables).
Hence, for each position, we compute six correlation coefficients, ρt (O,A), ρt (O, P ), ρt (O,D),
ρt (M,A), ρt (M, P ) and ρt (M,D). We have

ρt (w, h) =
∑

(Yhi − Yh)(Xwi −Xw)√∑
(Yhi − Yh)2

∑
(Xwi −Xw)2

,

where i = 1 . . . , n, w = O,M , h = A,P,D, t = 1, . . . , k. The hypotheses of interest are

H0(w,h) =
{

k⋂
t=1

[ρt (w, h) = 0]

}
,

H1(w,h) =
{

k⋃
t=1

[ρt (w, h) < 0]

}
,

Position 1 Position 2

O M A P D O M A P D

r(O1,A1) r(O1,P1) r(O1,D1) r(O2,A2) r(O2,P2) r(O2,D2)

r(O,A) r(O,P) r(O,D)

Position 1 Position 2

O M A P D O M A P D

r(M1,A1) r(M1,P1) r(M1,D1) r(M2,A2) r(M2,P2) r(M2,D2)

r(M,A) r(M,P) r(M,D)

Figure 11.2 Sketch of the first analysis, in the simplest case with only two positions
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Table 11.1 Retinal thickness and retinal sensibility
p-values, controlling FWE. B = 1000

A P D

O p-value 0.0230 0.0375 0.0090

p-FWE 0.0435 0.0375 0.0235

M p-value 0.0005 0.0610 0.0005

p-FWE 0.0005 0.0610 0.0005

where w = O,M, h = A,P,D. We remark that when working in a parametric framework, it is
notoriously difficult to specify the direction of the alternative so as to obtain one-sided tests, and
only two-sided tests (testing the alternative H1 : ρt (w, h) 	= 0) are usually carried out. To save
space, instead of summarizing the results obtained separately for A, P and D , thus showing partial
p-values for each position t , we display only global raw and adjusted p-values for the correlations
ρ(O,A), ρ(O,P ), ρ(O,D), ρ(M,A), ρ(M,P ) and ρ(O,D), obtained after testing the above
system of hypotheses (see Table 11.1). Note, finally, that even if this problem is multivariate in
nature, by means of NPC methodology we are able to evaluate the relationships between X and Y
variables, processing them jointly.

In the second analysis we wish to establish if there is a monotonic stochastic ordering of the
response variables as the categories of each explanatory variable increase. Hence, the sub-hypotheses
of interest are

H0(w,h) :

{
66⋂
t=1

(
Y1ht

d= . . .
d= Ysht

)}
, w = O,M, h = A,P,D,

against

H1(w,h) :

{
66⋃
t=1

(
Y1ht

d≥ . . .
d≥ Ysht

)}
, w = O,M, h = A,P,D,

where sh indicates the level of hth variable X. In fact, s = 3 when considering autofluorescence
(A), s = 2 in retinal pigmentation (P ) and, finally, s = 4 when considering drusen (D). Under
the alternative, the monotonic stochastic ordering of O or M is emphasized. As in the previous
analysis, we display only global raw and adjusted p-values for the ‘intersections’ (O,A), (O, P ),
(O,D), (M,A), (M, P ) and (O,D) (see Table 11.2). For details of stochastic ordering issues,
refer to the extensive discussion in Chapter 8.

Table 11.2 NPC procedure for monotonic
stochastic ordering. B = 1000

A P D

O p-value 0.0005 0.0005 0.0005

p-FWE 0.0000 0.0000 0.0005

M p-value 0.0005 0.0005 0.0005

p-FWE 0.0000 0.0000 0.0005
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11.1.2 Analysis Using MATLAB

All the nonparametric analyses have been carried out using MATLAB and R routines. Here we
give a brief description of the functions we used in MATLAB. We refer the reader to the book’s
website for details.

The function np_rho computes the nonparametric correlation coefficient (providing both the test
statistic and the associated p-value) and requires as input the following arguments:

• Y, the data matrix of categorical responses;
• X, the indicator variable,
• Z, the vector representing the stratification variable (connected, as in repeated measures);
• type, allowing for Pearson’s linear correlation, or Kendall’s τ , or Spearman’s ρ;
• connected, a binary variable indicating whether independent permutations or the same permu-

tations should be performed on each of the strata, and taking value 0 in the former case and 1 in
the latter (we have set this parameter equal to 1 since we are dealing with repeated measures).

We have the variables O and M as a matrix of responses Y, variables A, P and D as X, and the
variable ‘location/time’ as Z (i.e. measurement number). We then connected it, since we are dealing
with repeated measures, thus performing the same permutations on each strata. A right-tailed test
was considered, checking the alternative hypothesis stating the presence of negative correlation.

The function NPC allowed us to apply the NPC methodology, thus combining the hypotheses of
interest and producing multivariate tests.

Using NPC_FWE, we carried out a closed testing procedure that controls the FWE (i.e. probability
of finding at least one type I error in all the tests performed). We emphasize that, when carrying
out closed testing, we chose Tippett’s combining function which corresponds to a MinP step-down
procedure (see details in Chapter 5).

Finally, we used the xlsimport function to import the relevant Excel data files of (not shown
in the code below).

We carried out B = 1000 CMC permutations. Note that in the following analyses the terms
‘location’ and ‘time’ are used interchangeably, and can be taken to have the same meaning.

B=1000

[P, T, options] = NP_rho({’OCT’ ’MICRO’} ,{’AF’ ’PIG’ ’DRU’},

’Time’,B,-1,’Pearson’,1);

options.Combdims=4;

P2=NPC(P,’F’,options);

options.Combdims=2;

P3fwe=NPC_FWE(P2,’T’,options);

B=space_perm(13,1000);

[P, T] = by_strata(lD(1),’NP_stord’,lD(7:8) ,lD(9:11),B,-1);

options.Combdims=4;

P2_F=NPC(P,’F’,options);

P2_D=NPC(T,’D’,options);

options.Combdims=2;

P3fweF=NPC_FWE(P2_F,’T’,options);

P3fweD=NPC_FWE(P2_D,’T’,options);

11.1.3 Analysis Using R

We now present the analysis carried out using routines developed in R.
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We used the read.csv function to read the data file in table format, thus creating a data frame
from it, with subjects corresponding to lines, and variables to fields in the file. This function is in
fact intended for reading ‘comma separated value’ files (‘.csv’). We refer the reader to the book’s
website for details on R code.

As previously mentioned, we have three explanatory variables (X1 = Autofl, X2 = Pigment, X3
= Drusen) and two responses (Y1 = Oct, Y2 = Micro). After loading data set of each variable, we
simplify the data structure with an explanatory matrix X of dimensions n× p × 3 and a response
matrix Y with dimensions n× p × 2, where n is the number of subjects and p the number of
variables (positions/times). We will investigate whether there is a significant negative correlation
between each response and each explanatory variable at each time j = 1, . . . , p. The test statistic is
the covariance (not the correlation coefficient ρ as in the previous analysis performed in MATLAB).
The matrix R contains the permutation distribution of the partial test statistic. The function COV

computes the covariances of each pair of columns of the two matrices.

setwd("C:/path") ; source("t2p.r") ; source("FWEminP.r")

COV<-function(x,y){

n=dim(x)[1] ; p=dim(x)[2];

r=apply(x*y,2,mean)-apply(x,2,mean)*apply(y,2,mean)

return(r)

}

Y1<-read.csv("Oct.csv",header=TRUE)

Y2<-read.csv("Micro.csv",header=TRUE)

X1<-read.csv("Autofl.csv",header=TRUE)

X2<-read.csv("Pigment.csv",header=TRUE)

X3<-read.csv("Drusen.csv",header=TRUE)

n=dim(Y1)[1] ; p=dim(Y1)[2]

Y=array(0,dim=c(n,p,2))

Y[,,1] = as.matrix(Y1) ; Y[,,2] = as.matrix(Y2)

X=array(0,dim=c(n,p,3))

X[,,1] = as.matrix(X1)

X[,,2] = as.matrix(X2)

X[,,3] = as.matrix(X3)

B=2000

R<-array(0,dim=c((B+1),p,3,2))

for(i in 1:2){ for(j in 1:3){ R[1,,j,i]=COV(Y[,,i],X[,,j]) } }

for(bb in 2:(B+1)){

Y.star = Y[sample(1:n),,]

for(i in 1:2){ for(j in 1:3){ R[bb,,j,i]=COV(Y.star[,,i],X[,,j]) } }

}

P=t2p(-R)

AF.res = data.frame(colnames(X1),P[1,,1,1],P[1,,1,2])

colnames(AF.res) = c("Time","Oct","Micro")

PIG.res = data.frame(colnames(X2),P[1,,2,1],P[1,,2,2])
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colnames(PIG.res) = c("Time","Oct","Micro")

DRU.res = data.frame(colnames(X3),P[1,,3,1],P[1,,3,2])

colnames(DRU.res) = c("Time","Oct","Micro")

The rows of matrices AF.res, PIG.res and DRU.res contain the raw partial p-values assess-
ing a significant negative correlation between each response and the related explicative vari-
able at each time/location t = 1, . . . , p. In order to obtain a global test for each combination
of response/explanatory variable, we may combine the partial test with respect to time (with
Fisher’s function).

T.glob = apply(P,c(1,3,4),function(x){-2*log(prod(x))})

P.glob = t2p(T.glob)[1,,] ; colnames(P.glob)=c("Oct","Micro")

rownames(P.glob) = c("Auto","PIG","DRU") ; P.glob

Oct Micro

Auto 0.0135 0.0000

PIG 0.0465 0.0575

DRU 0.0045 0.0000

A control for multiplicity is obtained by running the function FWE.minP on the global p-values
computed on T.glob:

P.Oct= t2p(T.glob)[,,1] ; P.Mic= t2p(T.glob)[,,2]

FWE.res<-cbind(FWE.minP(P.Oct),FWE.minP(P.Mic))

rownames(FWE.res) = c("Auto","PIG","DRU")

colnames(FWE.res)=c("Oct","Micro") ; FWE.res

Oct Micro

Auto 0.0255 0.0000

PIG 0.0465 0.0575

DRU 0.0115 0.0000

Finally, if a unique global test is required for each explanatory variable, we can combine the
elements of P.Oct and P.Mic:

T.APD = apply(t2p(T.glob),c(1,2),function(x){-2*log(prod(x))})

P.APD = t2p(T.APD) ; colnames(P.APD)=c("Auto","PIG","DRU")

P.APD[1,]

Auto PIG DRU

0.0000 0.0165 0.0000

In the second part of this analysis we wish to establish whether there is a decreasing trend on
the response variables as the categories of each explanatory variable increase. This is a stochastic
ordering problem for continuous variables that can be solved by the stoch.ord function. The argu-
ments of this function are a vector of continuous responses (y), a categorical variable (x) specifying
the time/group labels, and the direction of the alternative hypothesis (−1 meaning ‘decreasing’ and
1 meaning ‘increasing’). The function returns a vector of p-values with its first element being the
p-value of the analysis and the latter elements being the null distribution of the global p-value.
The integers printed refer to the time-points. The function can process one variable at time; in
order to maintain the dependence among the response variables the function is always run with a
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common seed, which will be the input to the set.seed function (thus providing exactly the same
permutations each time).

source("stoch_ord.r")

P = array(0,dim=c((B+1),p,3,2))

for(i in 1:p){

for(j in 1:3){

for(k in 1:2){

P[ ,i,j,k] = stoch.ord(Y[,i,k],X[,i,j],alt=-1,B=B)

}

}

print(i)

}

The matrix P has dimension (B + 1)× p × 3× 2. The raw p-values realted to the stochastic
ordering problem at each time for each combination of response/explanatory variables can be found
in the first element of the first dimension of P.

RES = P[1,,,] ;

rownames(RES)<-paste("T",seq(1,p),sep="")

colnames(RES)=c("Auto","PIG","DRU")

Now the matrix of partial p-values RES has dimension p × 3× 2. Therefore, to see the partial
p-values related to Oct and Micro for the first 10 times, type RES[1:10,,1] and RES[1:10,,2]

respectively. If a global test is required, we can combine the elements of P with respect to the
second dimension (time).

T.glob <- apply(P,c(1,3,4),function(x){-2*log(prod(x))})

P.glob <- t2p(T.glob)[1,,]

rownames(P.glob)=c("Auto","PIG","DRU")

colnames(P.glob) = c("Oct","Micro"); P.glob

Oct Micro

Auto 0 0

PIG 0 0

DRU 0 0

If a multiplicity correction is required, run the FWE.minP function again:

T.FWE = t2p(T.glob)

P.FWE = cbind(FWE.minP(T.FWE[,,1]),FWE.minP(T.FWE[,,2]))

rownames(P.FWE) = rownames(P.glob);

colnames(P.FWE) = colnames(P.glob); P.FWE

Oct Micro

Auto 0 0

PIG 0 0

DRU 0 0

The data set and the corresponding software codes can be found in the autofluorescence

folder on the book’s website.
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11.2 Confocal Case Study
We now turn to a real case study in ophthalmology related to a clinical trial with a five-year
follow-up period, where the aim was to evaluate the long-term side-effects of mitomycin C (MMC)
assisted photorefractive keratectomy (PRK) on corneal keratocytes of highly myopic eyes. In this
prospective, randomized, double-masked study, 28 patients with high bilateral myopia (i.e. myopia
from −7.00 to −14.25 diopters), who underwent PRK on both eyes, were examined.

At baseline, one eye was randomly assigned to receive topical MMC treatment (treated eye, T)
while the other eye was treated without MMC, using standard corticosteroid treatment (non-treated
eye, NT). Corneal keratocyte density was quantified by corneal confocal microscopy at baseline
and 5 years after surgery. Confocal microscopy was used to evaluate the thickness of the whole
cornea, corneal epithelium, the density of subbasal and stromal nerves, and keratocytes both before
and after surgery.

Four corneal parameters (i.e. groups of outcome variables, also called domains), were anal-
ysed: corneal endothelium, corneal nerves, corneal epithelium and corneal keratocytes. The corneal
endothelium domain includes variables such as:

1. cellular density (cells/mm2);
2. pleomorphism (expressed as a percentage);
3. polymegathism (expressed as a percentage).

The corneal nerves domain includes the variables:

1. density (defined as the total length of the nerve fibres existing in one image, expressed in
micrometres of nerve fibre within an area of 74 340 mm2);

2. PF , the number of fibres present in one image;
3. PBE , defined as the number of beadings present in 100 µm of nerve fibre;
4. PBI , bifurcation order;
5. PT , tortuosity grade, classified into four grades according to a scale (qualitative variable, score

range 0 to 4).

In the corneal epithelium domain the variable of interest is epithelium thickness (expressed in
µm). Corneal keratocytesconstitute the last domain. These cells are also known as fibroblasts, the
basic cell type found in the corneal stroma. In particular, in order to analyse corneal keratocyte
density at baseline and 5 years after PRK, five stromal layers were considered: 0–10% (anterior);
11–33%; 34–66%; 67–90 and 91–100% (posterior) depth (Erie et al., 2005). Once again we
refer to Midena et al. (2007b) for details of methods for image selection and keratocyte nucleus
(cell) identification.

11.2.1 A Permutation Solution

Here we are concerned with paired data and repeated measures. A V -dimensional non-degenerate
variable is observed on k different time occasions in n patients in two experimental situations,
corresponding to two levels of the treatment. In our study, V = 14 variables have been assessed
on k = 2 different time occasions (baseline and five-year follow-up) in n = 28 patients in two
experimental situations, corresponding to two levels of the treatment (two treatment groups, MMC
and steroid therapy). The whole data set is represented by

X = {Xhjit , t = 1, . . . , k, i = 1, . . . , n, j = 1, 2, h = 1, . . . , V
}



334 Permutation Tests for Complex Data

= {Xjit , t = 1, . . . , k, i = 1, . . . , n, j = 1, 2
}

= {Xji , i = 1, . . . , n, j = 1, 2
}
,

where the same symbol X is used to represent the V -variate response variable (X1, . . . , XV ), the
k-variate time profile (X1, . . . ,Xk) and the whole data set. We assume that the response variables
behave according to the model

Xhjit = µh + µhit + δhjt + σht (δhjt ) · Zhjit ,

t = 1, . . . , k, i = 1, . . . , n, j = 1, 2 (also denoted below by T and NT , representing the treatment
groups), h = 1, . . . , V , where µh represents a population constant for the hth variable; µhit repre-
sents a time effect on the hth variable at time t and specific to the ith individual; δhjt represents
treatment time effect at level j on the hth variable which, without loss of generality, is assumed to
be δh1t = 0, δh2t ≤ (or ≥) 0, for all (h, t); σht (δhjt ) > 0 represent population scale coefficients for
variable h at time t , which are assumed to be invariant with respect to units but which may depend
on treatment levels through effects δhjt , provided that, when δh2t 	= 0, stochastic dominance rela-

tionships Xh1
d
< (or

d
>)Xh2, h = 1, . . . , V , are satisfied; Zhjit are V -variate random errors, which

are assumed to be exchangeable with respect to treatment levels, independent with respect to units,
with null mean vector, E(Z) = 0, and with unspecified distribution P ∈ P; in particular, these mul-
tivariate errors may be dependent with respect to component variables and time through any kind
of monotonic regression.

The following problems may be of interest and should therefore be formalized into hypothesis
systems and then tested.

(a) We perform a one-sample paired data analysis and, by using time as a stratification variable
and treatment as a group variable, we test whether or not treated and untreated eyes are equal in
distribution respectively at baseline time (t0) and at the five-year follow-up (t1). We observe that
two patients in the t0 stratum (patients 16 and 26) have missing observations. These missing data
will be processed when using MATLAB routines, while observations referring to patients 16 and
26 will be omitted when using R routines. Also worthy of note is that the permutations are also
paired and there are two observations for each patient. In short, we are interested in evaluating
treatment effect separately for each time (t0 and t1). The V -dimensional vector of test statistics T ∗ht ,
h = 1, . . . , V , is obtained by considering the test statistics at t0 and t1,

T ∗ht =
n∑

i=1

[Xh2it −Xh1it ] · S∗i , h = 1, . . . , V , t = t0, t1,

where S∗i are i.i.d. and the ± signs, common to all variables, are random realizations of the random
variable 1− 2Bn(1, 1/2). Hence, the partial and global hypotheses

H0ht :
{
Xh1t

d= Xh2t

}
, h = 1, . . . , V , t = t0, t1

should be tested and then suitably combined to test the global null hypothesis

H0t :

{
V⋂

h=1

H0ht

}
, t = t0, t1,

against the partial alternatives

H1ht :

{
Xh1t

d

< 	= > Xh2t

}
, h = 1, . . . , V , t = t0, t1,
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suitably combined in a global test, in which at least one among the H0h is not true,

H1t :

{
V⋃

h=1

H1ht

}
, t = t0, t1.

(b) It is of interest to evaluate the time effect . After calculating the differences between the two
times, for each treatment group we obtain the V -dimensional vector of test statistics T ∗hj , h =
1, . . . , V , by considering the test statistics for treated and untreated eyes,

T ∗hj =
n∑

i=1

[
Xhjit0 −Xhjit1

] · S∗i , h = 1, . . . , V , j = 1, 2,

where S∗i is as previously defined. Hence, the partial and global hypotheses

H0hj :
{
Xhit0

d= Xhjt1

}
, h = 1, . . . , V , j = 1, 2,

should be tested and then suitably combined to test the global null hypothesis

H0j :

{
V⋂

h=1

H0hj

}
, j = 1, 2,

against the partial alternatives

H1hj :

{
Xhjt0

d

< 	= > Xhjt1

}
, h = 1, . . . , V , j = 1, 2,

suitably combined in a global test, in which at least one among the H0h is not true,

H1t :

{
V⋃

h=1

H1hj

}
, j = 1, 2.

Moreover, by taking into account c < V predefined domains of the outcome variables, we may
further decompose the global null hypothesis, thus combining by means of the NPC methodology
partial p-values corresponding to the variables belonging to the same domain. We recall that in
our study c = 4 (i.e. corneal endothelium, corneal nerves, corneal epithelium and keratocytes). It
is worth noting that in this case the NPC may be conveniently processed in two stages: first we
combine all variables belonging to the same domain into a domain-based test and then we combine
all the domains to obtain a global test.

11.2.2 MATLAB and R Codes

Evaluation of Treatment Effect

In this analysis, we evaluate treatment effect at baseline time (t0) and after 5 years (t1). The results
obtained, displayed in Tables 11.3 and 11.4, allow us to state that there is no strong evidence
against the null hypothesis of equality in distribution of treated (T ) and not treated (NT ) patients
respectively at t0 and t1.
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Table 11.3 Evaluating treatment effect

Baseline Follow-up

Variable p-value p-FWE p-value p-FWE

Cellular_density 0.1570 0.8368 0.4115 0.9920
Polymegathism 0.2268 0.8592 0.4695 0.9920
Pleomorphism 0.9678 1.0000 0.7319 0.9958

Density 0.0594 0.4847 0.2753 0.9694
PF 0.4111 0.9710 0.8494 0.9994
PBE 0.2038 0.8564 0.4733 0.9920
PBI 1.0000 1.0000 1.0000 1.0000
PT 0.9888 1.0000 1.0000 1.0000

Epithelium_thickness 0.6269 0.9942 0.2178 0.9524

K_1_10 0.9446 1.0000 0.8900 0.9994
K_11_33 0.6613 0.9942 0.1942 0.9342
K_34_66 0.4949 0.9800 0.4407 0.9920
K_67_90 0.5059 0.9802 0.6547 0.9958
K_91_100 0.1804 0.8518 0.3987 0.9920

p-Global 0.4847 0.9342

Table 11.4 Treatment effect over domains

Baseline Follow-up

Variable p-value p-FWE p-value p-FWE

Domain 1 0.5059 0.9438 0.5529 0.9128
Domain 2 0.6899 0.9438 0.9484 0.9484
Domain 3 0.6269 0.9438 0.2178 0.6327
Domain 4 0.5595 0.9438 0.5557 0.9128

p-Global 0.9438 0.6327

The MATLAB code used to carry out the analysis is as follows.

B=5000

[D,data,code]=xlsimport(’confocal’);

reminD(D)

T_NT=(v(’T_NT’)-1)*2-1;

FU_BA=(v(’FU_BA’)-1)*2-1;

Y=D(4:end);

%Treated vs Untreated

%Evaluating TREATMENT effect (separately for Base-

line (t0) and 5 years FU (t1))
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P_T_NT_byStrata=by_strata(FU_BA,’NP_ReM’,Y,T_NT,’all’,B,0,0);

options.labels.dims{2}=[Y.name];

options.labels.dimslabel{2}=’response’;

options.labels.dims{3}={’Baseline’ ’FU’};

options.labels.dimslabel{3}=’BASELINE vs FU’;

pmat_show(P_T_NT_byStrata,.05,options);

options.Combdims=2;

P2_T_NT=NPC_FWE(P_T_NT_byStrata,’T’,options);

pmat_show(P2_T_NT,.05,options);

options.Combdims=2;

options.OUT=0;

P_T_NT_dom(:,1,:)=NPC(P_T_NT_byStrata(:,1:3,:),’L’,options);

P_T_NT_dom(:,2,:)=NPC(P_T_NT_byStrata(:,4:8,:),’L’,options);

P_T_NT_dom(:,3,:)=P_T_NT_byStrata(:,9,:);

P_T_NT_dom(:,4,:)=NPC(P_T_NT_byStrata(:,10:14,:),’L’,options);

options.OUT=1;

optdom=options;

optdom.labels.dims{2}={’domain 1’ ’domain 2’ ’domain 3’ ’domain 4’}

P2_T_NT_dom=NPC_FWE(P_T_NT_dom,’T’,optdom);

pmat_show(P2_T_NT_dom,.05,optdom)

We focus on two routines used in both this analysis and a later one, namely NPC_ReM and
by_strata. The former,

function [P, T,options] = NP_ReM(Y,X,DES,B,tail,options)

requires the following input arguments:

• Y, the nk × V matrix, where n denotes the sample size, measured k times over V variables,
containing all the repeated measures for each variable.

• X, an indicator vector nk. X values corresponding to the same value of X are placed in the same
sample.

• DES is the design matrix. Several choices for this parameter are available. Throughout the analysis
the (default) option ‘Seq’ for sequential comparisons is used. However, it is possible to use the
option ‘All’ (which considers all the possible comparisons) or ‘Bal’ (comparing the baseline
to the other measures) or ‘Trd’ (evaluating a possible trend in the responses).

• B denotes the number of permutations.
• tail is the vector specifying the direction of the alternatives for the variables under study.
• The parameter options refer to the possibility of printing the observed p-values.

The function by_strata,

[P T options]=by_strata(strata_vector, function_name, Y,X,

arguments);

may be found in the utilities folder on the book’s website and requires the following input
arguments:
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• strata, i.e. the stratification variable.
• function_name, allowing us to choose any ‘NP_∗’ function.
• Y and X, denoting respectively the matrix containing the variables under study and the group-

indicator vector. The same considerations as given for the previous function hold here.
• arguments, i.e. all the arguments required by the function chosen at the second step.

Note that this function uses independent permutations in each stratum.
We now present the analysis carried out using routines developed in R. We refer the reader to the

book’s website for details of the R code. As already stated, this first analysis evaluating treatment
effects is a paired one-sample analysis, and there are two patients in the CASI group (16 and 26)
who should be omitted because they have missing observations (note that the permutations are also
paired, and there are only two observations for each patient):

setwd("C:/path")

data<-read.csv("CONFOCAL.csv",header=TRUE)

ID<-data$FU_BA==’FU’ & (data$PAT_ID==16 | data$PAT_ID==26);
data = data[ID==FALSE,]

Let d0 and d5 be the strata defined at t0 and t1, nT0 and nT5 their sample sizes. D0 and D5 are
matrices of the observed differences Dji , i = 1, . . . , n, j = 1, . . . , p.

d0<-data[data$FU_BA==’BASELINE’,]

d5<-data[data$FU_BA==’FU’,]

nT0 <-dim(d0)[1]/2

nT5 <-dim(d5)[1]/2

#### TEST T vs. NT ####

D0= as.matrix(d0[1:nT0,-c(1:3)]-d0[-c(1:nT0),-c(1:3)])

D5= as.matrix(d5[1:nT5,-c(1:3)]-d5[-c(1:nT5),-c(1:3)])

Data columns 1 and 3 (variables Patient ID and T_NT) have been removed because they are
non-informative. In order to perform a partial test on each variable we consider B = 2000 random
independent permutations of n ± signs for each variable (the matrices S0 and S5). The vectors T0
and T5 contain the null distribution of the test statistics T ∗ht , h = 1, . . . , V . They are obtained by
multiplying the matrices of observed differences and the matrices of random ± signs, therefore we
are considering the following test statistics at t0 and t1:

T ∗ht =
n∑

i=1

[Xh2it −Xh1it ] S
∗
i , t = t0, t1,

where S∗i = 1− 2Bn(1, 1/2) are i.i.d. random signs.

B=2000

p=dim(D0)[2]

T0<-array(0,dim=c((B+1),p))

T5<-array(0,dim=c((B+1),p))

T0[1,] = apply(D0,2,sum)

T5[1,] = apply(D5,2,sum)
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for(bb in 2:(B+1)){## independently within variables

S0=array(1-2*rbinom(nT0*p,1,.5),dim=dim(D0))

S5=array(1-2*rbinom(nT5*p,1,.5),dim=dim(D5))

for(j in 1:p){

T0[bb,j] = D0[,j]%*%S0[,j]

T5[bb,j] = D5[,j]%*%S5[,j]

}

}

In order to obtain the partial p-values, we load the t2p function, which returns a matrix with
the null distribution of p-values from a matrix containing the permutation distribution of the test
statistic. The p-values are obtained according to the rule large is significant , therefore the inputs
of the function are the absolute values of the matrices T0 and T5.

source("t2p.r")

P0<-t2p(abs(T0)) ; colnames(P0)=colnames(D0)

P5<-t2p(abs(T5)) ; colnames(P5)=colnames(D5)

The p-values of the partial tests are the elements of the first rows of P0 and P5.

par.res = cbind(P0[1,],P5[1,]); colnames(par.res) = c("T0","T5")

par.res

T0 T5

CELLULAR_DENSITY 0.1850 0.3140

POLYMEGATHISM 0.2245 0.4740

PLEOMORPHISM 0.9700 0.9215

dens 0.0595 0.2765

P.F 0.4230 0.8495

PBE 0.2065 0.5220

PBI 1.0000 1.0000

PT 1.0000 1.0000

EPITHELIUM_THICKNESS 0.6905 0.2545

X1to10 0.9550 0.8855

X11to33 0.6720 0.2070

X34to66 0.4995 0.5630

X67to90 0.5290 0.6410

X91to100 0.1995 0.1380

The partial p-values do not provide any evidence of treated–untreated differences in any variable.
In order to combine the partial tests into four domains, we create a categorical variable dom, and
combine the columns of P0, P5 for the kth domain with Fisher’s function:

dom<-c(rep(1,3),rep(2,5),3,rep(4,5))

dom

[1] 1 1 1 2 2 2 2 2 3 4 4 4 4 4

TD0<-array(0,dim=c((B+1),4))

TD5<-array(0,dim=c((B+1),4))



340 Permutation Tests for Complex Data

for(k in 1:4){

TD0[,k] = apply(as.matrix(P0[,dom==k]),1,function(x){-2*log(prod(x))})

TD5[,k] = apply(as.matrix(P5[,dom==k]),1,function(x){-2*log(prod(x))})

}

PD0<-t2p(TD0); PD5<-t2p(TD5)

colnames(PD0) = colnames(PD5) = paste("dom",seq(1,4),sep="")

dom.res=cbind(PD0[1,],PD5[1,]);colnames(dom.res)=c("T0","T5")

dom.res

T0 T5

dom1 0.3750 0.6800

dom2 0.2755 0.8495

dom3 0.6905 0.2545

dom4 0.7570 0.4945

None of the combined tests of each domain are significant.

Evaluation of Time Effect

In this analysis, the time effect is examined separately for MMC and standard steroid therapy.
The results obtained using the NPC methodology are displayed in Tables 11.5 and 11.6 and in
Figures 11.3 and 11.4, where possible significances of the partial and global p-values are displayed

Table 11.5 Evaluating time effect

Untreated Treated

Variable p-value p-FWE p-value p-FWE

Cellular_density 0.4567 0.9310 0.0478 0.2983
Polymegathism 0.0074 0.0468 0.0082 0.0694
Pleomorphism 0.3813 0.9290 0.5613 0.9216

Density 0.0002 0.0022 0.0014 0.0130
PF 0.7047 0.9464 0.0498 0.3059
PBE 0.0006 0.0054 0.0002 0.0022
PBI 0.5109 0.9322 0.7623 0.9216
PT 0.5171 0.9322 0.5651 0.9216

Epithelium_thickness 0.0028 0.0238 0.0842 0.3917

K_1_10 0.0790 0.4089 0.0768 0.3529
K_11_33 0.7145 0.9464 0.2750 0.7758
K_34_66 0.9136 0.9464 0.5185 0.9216
K_67_90 0.3363 0.9224 0.3833 0.8680
K_91_100 0.0002 0.0022 0.0002 0.0022

p-Global 0.0022 0.0022
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using a palette of grey colours. A colour key is shown to the right of the plot. In order to control
the familywise error rate and compute adjusted p-values, a closed testing procedure is used.

We find that three variables (density, PBE and K_91_100) are significant with and without
controlling the FWE in both treated and untreated groups, as well as global p-values obtained after
combining all the partial p-values using Tippett’s combining function. The variables polymegathism
and epithelium thickness are significant only in the untreated group, before and after controlling
the FWE, while the variables cellular density, polymegathism and PF are significant in the treated
group only before controlling the FWE. Domain 2 is significant with and without controlling the
FWE in both treated and untreated groups, while domain 3 is significant only in the untreated
group, before and after controlling the FWE. Raw p-values corresponding to domains 1 and 4 are
significant in the treated group.

%Evaluating differences T_1-T_0, separately for treated

%and untreated patients

%Evaluating TIME effect

P_FU_BA_byStrata=by_strata(T_NT,’NP_ReM’,Y,FU_BA,’all’,B,0,0);

options.labels.dims{2}=[Y.name];

options.labels.dims{3}={’Untreated’ ’Treated’}

options.labels.dimslabel{3}=’Untreated vs Treated’;

pmat_show(P_FU_BA_byStrata,.05,options)

P2_FU_BA=NPC_FWE(P_FU_BA_byStrata,’T’,options);

pmat_show(P2_FU_BA,.05,options)

options.OUT=0;

options.Combdims=2;

P_FU_BA_dom(:,1,:)=NPC(P_FU_BA_byStrata(:,1:3,:),’L’,options);

P_FU_BA_dom(:,2,:)=NPC(P_FU_BA_byStrata(:,4:8,:),’L’,options);

P_FU_BA_dom(:,3,:)=P_FU_BA_byStrata(:,9,:);

P_FU_BA_dom(:,4,:)=NPC(P_FU_BA_byStrata(:,10:14,:),’L’,options);

options.OUT=1;

optdom=options;

optdom.labels.dims{2}={’domain 1’ ’domain 2’ ’domain 3’ ’domain 4’}

P2_FU_BA_dom=NPC_FWE(P_FU_BA_dom,’T’,optdom);

pmat_show(P_FU_BA_dom,.05,optdom)

pmat_show(P2_FU_BA_dom,.05,optdom)

We now present the analysis carried out using R. Once more we refer the reader to the book’s
website for details of R code. In the CASI v. BASE comparisons, we exclude two patients with some
missing observations. Note that this is again a two-sample problem with paired data, so we repeat
the previous testing procedure here, although we carry out separate analyses for treated/untreated
observations and compare paired observations related to time 0 (group BASE) and time 5 (group
CASI).

data<-read.csv("CONFOCAL.csv",header=TRUE)

dT<-data[data$T_NT==’T’,] ; dNT<-data[data$T_NT==’NT’,]

# IDT<-dT$FU_BA==’FU’ & (dT$PAT_ID == 16 | dT$PAT_ID == 26)
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Table 11.6 Time effect over domains

Untreated Treated

Variable p-value p-FWE p-value p-FWE

Domain 1 0.0916 0.1778 0.0314 0.0890
Domain 2 0.0058 0.0174 0.0038 0.0146
Domain 3 0.0028 0.0112 0.0842 0.0904
Domain 4 0.1548 0.1778 0.0456 0.0904

p-Global 0.0112 0.0146

Cellular_density

Pleomorphism

Polimegatism

Density

P_F

P_BE

P_BI

P_T

Epithelium_thickness

K_1_10

K_11_33

K_34_66

K_67_90

K_91_100

Untreated Treated

0

0.0125

0.025

0.0375

0.05

0.0125

0.025

0.0375

0.05

NS

0

Figure 11.3 Output of pmat_show function for the time effect analysis showing corresponding
p-values adjusted for multiplicity (i.e. controlling the FWE)
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Figure 11.4 Output of pmat_show function for the time effect analysis when information on
domains is taken into account and after adjusting p-values for multiplicity
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# IDNT<-dNT$FU_BA==’FU’ & (dNT$PAT_ID == 16 | dNT$PAT_ID == 26)

IDT <- dT$PAT_ID == 16 | dT$PAT_ID == 26

IDNT<- dNT$PAT_ID == 16 | dNT$PAT_ID == 26

dT<-dT[IDT==FALSE,] ; dNT<-dNT[IDNT==FALSE,]

# nT<-table(dT$FU_BA)[2:1]; nNT<-table(dNT$FU_BA)[2:1]

# cT<-rep(c(1,-1),nT) ; cNT<-rep(c(1,-1),nNT)

dT=as.matrix(dT[,-c(1:3)]) ; dNT=as.matrix(dNT[,-c(1:3)])

p=dim(dT)[2]

n=dim(dT)[1]/2

DT= dT[1:n,]-dT[-c(1:n),]

DNT=dNT[1:n,]-dNT[-c(1:n),]

TT<-array(0,dim=c((B+1),p)) ; TNT<-array(0,dim=c((B+1),p))

TT[1,] = apply(DT,2,sum)

TNT[1,] = apply(DNT,2,sum)

As in the previous example, the matrices DT and DNT contain the observed differences CASI versus
BASE) related to each variable and each statistical unit (treated/untreated eyes, in this example).

for(bb in 2:(B+1)){## independently within variables

ST=array(1-2*rbinom(n*p,1,.5),dim=dim(DT))

SNT=array(1-2*rbinom(n*p,1,.5),dim=dim(DNT))

for(j in 1:p){

TT[bb,j] = DT[,j]%*%ST[,j]

TNT[bb,j] = DNT[,j]%*%SNT[,j]

}

}

source("t2p.r")

PT=t2p(abs(TT)) ; PNT=t2p(abs(TNT))

colnames(PT)=colnames(dT) ; colnames(PNT)=colnames(PT)

TNT.res = cbind(PT[1,],PNT[1,]) ; colnames(TNT.res) = c("T","NT")

TNT.res

T NT

CELLULAR_DENSITY 0.0620 0.4840

POLYMEGATHISM 0.0100 0.0065

PLEOMORPHISM 0.6760 0.6835

dens 0.0010 0.0000

P.F 0.0490 0.8955

PBE 0.0000 0.0010

PBI 0.7995 0.8080

PT 0.5490 0.5070
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EPITHELIUM_THICKNESS 0.1135 0.0025

X1to10 0.2095 0.1845

X11to33 0.5300 0.9600

X34to66 0.8935 0.7010

X67to90 0.0925 0.1750

X91to100 0.0000 0.0000

In order to control FWE, we use the FWEminP function to apply a Bonferroni–Holms adjustment
to a vector of raw p-values through a step-down application of Tippett’s combining function.

source("FWEminP.r")

FWE.res = cbind(FWE.minP(PT),FWE.minP(PNT))

colnames(FWE.res)=c("T","NT") ; rownames(FWE.res)=colnames(dT)

FWE.res

T NT

CELLULAR_DENSITY 0.4055 0.9805

POLYMEGATHISM 0.0885 0.0500

PLEOMORPHISM 0.9630 0.9915

dens 0.0095 0.0000

P.F 0.3470 0.9915

PBE 0.0000 0.0105

PBI 0.9630 0.9915

PT 0.9630 0.9810

EPITHELIUM_THICKNESS 0.5215 0.0175

X1to10 0.7355 0.7920

X11to33 0.9630 0.9600

X34to66 0.8935 0.9915

X67to90 0.5085 0.7920

X91to100 0.0000 0.0000

11.3 Two-Way (M)ANOVA
In the previous section we evaluated both treatment effect (first analysis) and time effect (second
analysis). To analyse the data set, we may also consider a two-way MANOVA, according to possible
different goals. This example can also be analysed by applying the synchronized permutations
introduced in Example 8, 2.7 and in Section 11.3.1. We consider the variables time and treatment
as the main factors with two levels each. We have treated and untreated eyes, at baseline time
(t = 0) and at 5 years after surgery (t = 1). Synchronized permutation testing requires the same
number of observations for each treatment. Thus, we do not consider patients 16 and 26, since they
have missing observations.

Along with time and treatment factors, we may consider their interaction, addressing whether
time effects depend on a given treatment.

11.3.1 Brief Overview of Permutation Tests in Two-Way ANOVA

In the MANOVA analysis previously discussed, a 22 factorial design was used. In an I × J

replicated factorial design, data are assumed to behave according to the linear model (see also
Example 8, 2.7)

Xijk = µ+ αi + βj + (αβ)ij + Zijk
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with i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . , n, where yijk are the experimental responses, µ is the
general mean, αi , βj are the effects of the main factors, (αβ)ij are interaction effects, εijk are
exchangeable experimental errors, with zero mean, from an unknown continuous distribution P ,
and n is the number of replicates in each cell. Assuming the usual side-conditions, the following
relations hold: ∑

i

αi = 0,
∑
j

βj = 0,
∑
i

(αβ)ij = 0 ∀ j,
∑
j

(αβ)ij = 0 ∀ i.

The hypotheses of interest are H0A: {αi = 0 ∀ i}, against H1A: {∃ i : αi 	= 0}, H0B : {βj = 0 ∀ j}
against H1B : {∃ j : βj 	= 0}, H0AB : {(αβ)ij = 0 ∀ i, j} against H1AB : {∃ i, j : (αβ)ij 	= 0}. Since
observations from different blocks have different means, they are not exchangeable. To carry out
nonparametric testing on main effects, a restricted kind of randomization should be introduced.
Assume that it is of interest to test for H0A and that ν∗ units are randomly exchanged between
blocks AiBj and AsBj , j = 1, . . . , J . Let us consider the permutation structure (Remark 1, 2.7)
of intermediate statistics to separately compare levels i and s of factor A at level j of factor B :

aT ∗is|j =
∑
k

X∗ijk −
∑
k

X∗sjk = (n− 2ν∗)[αi − αs + (αβ)ij − (αβ)sj ]+ Z̄∗is|j ,

where an asterisk means that we have performed a random synchronized permutation (since ν∗ is
invariant with respect to the levels of factor B ) among units in blocks AiBj and AsBj , Z̄∗is|j =
(n− ν∗)[Z̄∗ij − Z̄∗sj ]+ ν∗[Z̃∗ij − Z̃∗sj ] is the permutation error term, and Z̄∗ij , Z̄

∗
sj , Z̃

∗
ij , Z̃

∗
sj are ran-

dom sample means of respectively n− ν∗ and ν∗ errors from different pairs of blocks. Due to the
side-conditions, the test statistic

aT ∗A =
∑
i<s

∑
j

aT ∗is|j

2

,

only depends on levels of factor A and on exchangeable errors (ε̄∗is|j ), hence it is a separate
exact test on factor A. aT ∗A is a sum of all possible pairs of cells of the intermediate statis-
tics aT ∗is|j , j = 1, . . . , J . Similarly, it is possible to define bT ∗jh|i =

∑
k X

∗
ijk −

∑
k X

∗
ihk , that is,

the intermediate statistic for comparing levels j and h of factor B at level i of factor A. Then,
the test statistic

bT ∗A =
∑
j<h

[∑
i

bT ∗jh|i

]2

,

only depends on levels of factor B and on the exchangeable error, hence it is a separate exact test
on factor B . Finally, it is also possible to define two test statistics for the interaction

aT ∗AB =
∑
i<s

∑
j<h

[aT ∗is|j −a T ∗is|h]2, bT ∗AB =
∑
j<h

∑
i<s

[bT ∗jh|i −b T ∗jh|s]
2.

Note that aT ∗AB is obtained from synchronized permutations involving the factor A row, whereas
bT ∗AB is obtained from permutations involving the factor B column. Each statistic for the interaction
depends only on interaction levels and on exchangeable errors, hence there is a separate exact test on
interaction AB . To obtain only one test, the NPC procedure may be applied. Once we have defined
the test statistics for main effects and interaction, in order to apply these tests, the synchronized
permutation strategy should be defined. The basic concept of synchronized permutations is to
exchange the same number ν∗ of units within each pair of considered blocks. There are two ways
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to obtain a synchronized permutation: by exchanging units in the same original positions within each
block (constrained synchronized permutations, CSPs) or by exchanging units independently of their
original position (unconstrained synchronized permutations, USPs). The main point to remember is
that in both cases the same number of units must be exchanged within all pairs of cells in the pair
of rows/columns considered. CSPs are defined by the number of units being exchanged (ν∗) and
their original positions within each block. As a consequence, the total number of CSPs depends
only on which exchange has been made in the first pair of blocks. Since there are

CCSP =
(

2n

n

)
possible ways to exchange units in the first pair of blocks, CCSP is the cardinality of the CSPs.
Another point to take into account is the cardinality of distinct permutation test statistics (e.g. the
number of distinct aT ∗As if we are testing for factor A): the square in formulas of test statistics
produces a symmetry, that is, there are two distinct permutations generating the same value of aT ∗A ,
hence the total number of distinct aT ∗As is CCSP /2. USPs do not require the exchanged units to be
in the same original position within the blocks. Thus from a naive point of view, we could apply
the same algorithm with an initial random shuffling within each single block in order to obtain the
USPs. For further details we refer the reader to Basso et al. (2009a).

11.3.2 MANOVA Using MATLAB and R Codes

Below we show the results obtained for the MANOVA analysis in the nonparametric permutation
framework. In order to control the FWE and compute adjusted p-values, a closed testing procedure
is used. In particular, we perform the strong FWE over the variables, through and within each
factor (see Tables 11.7 and 11.8), including also the information on domains (Table 11.9). Similar

Table 11.7 Two-way MANOVA and p-value adjustment over variables through factors (p-FWE)

Baseline v. FU T v. NT Interaction

Variable p-value p-FWE p-value p-FWE p-value p-FWE p-Global

Cellular_density 0.1274 0.2324 0.0990 0.2324 0.2558 0.2558 0.2324
Polymegathism 0.1956 0.3361 0.0014 0.0042 0.5211 0.5211 0.0042
Pleomorphism 0.8388 0.9696 0.4027 0.7780 0.8742 0.9696 0.7780

Density 0.4055 0.4055 0.0002 0.0006 0.0054 0.0102 0.0006
PF 0.5931 0.8226 0.1898 0.4717 0.8994 0.8994 0.4717
PBE 0.0948 0.1784 0.0002 0.0006 0.2010 0.2010 0.0006
PBI 0.8374 0.9894 0.4165 0.7409 1.0000 1.0000 0.7409
PT 1.0000 1.0000 0.3719 0.7473 1.0000 1.0000 0.7473

Epithelium_thickness 0.2090 0.3765 0.0040 0.0118 0.5587 0.5587 0.0118

K_1_10 0.8834 0.9870 0.0462 0.1332 0.9474 0.9870 0.1332
K_11_33 0.6557 0.6659 0.4177 0.6659 0.3069 0.6659 0.6659
K_34_66 0.9276 0.9372 0.7465 0.9372 0.3407 0.7155 0.7155
K_67_90 0.4855 0.7281 0.2949 0.6551 0.9130 0.9130 0.6551
K_91_100 0.1330 0.2436 0.0002 0.0006 0.5999 0.5999 0.0006
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Table 11.8 Two-way MANOVA and p-value adjustment over variables within each factor
(p-FWE)

Baseline v. FU T v. NT cInteraction

Variable p-value p-FWE p-value p-FWE p-value p-FWE

Cellular_density 0.1274 0.7643 0.0990 0.4811 0.2558 0.9546
Polymegathism 0.1956 0.8728 0.0014 0.0114 0.5211 0.9978
Pleomorphism 0.8388 0.9998 0.4027 0.8722 0.8742 1.0000

Density 0.4055 0.9776 0.0002 0.0020 0.0054 0.0646
PF 0.5931 0.9976 0.1898 0.6845 0.8994 1.0000
PBE 0.0948 0.6919 0.0002 0.0020 0.2010 0.9204
PBI 0.8374 0.9998 0.4165 0.8722 1.0000 1.0000
PT 1.0000 1.0000 0.3719 0.8722 1.0000 1.0000

Epithelium_thickness 0.2090 0.8728 0.0040 0.0280 0.5587 0.9994

K_1_10 0.8834 0.9998 0.0462 0.2662 0.9474 1.0000
K_11_33 0.6557 0.9978 0.4177 0.8722 0.3069 0.9696
K_34_66 0.9276 0.9998 0.7465 0.8722 0.3407 0.9754
K_67_90 0.4855 0.9908 0.2949 0.7996 0.9130 1.0000
K_91_100 0.1330 0.7643 0.0002 0.0020 0.5999 0.9994

p-Global 0.6919 0.0020 0.0646

Table 11.9 Two-way MANOVA and strong FWE control

Baseline v. FU T v. NT Interaction

Variable p-value p-FWE p-value p-FWE p-value p-FWE

Domain 1 0.2809 0.6305 0.0258 0.0516 0.6045 0.9686
Domain 2 0.8052 0.9282 0.0002 0.0008 0.9248 0.9686
Domain 3 0.2090 0.6091 0.0040 0.0116 0.5587 0.9686
Domain 4 0.7439 0.9282 0.0696 0.0696 0.7824 0.9686

0.6091 0.0008 0.9686

information is given in Figures 11.5–11.7, where significant variables are associated with different
shades of grey. We find that raw p-values corresponding to polymegathism, density, PBE , epithelium
thickness, K_1_10 and K_91_100 are significantly different between treatment levels and the density
variable is significant in the interaction term. When controlling the FWE, K_1_10 is no more
significant, and density is no more significant in the interaction term. When including domains, we
find that domains 1, 2 and 3 are significantly different between treatment levels.

%Factorial design 2×2 for repeated measurements

%% Effects: Treated VS Untreated, Baseline VS FU, interaction
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DES=[ 1 1 1; 1 -1 -1; -1 1 -1;-1 -1 1]

levs= [FU_BA T_NT]*[1 2]’;

options.labels.dims{3}={’FU_BA’, ’T_NT’, ’INTERACT’};

[P t options]=NP_ReM(Y,levs,DES,B,0,options);

options.labels.dimslabel{3}=’Two-way MANOVA’;

pmat_show(P,.05,options)

%combining effects over variables

options.Combdims=3;

P_fact=NPC(P,’F’,options);

%adjusting p-values

P2_fact=NPC_FWE(P,’T’,options);

pmat_show(P2_fact,.05,options)

%combining variables

options.Combdims=2;

P_var=NPC_FWE(P,’T’,options);

Pdom(:,1,:)=NPC(P(:,1:3,:),’L’,options);

Pdom(:,2,:)=NPC(P(:,4:8,:),’L’,options);

Pdom(:,3,:)=P(:,9,:);

Pdom(:,4,:)=NPC(P(:,10:14,:),’L’,options);

optdom=options;

optdom.labels.dims{2}={’domain 1’ ’domain 2’ ’domain 3’ ’domain 4’}

P2dom=NPC_FWE(Pdom,’T’,optdom);

pmat_show(Pdom,.05,optdom)

pmat_show(P2dom,.05,optdom)
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Figure 11.5 Output of pmat_show function for the MANOVA analysis showing adjusted p-values
(adjustment is performed over variables through factors)
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Figure 11.6 Output of pmat_show function for the MANOVA analysis showing corresponding
p-values adjusted for multiplicity (adjustment is done over variables within each factor)
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Figure 11.7 Output of pmat_show function for the MANOVA analysis when information on
domains is taken into account and after adjusting p-values for multiplicity

We now turn to the analysis in R. We consider the variables tempo and T_NT as main factors with
two levels each. Since synchronized permutation testing requires the same number of observations
for each treatment, patients 16 and 26 were not considered, since they have missing observations.
Again, we refer the reader to the book’s website for details of R code.

The constrained synchronized permutation test is done by the function CSP, which requires as
argments a vector of data y and a matrix of labels x. The first column of x contains the levels of
time, whereas the second contains the level of T_NT. A further option is the desired number of
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permutations C, which here is set equal to 2000. We perform a two-way ANOVA analysis for each
variable. The output of the CSP function gives the p-values assessing the null hypothesis on main
effects and interaction. These results are stored in the matrix P.

source("CSP.n")

data<-read.csv("CONFOCAL.csv",header=TRUE)

data = data[data$PAT_ID != 16 & data$PAT_ID != 26,]

x=data[,2:3]

x[,1]=ifelse(x[,1]==’FU’,1,2)

x[,2]=ifelse(x[,2]==’T’,1,2)

p=dim(data)[2]-3

P = array(0,dim=c(p,3))

C = 2000

for(j in 4:(3+p)){

y = data[,j]

t = CSP(y,x,C=C)

P[(j-3),] = c(t$pa,t$pb,t$pab)

print((j-3))

}

rownames(P) = colnames(data[,-c(1:3)])

colnames(P) = c("FU/BASELINE","T/NT","Interaction")

P

FU/BASELINE T/NT Interaction

CELLULAR_DENSITY 0.105 0.154 0.341

POLYMEGATHISM 0.001 0.303 0.900

PLEOMORPHISM 0.633 0.988 0.986

dens 0.000 0.412 0.019

P.F 0.283 0.556 0.959

PBE 0.000 0.195 0.410

PBI 0.638 0.872 1.000

PT 0.319 1.000 1.000

EPITHELIUM_THICKNESS 0.002 0.357 0.545

X1to10 0.114 0.787 0.997

X11to33 0.666 0.636 0.730

X34to66 0.856 0.954 0.790

X67to90 0.058 0.649 0.981

X91to100 0.000 0.074 0.995

The data set and the corresponding software codes can be found in the confocal folder on the
book’s website.



12
Some Case Studies Using NPC
Test R10 and SAS Macros
In this chapter we present some complex data sets analysed using standalone software specifically
implemented for combination-based permutation tests (NPC Test R10) and also using SAS macros.
The NPC Test R10 software the SAS macros can be downloaded along with a user manual from
the book’s website.

12.1 An Integrated Approach to Survival Analysis in Observational
Studies

In the framework of survival analysis, we present an integrated procedure combining post-
stratification with a propensity score and combination-based permutation tests, based on an
observational study.

In this section we first introduce the application problem and perform the survival analysis based
on the whole sample. Then we stratify the sample using an estimated propensity score to control
for overt biases based on the theory of covariance adjustment in observational studies (Rosenbaum,
2002). Finally, we use the NPC approach of within-strata partial results to test the global hypothesis
related to the whole sample.

12.1.1 A Case Study on Oesophageal Cancer

We consider a survival observational study on times to death for oesophageal cancer patients
undergoing oesophagectomy. An ageing population and longer life expectancy have led to increas-
ing numbers of elderly patients with oesophageal carcinoma being referred for surgical treatment.
The effect of advanced age on the outcome of oesophagectomy is a matter of some controversy.
Indeed, there is an apparent contradiction between studies where the individual risk of mortal-
ity after oesophagectomy is strongly linked to patient age and performance status, with lower
long-term survival among elderly patients, and studies confirming improvements in the results of
oesophagectomy in patients over 70 with mortality and morbidity rates comparable to their younger
counterparts. A study performed by the Department of Medical and Surgical Science at the Uni-
versity of Padua (Ruol et al., 2007) was carried out to assess the effects of age on the long-term
survival of patients undergoing oesophagectomy for oesophageal cancer.

The long-term survival rate of patients at least 70 years old, undergoing oesophagectomy between
January 1992 and June 2005, for cancer of the oesophagus or oesophagogastric junction, was com-
pared with that of younger patients. The analysis involved a total of n = 664 patients with cancer

Permutation Tests for Complex Data: Theory, Applications and Software Fortunato Pesarin, Luigi Salmaso
 2010, John Wiley & Sons, Ltd
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Table 12.1 Sample sizes and distribution
of events

Subjects Deaths

Age group n d

under 70 529 (79.7%) 329 (62.2%)
70 and above 135 (20.3%) 82 (60.1%)

Total 664 411

Kaplan-Meier estimates of survival function by age group
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Figure 12.1 Kaplan-Meier estimates of survival function by age group

of the oesophagus or oesophagogastric junction (Siewert type I-II ): n1 = 135 (20.3%) patients were
at least 70 years old (group of interest) and n2 = 529 (79.7%) were under 70 (control group); see
Table 12.1. In the elderly group 92 (68.2%) patients were aged between 70 and 74, 35 (25.9%) were
aged 75–79, and 8 (5.9%) were in their 80s. Patients were routinely followed up by their surgeons
1, 3, 6 and 12 months after the operation and every 6–12 months thereafter. Complete tumour
resection was defined as R0, and incomplete resection with microscopic or macroscopic residual
disease was defined as R1 and R2 respectively. Overall, 594 (89.5%) patients were considered to
have curative resection (R0) : 124 (91.9%) out of 135 in the group of interest and 470 (88.8%)
out of 529 in the control group. During the follow-up period, the overall number of deaths was 82
(60.1%) among patients over 70 and 329 (62.2%) among the younger patients.

This case study is characterized by a fairly large number of observations with a left unbalanced
sample size, a light to moderate equal censoring model and, as can be seen in Figure 12.1, a
clearly visible pattern of crossing hazard rates. Figure 12.1 shows the raw survival curves for the
two samples.

In Chapter 9 we saw that the weighted Kaplan–Meier (WKM) test has good power behaviour
in this situation. As regards TIC-NPC, it also behaves well in terms of power and represents an
effective and robust combination-based permutation procedure to detect differences among groups.
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12.1.2 A Permutation Solution

In this application it is of interest to determine whether or not the two survival time distributions
have arisen from an identical survival function based on the two independent samples.

Using the same notation as in Chapter 9, the hypotheses of interest are

HG
0 :

{
[S1(ti) = S2(ti) ∀ti , i = 1, . . . , D]

⋂[
�1

d= �2

]}
=
{[

X1
d= X2

]⋂[
�1

d= �2

]}
,

against

HG
1 : {S1(ti) ≤	=≥ S2(ti) ∀ti , ∃ti : S1(ti ) < 	= >S2(ti)}

=
{
X1

d

≤	=≥ X2

}
.

The global null and alternative hypotheses are broken down into D sub-hypotheses, one for each
of the D observed times to1 < . . . < toD

HG
0 = H

X|O
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}
=
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against HG
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X|O
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}
.

In Table 12.2, TIC-NPC refers to the multidimensional permutation test in the case of
treatment-independent censoring (Callegaro et al., 2003) and WKM indicates the asymptotic
weighted Kaplan–Meier test (Pepe and Fleming, 1989).

12.1.3 Survival Analysis with Stratification by Propensity Score

Possible effects of treatments and risk factors would preferably be investigated in randomized
experiments (or designed experiments) which randomly assign experimental units to the different
groups under study. In such an experiment, the random assignment of individuals to the groups is
under the control of the experimenter, who ensures that the groups are comparable in terms of all
covariates, relevant and irrelevant, known and unknown, measured and unmeasured. Observational
studies (sometimes referred to as quasi-experiments or non-experimental studies) are different from
experiments in that the investigator lacks experimental control and, in particular, cannot manage
the random assignment of subjects to treatments, so the groups may not have been comparable and
may therefore reproduce these differences rather than effects of treatments and risk factors under
study. For instance, when treated patients are compared to controls, differing outcomes may reflect
either effects caused by the treatment or differences in prognosis before treatment. Nevertheless,
in some scenarios, an observational study aims to estimate treatment and risk factor effects in a

Table 12.2 Comparison of two survival curves

Alternatives Permutation Tests Asymptotic Tests

TIC-NPC WKM

Two-sided 0.022 0.333
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context in which it is impractical or unethical to perform randomized experiments (see Cochran,
1968; Berger, 2005).

An observational study is therefore biased if the various groups differ in ways that matter in
relation to the outcomes under study. Biases may refer to systematic differences between groups
with respect to one or more prognostic variables. Fortunately, differences in observed covariates
can be reduced if not removed. Units belonging to different groups may be seen to vary in terms
of some observed and accurately measured characteristics, but these noticeable differences may be
controlled by comparing individuals belonging to different groups who have the same values of the
observed covariates, that is, subjects should belong to the same matched set or stratum.

Techniques such as matching, stratification and model-based adjustments, along with combina-
tions of these procedures, are generally applied to eliminate conspicuous biases ‘accurately recorded
in the data at hand, that is, biases visible in imbalances in observed covariates’ (Rosenbaum, 2005).
Covariance adjustment with propensity score (Rosenbaum and Rubin, 1983; Rosenbaum, 2002,
2005) is another procedure which can be used to accomplish this goal, combining good quality
matching and stratification with the properties of model-based adjustments. The propensity score
is often applied directly as the basis for inference. In addition, matching or stratifying propensity
scores is often used in conjunction with further model-based adjustments within matched pairs or
strata using regression or generalized linear models. The propensity score is a procedure for con-
structing matched pairs or matched sets or strata that balance a large number of observed covariates.
In fact, in an observational study, adjustment for an estimated propensity score, that is, matching
or stratifying treated and control subjects in a single score, tends to balance all of the observed
covariates that were used to construct it. The resulting matched sets or strata are heterogeneous
in the covariates, but the covariates tend to have similar distributions in the treated and control
groups; therefore, the groups as a whole appear to be comparable.

A propensity score is defined as the probability of belonging to a group of interest, given the
observed covariates. This score, which can also be given a prognostic interpretation, summarizes
all the information required to balance the distribution of confounding variables between groups, in
order to have sets or strata with homogeneous units. In practice, the propensity score is unknown
and must be estimated, for instance, using a logistic regression model where the binary response
variable represents the indicator of the group to which the units belong, and the vector of the
independent variables is the vector of the observed covariates, which could record a great number
of pretreatment measurements describing the characteristics of the subjects.

Clearly, propensity scores balance only observed covariates used to construct the score, but it
is important to note that, unlike randomization, they cannot be expected to remove biases due to
unobserved or unrecorded differences before treatment between treated and control individuals.
Indeed, relevant unobserved or unknown pretreatment differences cannot be removed by covariance
adjustments, see also Example 11, 2.7. These biases are addressed partly in the design of an
observational study and partly in the analysis of the study by additional procedures, such as
sensitivity analysis (Rosenbaum, 2002). In an observational study, hidden bias is a serious and
crucial concern that can affect the study’s conclusions. For that reason, statistical methodologies of
adjustment for confounding factors, such as covariance adjustment with propensity score, should
work well when the study is free of hidden bias.

12.2 Integrating Propensity Score and NPC Testing
From the paper by Ruol et al. (2007), we use six binary covariates as predictors of the propensity
to belong to the treated group as a toy example.

In order to estimate the propensity score, we place these covariates in a stepwise exact logistic
regression model (Mehta et al., 2000) using the nonparametric procedure (Finos et al., 2009)
presented in Chapter 5 to adjust the p-values of the selected model.
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Having estimated the propensity score, following the indications of Cochran (1968) and Rosen-
baum (2005), we decided to divide the whole sample into five strata based on the values of the
score. Indeed, Cochran showed that five strata formed from a single continuous covariate can
remove about 90% of the bias. Table 12.3 shows the resulting sample sizes and the distribution of
the events of interest within each stratum. Figures 12.2–12.6 present the survival curves for the
two samples within each stratum.

In stratum 1, the two survival functions cross at several failure time points, and a crossing hazard
rates model is clearly visible.

Table 12.3 Sample sizes and distribution of events

Age group
Stratum Sample size/Events Less than 70 70 or older Total

1 n 116(91.3%) 11(8.7%) 127
Events 70(90.9%) 7(9.1%) 77

2 n 120(85.1%) 21(14.9%) 141
Events 78(90.7%) 8(9.3%) 86

3 n 104(78.8%) 28(21.2%) 132
Events 81(79.4%) 21(20.6%) 102

4 n 105(74.5%) 36(25.5%) 141
Events 43(74.1%) 15(25.9%) 58

5 n 84(68.3%) 39(31.7%) 123
Events 57(64.8%) 31(35.2%) 88

Kaplan-Meier estimates of survival function by age group
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Figure 12.2 Kaplan–Meier survival estimates by group in stratum 1
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Kaplan-Meier estimates of survival function by age group

1.
00

0.
75

0.
50

0.
25

0.
00

0 12 24 36 48 60 72 84 96 108 120 132 144 156

Months

S
ur

vi
va

l f
un

ct
io

n

<70
>=70

Figure 12.3 Kaplan–Meier survival estimates by group in stratum 2
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Figure 12.4 Kaplan–Meier survival estimates by group in stratum 3

In stratum 2, the situation is quite different. Here the two survival functions are moderately close
for early failure times. Subsequently the differences between the two curves increase considerably.
In this configuration there is evidence of a model with late hazard rate differences.

In stratum 3, the two survival functions overlap in the early and late parts of the curves.
There are noticeable differences in between. Here the figure suggests a model with middle hazard
rate differences.

In stratum 4, the two survival curves are relatively close to each other and the functions cross
at several failure time points.
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Kaplan-Meier estimates of survival function by age group
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Figure 12.5 Kaplan–Meier survival estimates by group in stratum 4

Kaplan-Meier estimates of survival function by age group
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Figure 12.6 Kaplan–Meier survival estimates by group in stratum 5

In stratum 5, for early and late failure times the survival function of the older subjects is always
significantly lower than the function of their younger counterparts. In between these points, the
survival curves are very close and the two functions cross.

In this case a more complex data configuration is present because our testing problem requires
that we take into consideration the stratification variable introduced by the estimated propensity
score to reduce possible biases caused by the observed and known covariates used to construct
the score.
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Table 12.4 p-values obtained in the survival analysis carried out
using the TIC-NPC procedure

Stratum
Alternative 1 2 3 4 5 Global

Two-sided 0.3546 0.2624 0.1843 0.5851 0.1560 0.081

Therefore, the NPC may be viewed as a multi-phase procedure characterized by an intermediate
combination, where we first combine the partial tests with respect to D times within each s stratum
(with s = 1, . . . , 5), and then we combine the second-order tests with respect to strata in a single
third-order combined test (see Table 12.4). It should be noted that this multivariate and multistrata
hypothesis testing problem cannot be solved using a standard asymptotic test procedure such as
the weighted Kaplan–Meier test, as we did for the unstratified survival analysis based on the
whole sample.

The overall hypotheses of interest remain

HG
0 :
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Multivariate stratification using the propensity score has an effect on the TIC-NPC procedure. In
fact, its inferential results obviously change and lead to statistical conclusions that differ from those
in the survival analysis without stratification. In particular, the TIC-NPC test induces rejection of
the null hypothesis of no difference in survival between the two groups before the stratification,
whereas it leads to acceptance of the null hypothesis after the survival analysis with stratification
(see Table 12.4).

12.2.1 Analysis Using MATLAB

We refer the reader to the survival folder on the book’s website for details of the MATLAB code
we used to perform the survival analysis before and after the stratification of the whole data set
into five strata using the estimated propensity score obtained through the use of a stepwise exact
logistic regression model.
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12.3 Further Applications with NPC Test R10 and SAS Macros

12.3.1 A Two-Sample Epidemiological Survey: Problem Description

A prospective multicentre epidemiological study known as SETIG involving the surveillance of
treatments in severe infections took place between 1995 and 1997 (Arboretti et al., 2000). Its
objective was to describe the natural history of clinically relevant infections, and to compare
different diagnostic and therapeutic approaches. A network of 79 Italian hospitals was established,
with 141 participating wards. Data on 1159 cases of different infectious diseases were collected. A
form was designed to collect patient information on: age and gender; admission ward; presumed
diagnosis; type of infection; concomitant diseases; diagnostic data; antibiotics prescribed; dosage
and duration of antibiotic therapy; and clinical outcomes (death, resolution of infection, length of
stay in hospital, duration of treatment). An important aim of the study was to compare different
therapeutic approaches in terms of clinical outcomes. The observational nature of the study requires
particular care in the analysis because the incorrect use of observational data for evaluating therapy
causal effects can produce biased treatment comparisons. In order to improve the validity of causal
inferences in the comparison of several outcomes from different therapies, an approach based on
testing for coherent alternatives (Rosenbaum, 2002) is used. According to this methodology, we
should define a complex pattern of responses as being coherent with the hypothesis of a causal
treatment effect. The evidence in favour of the alternative hypothesis implies that the whole causal
pattern is confirmed by the data. In the SETIG survey, the hypothesis of interest concerns the
comparative effect of the specific therapeutic approach versus an empirical approach with respect
to several outcomes which constitute the pattern of interest, where ‘specific therapeutic approach’
means that an antibiotic specific to the particular infection is used, and ‘empirical approach’ means
that a generic wide-spectrum antibiotic is used. The causal pattern of coherent alternatives is the
following: compared to patients treated with the empirical therapy, patients receiving the specific
therapy should show a reduced death rate, a shorter duration of treatment, a shorter length of stay
in hospital, and a higher rate of cured infections. It is clear that in statistical terms such a pattern
can be reduced to a two-sample multivariate comparison with restricted alternatives and mixed
variables with a possible presence of missing values.

The analysis was carried out on 334 patients with sepsis, 154 of whom were treated with
empirical therapy and 180 with a specific therapy. These 334 patients were selected from an entire
set of 1159 cases on the basis of their homogeneity with respect to the kind of sepsis, seriousness
of infection, etc. The 334 patients were first stratified into four homogenous strata with respect to
possible confounding factors (age, number of concomitant factors, presence of diabetes, presence of
surgical intervention, presence of a tumour, type of unit where patient is admitted, geographic area,
etc.). For the construction of the strata s = 1, 2, 3, 4, a stratification by propensity score was used
following Rosenbaum and Rubin (1983). The propensity score is defined as the probability of being
assigned to a particular treatment, given a vector of concomitant variables (i.e. the confounding
factors). This score, which may also have a prognostic interpretation, summarizes all the information
required to balance the distribution of confounding variables between treatment groups, in order to
have strata with homogeneous units. In this study, the propensity score was evaluated by a logistic
model (see Arboretti et al., 1999, 2000).

Four variables were taken into consideration: death (D) and clinical resolution (R), both binary
variables with 1 denoting ‘yes’ and 0 ‘no’; duration of treatment (U), a binary variable with 1
denoting ‘more than 15 days’ and 0 denoting ‘15 days or less’; and length of stay (L), a positive
integer variable. In the analysis, group 1 contains all subjects treated with a specific therapy and
group 2 those treated with an empirical therapy. The multidimensional system of overall hypotheses
defining the causal pattern can be written, and correspondingly analysed, either within strata with



360 Permutation Tests for Complex Data
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We note that in each stratum this problem presents three binary variables and one quantitative;
moreover, all sub-alternatives are one-sided, three in a positive direction and one negative. Variables
U and L present some missing values which may be missing not completely at random. However,
in this respect, our analysis is performed conditionally since we are mainly interested in the direct
effects of two treatments.

As regards the analysis, this is carried out first within each stratum and variable and then
between strata or between variables. As variables are either binary or quantitative and there are
missing values (see Chapter 7), all partial tests have the form

T ∗hs = ϕh

(∑
i

X∗h1si · γ ∗h1s −
∑
i

X∗h2si · γ ∗h2s

)
,

s = 1, . . . , 4, h = D,R,U,L, where γ ∗hjs = (ν∗hks/ν
∗
hjs), k 	= j = 1, 2, and the function ϕh(·) is

−(·) or +(·) according to whether the hth sub-alternative is
d
< or

d
>.

This analysis was carried out using MATLAB, R, NPC Test R10, and SAS 9.0, all with B =
10 000 CMC iterations.

12.3.2 Analysing SETIG Data Using MATLAB

We refer the reader to the book’s website for MATLAB code. The results of raw and adjusted
partial tests are reported in Tables 12.5 and 12.6.

Table 12.7 displays the results of the NPC obtained using Fisher’s combining function to com-
bine second-order p-values for the four variables within strata. The third-order combined p-value,
again using Fisher’s combining function, for the overall hypothesis on second-order p-values gives
λ̂′′′ = 0.0000.
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Table 12.5 Results of partial raw tests on the
SETIG data

Stratum D R U L

1 0.0241 0.0520 0.4597 0.2162
2 0.2161 0.0768 0.1548 0.0968
3 0.4028 0.3279 0.8305 0.5841
4 0.0044 0.0056 0.0331 0.0080

Table 12.6 Results of partial adjusted tests on
the SETIG data

Stratum D R U L

1 0.0565 0.1384 0.4597 0.2984
2 0.2335 0.1997 0.2335 0.2075
3 0.6763 0.6763 0.8305 0.7409
4 0.0114 0.0117 0.0331 0.0154

Table 12.7 Results of
within-strata analysis

Stratum λ̂′′s

1 0.0243
2 0.0499
3 0.5655
4 0.0000

The results of our analysis are self-evident. However, from the partial p-values we can see that
the subjects of the third stratum react substantially in the same way to both antibiotic treatments.
This may induce researchers to study the problem in greater depth, possibly by means of a differ-
ent analysis, or by collecting more individuals, or by considering more informative concomitant
variables for use in determining the propensity score, etc.

Investigation of results with regard to variable L may also suggest a more in-depth analysis, pos-
sibly by taking into consideration a form of competing behaviour of the death variable with respect
to length of stay in hospital. In fact, given that dead individuals leave hospital before treatment is
completed, their length of stay is shorter than it would otherwise have been. If empirically treated
subjects have a higher death rate than specifically treated subjects, the latter may have a greater
mean value than the former when comparing the L of two groups. In other words, death behaves
as a confounding variable for length of stay.

As a general comment we may say that the joint use of multivariate permutation tests under
order restrictions and stratification methods to control confounding factors gives us an effective tool
to test for possible significance of quite a complex multivariate causal pattern in both experimental
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and observational studies, provided that in the null hypothesis the exchangeability of data with
respect to groups is assumed. We note that the exchangeability condition is quite natural in exper-
imental studies, but it is also generally easy to justify in most observational studies – especially
when units enrolled in the study are homogeneous, at least within strata, with respect to the most
important covariates.

The NPC approach also allows us to analyse the causal pattern: (a) at the univariate level by
means of partial tests; (b) at the multivariate level, either within strata or within variables, by
means of second-order combined tests; and (c) at the global level by means of a third order of
combination. Hence, researchers are able to examine the contribution of each component variable
to the possible global significance. This is not possible with Rosenbaum’s (2002) POSET method,
which focuses only on the possible global significance. Furthermore, the NPC approach is much
more flexible when dealing with either ignorable or non-ignorable missing values.

12.3.3 Analysing the SETIG Data Using R

We consider the test statistic for difference in means which takes into account missing observations
(described in Chapter 7), and which requires us to compute the number of non-missing observations
ν∗1 and ν∗2 in the two samples, at each permutation. Here O is and indicator vector of the non-missing
observations, and nu is the vector with the observed number of non-missing observations in the
two samples.

setwd("C:\\path")

data<-read.csv("setig.csv",header=TRUE,na.strings=’NaN’)

alternative = c(1,-1,1,1)

strata = data[,1] ; ID = data[,2]

data = data[,-c(1,2)]

p=dim(data)[2] ; nstr = length(table(strata))

B=10000

T=array(0,dim=c((B+1),p,nstr))

for(s in 1:nstr){

Y=data[strata==s,]

for(j in 1:p){

paz = ID[strata==s]

O = ifelse(is.na(Y[,j])==TRUE,0,1)

y = ifelse(is.na(Y[,j])==TRUE,0,Y[,j])

nu = table(O,paz)

if(dim(nu)[1]>1){nu=nu[2,]}

D1 = sum(y[paz==1]) ; D2 = sum(y[paz==2])

T[1,j,s] = D1*sqrt(nu[2]/nu[1])-D2*sqrt(nu[1]/nu[2])

}## end j

}## end s

for(bb in 2:(B+1)){
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for(s in 1:nstr){

Y=data[strata==s,]

n=dim(Y)[1]

Y.star = Y[sample(1:n),]

for(j in 1:p){

paz = ID[strata==s]

O = ifelse(is.na(Y.star[,j])==TRUE,0,1)

y = ifelse(is.na(Y.star[,j])==TRUE,0,Y.star[,j])

nu = table(O,paz)

if(dim(nu)[1]>1){nu=nu[2,]}

D1 = sum(y[paz==1]) ; D2 = sum(y[paz==2])

T[bb,j,s] = D1*sqrt(nu[2]/nu[1])-D2*sqrt(nu[1]/nu[2])

if(T[bb,j,s]==’NaN’){T[bb,j,s] = Inf}

}## end j

}## end s

print(bb)

}## end bb

source("t2p.r")

T1=T

for(j in 1:4){

T1[,j,]=T[,j,]*alternative[j]

}

P=t2p(T1)

P=ifelse(is.na(P)==TRUE,1,P)

res = t(P[1,,])

colnames(res) = colnames(data)

rownames(res) = seq(1,4)

res

D R U L

1 0.0241 0.0483 0.4504 0.2099

2 0.2180 0.0733 0.1620 0.0940

3 0.4139 0.3230 0.8362 0.5896

4 0.0030 0.0044 0.0392 0.0062

Some problems may be arise when testing the variable R on the first stratum: here there are 54
missing observations out of 83; moreover, there are 15 patients treated with empirical therapy in the
first stratum, therefore it might happen that some permutations lead to obtain missing observations
only in the first group, and therefore crude

√
ν∗2/ν

∗
1 coefficients do not exist and S∗1 = 0. This
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apparent drawback is solved by simply ignoring all elements of the partition of the permutation
sample space X/X (see Chapter 7) with min(ν∗1 , ν

∗
2 ) < 3 because all subdistributions have at least

the same mean and variance.
The matrix res contains the partial p-values related to each variable in each stratum. Significant

differences in the two therapies can be found especially in the first and fourth strata. In order to
obtain an adjustment of p-values for multiplicity, we run the FWE.minP function independently
stratum by stratum:

source("FWEminP.r")

p.fwe = array(0,dim=c(nstr,p))

for(s in 1:nstr){

p.fwe[s,] = FWE.minP(P[,,s])

}

colnames(p.fwe) = colnames(res)

rownames(p.fwe) = rownames(res)

p.fwe

D R U L

1 0.0572 0.1239 0.4504 0.2940

2 0.2180 0.1905 0.2071 0.2071

3 0.7300 0.6770 0.8362 0.7458

4 0.0069 0.0099 0.0392 0.0099

We now combine the partial tests within each stratum with Fisher’s combining function.

T.glob.s = array(0,dim=c((B+1),s))

for(k in 1:nstr){

T.glob.s[,k] = apply(P[,,k],1,function(x){-2*log(prod(x))})

}

P.glob.s = t2p(T.glob.s)

res.str = P.glob.s[1,]

names(res.str) = paste("Stratum",seq(1,s),sep=" ")

res.str

Stratum 1 Stratum 2 Stratum 3 Stratum 4

0.0228 0.0496 0.5801 0.0000

Finally, to obtain a unique global test we can compare the partial tests on each stratum:

T.glob = apply(P.glob.s,1,function(x){-2*log(prod(x))})

p.glob = t2p(T.glob)[1]

p.glob





Some Case Studies Using NPC Test R10 and SAS Macros 365

12.3.4 Analysing the SETIG Data Using NPC Test

The previous analysis was also carried out with the NPC Test R10 software. On the basis of the
outcomes previously considered, we define a binary group variable which denotes the two groups
of patients to be compared. The 334 patients are stratified into four homogenous strata by defining a
stratification variable (taking values s = 1, 2, 3, 4) as obtained using the propensity score technique.
The four response variables of interest are death (D), clinical resolution (R), duration of treatment
(U), and length of stay (L).

Hence, in each stratum we have one quantitative and three binary variables. Additionally, vari-
ables U and L have some missing values which may be missing not completely at random.
Figure 12.7 displays part of the data set from the NPC Test worksheet, where missing values are
denoted by ‘?’. At this stage, the user is asked to specify the type of analysis : two-sample testing,
C-sample testing or one-way ANOVA, C related samples, stochastic ordering or correlation analysis.

NPC Test allows the user to constructively specify the testing analysis in full, from the specifica-
tion of the system of hypotheses of interest to the construction of partial and combined tests. This
is achieved by a sequence of five dialogue boxes. Once the type of analysis has been selected, the
user starts constructing the hypotheses to test from the definition of samples and strata in the first
dialogue box. Figure 12.8 displays the first dialogue box for the SETIG case study. In the present
instance, we select two-sample testing.

The second dialogue box (see Figure 12.9) allows the user to specify the multidimensional system
of hypotheses for each variable within each stratum, to choose the appropriate test statistic and to
set the number of CMC iterations. In the SETIG study, the system of hypotheses of interest, within
each stratum, is

H0s :
{
(D1s

d= D2s)
⋂

(R1s
d= R2s)

⋂
(U1s

d= U2s)
⋂

(L1s
d= L2s)

}
, s = 1, . . . , 4,

Figure 12.7 NPC Test R10 worksheet with SETIG data
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Figure 12.8 NPC Test R10 samples and strata dialogue box

Figure 12.9 NPC Test R10 partial tests dialogue box
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against

H1s :

{
(D1s

d
>D2s)

⋃
(R1s

d
< R2s)

⋃
(U1s

d
>U2s)

⋃
(L1s

d
>L2s)

}
, s = 1, . . . , 4.

For variables D and R, suitable test statistics are the difference of two means (or alternatively
a t statistic). For variables L and U , on the other hand, we select the permutation test statistic for
missing values, as discussed in Chapter 7.

Once all partial tests for each stratum have been computed, in the third dialogue box we wish
to perform the closed testing procedure within each stratum. This is done by selecting the four
variables of each stratum and then clicking the NPC_FWE button (we have chosen the Tippett
combination function and the ‘by Selection’ option in the ‘Combination of Tests’ box). Figure 12.10
displays the results of the closed testing procedures and in particular the result of the first of the
16 adjusted tests.

Finally, once all partial tests for each stratum have been computed and adjusted within strata, in
the same dialogue box the user can choose the combining function and accordingly the multivariate
and multistrata permutation tests to perform. There are two main default choices: combination of
partial tests within strata , for

H0 :
{⋂

s

[
(D1s

d= D2s)
⋂

(R1s
d= R2s)

⋂
(U1s

d= U2s)
⋂

(L1s
d= L2s)

]}
against

H1 :

{⋃
s

[
(D1s

d
>D2s)

⋃
(R1s

d
< R2s)

⋃
(U1s

d
>U2s)

⋃
(L1s

d
>L2s)

]}
,

Figure 12.10 NPC Test R10 combination worksheet
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and combination of partial tests within variables with respect to strata, for

H0 :
{[⋂

s
(D1s

d= D2s)
]⋂[⋂

s
(R1s

d= R2s)
]

⋂ [⋂
s
(U1s

d= U2s)
]⋂[⋂

s
(L1s

d= L2s)
]}ˆ

against

H1 :

{[⋃
s
(D1s

d
>D2s)

]⋃[⋃
s
(R1s

d
< R2s)

]
⋃ [⋃

s
(U1s

d
>U2s)

]⋃[⋃
s
(L1s

d
>L2s)

]}ˆ

.

Figure 12.11 displays the option test combination within strata , using the Fisher combining
function. Of course, the user can also construct any test combination using the option ‘by Selection’
in the ‘Combination of Tests’ box.

Finally, a fourth dialogue box allows the user to generate a report (Figure 12.12), which contains
the descriptive statistics (which are automatically generated) and test results for the data examined.
The user can add comments to the report if required.

Figure 12.11 NPC Test R10 within-strata test combination worksheet
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Figure 12.12 NPC Test R10 report worksheet

12.3.5 Analysis of the SETIG Data Using SAS

In order to carry out the analysis in SAS, the NPC_2samples macro available from the book’s
website can be used along with PROC MULTTEST to compute the closed testing procedure within
strata, using the exact permutation MinP tests (Westfall and Young, 1993). The main instructions
to run the macro are as follows:

filename mac_npc ’...\npc.sas’;

%include mac_npc;

%npc(data=setig, var_byn= D U R, var_con=L,

dom_byn=great great less, dom_con=great,

clas=group, nsample=10000, strato=strata, paired=no, missing=yes);

The following input parameters are required:

• data = name of the data set;
• var_byn = list of binary variables;
• var_cat = list of categorical variables, non-binary;
• var_con = list of continuous variables;
• dom_byn = list of directional marginal sub-hypotheses for binary variables – if XAu < XBu,

specify LESS; if XAu >XBu, specify GREAT; if XAu 	= XBu, specify NOTEQ;
• dom_con = list of directional marginal sub-hypotheses for continuous variables, see above;
• weights = list of weights for the variables – first specify weights for binary variables, then

weights for categorical variables and for continuous variables;
• clas = variable defining the two groups (character variable);
• nsample = number of conditional resamplings;
• strato = variable defining strata (character variable);
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• paired = paired data (character variable, specify yes/no);
• unit = variable identifying paired observations;
• missing = presence of missing values (specify yes/no).

Notice that we have specified D, U and R as binary variables and L as a continuous variable.
Furthermore, we have considered Group and Strata as variables defining the two groups and the four
strata, respectively. In order to specify the multidimensional system of hypotheses for each variable
within each stratum, a left-tailed test for variable R and three right-tailed tests for the other three
variables were considered. This analysis was carried out using nsample= 10 000 CMC iterations.
Since we are dealing with missing data, the option for missing values should be activated. The data
set and the corresponding software codes can be found in the setig folder on the book’s website.

12.4 A Comparison of Three Survival Curves
In this section we extend the procedure illustrated in Chapter 9 to the case of C > 2 survival curves
using the example presented in Section 12.1 on oesophagectomy for oesophageal cancer in elderly
patients (Ruol et al., 2007). In this application, it is of interest to separate subjects under 70 years
of age into two different groups. Therefore, the three groups to be compared are: (a) individuals
under 60; (b) individuals between 60 and 69; and (c) individuals 70 and over. Having defined the
age groups, the data set was made up of 284 (42.8%) patients under 60, 245 (36.9%) between 60
and 69, and 135 (20.3%) aged 70 or over.

Remember that the aim of the study was to determine whether or not the three survival time distri-
butions arose from a common survival function based on the three independent samples. Therefore,
the hypothesis of interest concerns the effects of patient ageing with respect to long-term survival
for oesophageal cancer patients undergoing oesophagectomy. The case study is characterized by a
fairly large number of observations with a light to moderate equal censoring model and, as can be
seen in Figure 12.13, a crossing hazard rates pattern is clearly visible.

Kaplan-Meier estimates of survival function by age group
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Figure 12.13 Kaplan–Meier survival estimates by group



Some Case Studies Using NPC Test R10 and SAS Macros 371

First, we carry out the survival analysis based on the whole sample. Next, we stratify the sample,
using the propensity score, as a toy example. Then, we perform the multidimensional nonparametric
permutation test within strata.

For the present case study and using the same notation as in Chapter 9, the system of hypotheses
of interest is

HG
0 :

{
[S1(ti) = S2(ti) = S3(ti) = S(ti) ∀ti , i = 1, . . . , D]

⋂[
�1

d= �2
d= �3 = 0

]}
=
{[

X1
d= X2

d= X3

]⋂[
�1

d= �2
d= �3 = 0

]}
against the overall alternative

HG
1 :

{
at least one of the three Sj (ti) is different for some ti

}
= {at least one of the three Xj arises from a different distribution

}
.

The global null and alternative hypotheses are broken down into D sub-hypotheses, one for each
of the D times t1 < . . . < tD ,

HG
0 = H

X|O
0 :

{
D⋂
i=1

(
X1i

d= X2i
d= X3i

)
|O
}
=
{

D⋂
i=1

H
X|O
0i

}
against

HG
1 :

{
D⋃
i=1

H
X|O
1i

}
.

Hence, in the notation of Chapter 9, the partial permutation test statistics for testing the sub-
hypothesis H

X|O
0i against the sub-alternative H

X|O
1i take the form

�
X|O∗
i = S∗2 (ti)

√
ν∗1i
ν∗2i
− S∗1 (ti)

√
ν∗2i
ν∗1i

,

after which an NPC follows with a suitable combining function.

12.4.1 Unstratified Survival Analysis

TIC-NPC is the multidimensional permutation test to use when there is equal censoring (Callegaro
et al., 2003). After carrying out a two-stage NPC procedure using Fisher’s combining function to
combine the partial p-values for the D observed failure times, we obtained a global p-value, for the
overall hypothesis, of 0.1900. This suggests there are no differences between the three age groups in
the distribution of the time to death for oesophageal cancer patients undergoing oesophagectomy.
This analysis was carried out using NPC Test R10, SAS 9.0 and MATLAB with B = 10 000
CMC iterations.

12.4.2 Survival Analysis with Stratification by Propensity Score

In this three-sample case, the estimation of the propensity score ê(A) is carried out using an
asymptotic ordinal logistic regression model. As in the two-sample application, we partitioned
the whole sample into five strata based on the values of this estimated propensity score. Figures
12.14–12.18 present the survival curves for the three samples within each stratum.
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Kaplan-Meier estimates of survival function by age group
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Figure 12.14 Kaplan–Meier survival estimates by group in stratum 1

Kaplan-Meier estimates of survival function by age group
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Figure 12.15 Kaplan–Meier survival estimates by group in stratum 2
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Kaplan-Meier estimates of survival function by age group
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Figure 12.16 Kaplan–Meier survival estimates by group in stratum 3

Kaplan-Meier estimates of survival function by age group
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Figure 12.17 Kaplan–Meier survival estimates by group in stratum 4
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Kaplan-Meier estimates of survival function by age group
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Figure 12.18 Kaplan–Meier survival estimates by group in stratum 5

In this case there is a more complex data configuration because in our hypothesis testing problem
we also have to consider the stratification variable, introduced by the estimated propensity score in
order to remove or control the possible biases due to the observed and known covariates used to
construct the score.

The NPC may therefore be like a multi-phase procedure characterized by an intermediate
combination, where we first combine the partial tests with respect to D times within each stra-
tum s = 1, . . . , 5, and then combine the second-order tests with respect to strata into a single
third-order combined test. It should be noted that this multitesting and multistrata hypothesis test-
ing problem cannot be solved using a standard asymptotic test procedure such as the weighted
Kaplan–Meier test.

The overall hypotheses of interest remain

HG
0 :

{
[S1(ti) = S2(ti) = S3(ti) = S(ti) ∀ti , i = 1, . . . , D]

⋂[
�1

d= �2
d= �3

d= 0
]}

=
{[

X1
d= X2

d= X3

]⋂[
�1

d= �2
d= �3

d= 0
]}

,

against

HG
1 :

{
at least one of the three Sj (ti) is different for some ti

}
= {at least one of the three Xj arises from a different distribution

}
.

However, now the global null and alternative hypotheses are broken down into D × S sub-
hypotheses, one for each of the D times t1 < . . . < tD and for each stratum

HG
0 = H

X|O
0 :

{
S⋂

s=1

[
D⋂
i=1

(
X1is

d= X2is
d= X3is

)
|O
]}

=
{⋂

s

[⋂
i

H
X|O
0is

]}
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Table 12.8 Survival analysis results using the TIC-NPC procedure

Stratum
p-values 1 2 3 4 5 Global

Two-sided alternative 0.143 0.024 0.410 0.567 0.109 0.034

against

HG
1 :

{⋃
s

[⋃
i

H
X|O
1is

]}
.

Here again we use the TIC-NPC test as there is treatment-independent censoring (Callegaro et al.,
2003). Table 12.8 displays the results of the three-phase NPC procedure using Fisher’s combining
function to combine the D × S partial p-values.

The data set and the corresponding software codes can be found in the survival folder on the
book’s website.

12.5 Survival Analysis Using NPC Test and SAS
We defined a categorical variable, group, to represent the three groups of patients to be compared – 0
being ‘patients under 60 years of age’; 1 being ‘patients aged between 60 and 69’; and 2 being
‘patients aged 70 and over’. The 664 patients were stratified into five homogenous strata by defining
the strata variable (taking values s = 1, . . . , 5) as obtained by the estimated propensity score
procedure. The response variables of interest are the D binary variables Vmji(ti) as previously
described. Recall that all the variables are binary variables with or without missing values. This
analysis was carried out using nsample = 10 000 CMC iterations.

12.5.1 Survival Analysis Using NPC Test

For the present case study, we select the C-sample testing (also known as one-way ANOVA) anal-
ysis. We start by constructing the hypotheses to test using the definition of samples and strata (the
latter necessary only in the case of the stratified analysis). Then, we specify the multidimensional
system of hypotheses to choose the appropriate test statistics and to set the number of CMC iter-
ations. Figure 12.19 shows the dialogue box used to select all the necessary single components
of the NPC procedure. For binary variables without missing values, a suitable test statistic is the
difference of two means (or alternatively a t statistic), while for variables with missing data we
select the permutation test statistic for missing values discussed in Chapter 7.

With respect to the unstratified analysis, once all partial tests have been selected and computed in
the dialogue box in Figure 12.19, we combine all the D partial p-values by choosing the combining
function and, accordingly, the multivariate permutation tests to perform. The NPC procedure is
performed by clicking on the ‘Combine’ button (in this case using Fisher’s combining function
and choosing the combination of partial tests by clicking on the ‘by Selection’ option in the
‘Combination of Tests’ box). Figure 12.20 displays the NPC of all the D binary variables, using
Fisher’s combination function.

With respect to the stratified analysis, once all partial tests for each stratum have been selected and
computed in the dialogue box in Figure 12.21, we combine all the D partial p-values within strata
(second-order p-values) and finally obtain the global (third-order) p-value. The NPC procedure is
carried out by clicking on the ‘Combine’ button (in this case using Fisher’s combining function
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Figure 12.19 NPC Test R10 partial tests dialogue box

Figure 12.20 NPC Test R10 combination worksheet (by selection)
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Figure 12.21 NPC Test R10 combination worksheet (within-strata)

and choosing the combination of partial tests within strata by clicking on the ‘within Strata’ option
in the ‘Combination of Tests’ box), for

H0 :

{
S⋂

s=1

[
D⋂
i=1

H
X|O
0is

]}

against

H1 :

{⋃
s

[⋃
i

H
X|O
1is

]}
.

12.5.2 Survival Analysis Using SAS

In order to carry out the analysis in SAS 9.0, the code available from the book’s website can be
used. The main instructions for running the NPC_Csamples macro are as follows:

filename mac_npc ’...\npc.sas’;

%include mac_npc;

case of unstratified analysis

%npc(dati=dati.survival, var_byn= t0 t1 t2 t3 ... tD,

var_cat=, var_con=,

dom_byn= noteq noteq noteq noteq ... noteq,
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clas=group, nsample=10000, unit=, strato=,

paired=no, missing=yes);

case of stratified analysis

%npc(dati=dati.survival, var_byn= t0 t1 t2 t3 ... tD,

var_cat=, var_con=,

dom_byn= noteq noteq noteq noteq ... noteq,

clas=group, nsample=10000, unit=, strato=strata,

paired=no, missing=yes);

Note that with regard to the var_byn input parameter, the user should include all the D variable
names involved in the survival analysis. Furthermore, for the dom_byn input parameter, the user
should specify the direction of the marginal sub-hypothesis for each of the D binary variables
defined in the var_byn input parameter.

12.5.3 Survival Analysis Using MATLAB

We refer the reader to the survival folder on the book’s website for details of the MATLAB code
we used to perform the survival analysis before and after the stratification of the whole data set
into five strata using the estimated propensity score.

12.6 Logistic Regression and NPC Test for Multivariate Analysis
In the framework of exploratory studies, where the aim is to investigate possible significant risk
factors related to the outcome of analysis, it is often of interest to indicate the relative importance
of the various independent explanatory variables inspected in the analysis.

When the outcome is a binary variable, representing for instance two levels of a treatment
or two groups of individuals with different characteristics, in order to find possible significant
factors affecting the outcome of interest, we can perform a multivariate analysis with two
alternative procedures:

(i) a multivariate logistic regression of the binary category representing the outcome, on the
observed explanatory variables;

(ii) an NPC procedure of dependent componentwise tests within a two-sample design.

The NPC testing procedure may detect more possible significant effects than the usual logistic
regression, hence we emphasize the importance of using both procedures when dealing with an
exploratory study. Let us consider two examples.

12.6.1 Application to Lymph Node Metastases

The presence of lymph node metastases is one of the most important predictors of survival in
patients with oesophageal cancer. The international classification focuses on the presence/absence
of metastatic lymph nodes; however, it would be of interest to check for specific metastatic lymph
node sites as they may lead to different outcomes.

The aim here was to investigate possible associations of the metastatic lymph node sites with
respect to outcomes, beyond the main classification (presence/absence).
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Table 12.9 Sample sizes and distribution of events of
interest (DOD patients only)

Type of analysis subjects at risk (n) events

Only DOD patients 136 74 (54.4%)

The analysis involved a total of n = 136 patients with cancer of the oesophagogastric junction
seen at the Department of Medical and Surgical Science, University of Padua, over an 11-year
period from January 1992 to December 2002. Other conditions were: complete resection (R0),
adenocarcinoma histotype, and no neoadjuvant therapy. Patients were routinely followed up (FU)
by their surgeons 1, 3, 6 and 12 months after the operation and every 6–12 months thereafter.

Of the 136 patients, 116 (85.3%) were male and 20 (14.7%) female; 4 (2.9%) patients were less
than 40 years old, 41 (30.2%) were between 40 and 60, 91 (66.9%) were over 60; 55 (40.4%)
patients had negative lymph nodes and 81 (59.6%) had positive lymph nodes (see Table 12.9).

Patient outcome (at five-years of FU) was encoded as ALIVE (patient alive), DOD (died of
disease), or DOC (died of other causes). The metastatic lymph node presence percentage was higher
(85.1%) in DOD patients and lower (29.0%) in ALIVE patients, so a worse outcome seemed to be
related to the presence of metastatic lymph nodes. In DOC patients the percentage was 58.1%, so
we can say that DOC patients had no strong prevalence of presence or absence.

Therefore, the statistical analysis was focused on the study of significant risk factors related to
patient survival in terms of mortality. Since the main task is related to prognostic factors with respect
to oesophageal cancer, DOC patients were excluded and the five-year outcome (ALIVE against
DOD) was used as a response variable. We took as risk factors the explanatory variables related
to the six sites of metastatic lymph nodes (paraoesophageal, paracardial, perigastric, subcarinal,
tripod, other lymph node sites) that were significant in the univariate analysis and the pathological
stage (tumour stage, presence of positive lymph nodes, presence of metastatic lymph nodes), the
number of lymph nodes examined and the number of metastatic lymph nodes (see Table 12.10).
We took as confounding factors gender, age group, degree of tumour differentiation (well/moderate
against poor differentiation) and post-therapy (yes/no).

In order to find possible significant risk factors affecting the survival of individuals at the five-year
follow-up stage, we carried out a multivariate analysis with two alternative procedures:

• a multivariate logistic regression of the binary category ALIVE/DOD on the observed explanatory
variables;

• the NPC testing procedure for a two-sample problem, where we compared the alive group with
the group of deaths during the five-year follow-up period.

Logistic regression was carried out using SAS 9.0 and the NPC procedure was performed using
NPC Test R10. The results obtained using SAS are shown in Table 12.11, while those obtained
using NPC Test R10 are displayed in Table 12.12.

Logistic regression detected significant effects of paracardial lymph nodes (p-value 0.0078) and
presence of positive lymph nodes (0.0056); the NPC Test (without controlling for multiplicity)
detected significant effects of paraoesophageal (p-value 0.0006), paracardial (0.00015), perigastric
(0.0035), tripod (0.01), other site lymph nodes (0.017), tumour stage (0.00015), presence of positive
lymph nodes (0.00015), number of metastatic lymph nodes (0.00015), post-therapy (0.03), and
degree of tumour differentiation (0.026) and global p= 0.0002.

The data set can be found in the lymphnodes folder on the book’s website.
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Table 12.10 Risk factors and coding

Risk factor Group coding

Paraoesophageal Yes; No
Paracardial Yes; No
Perigastric Yes; No
Subcarinal Yes; No
Tripod Yes; No
Other lymph node sites Yes; No
Tumour stage 0, 1, . . . , 4
Presence of positive lymph nodes Yes; No
Presence of metastatic lymph nodes Yes; No
No. of examined lymph nodes
No. of metastatic lymph nodes
Gender Male; Female
Age group < 40, [40, 60],> 60
Degree of tumour differentiation well/moderate/poor
Post therapy Yes; No

Table 12.11 Multivariate logistic regression (using SAS) of predictors
of survival (ALIVE v. DOD)

Risk factor χ2 p-value Odds ratio

Paraoesophageal 0.04 0.8500
Paracardial 7.08 0.0078 0.199 (0.06–0.65)
Perigastric 1.15 0.2800
Subcarinal 0.36 0.5500
Tripod 0.11 0.7400
Other lymph node sites 0.06 0.8100
Tumour stage 4.94 0.4200
Presence of positive lymph nodes 7.66 0.0056 0.199 (0.06–0.62)
Metastatic lymph nodes 0.34 0.5600
No. of examined lymph nodes 0.05 0.8300
No. of metastatic lymph nodes 1.40 0.2400
Gender 0.14 0.7100
Age group 0.23 0.6300
Degree of tumour differentiation 0.39 0.5300
Post therapy 1.20 0.2700

12.6.2 Application to Bladder Cancer

The multicentre retrospective study discussed here refers to 1312 patients (1149 (87.6%) male and
163 (12.4%) female included in a comprehensive database of anamnestic, clinical and pathological
data) who underwent radical cystectomy, bilateral iliac and obturator node dissection, and urinary
diversion for bladder cancer in the period 1982–2002.

Bladder cancer was diagnosed or confirmed by transurethral resection. Physical examination,
chest X-ray, excretory urography and whole-bone scans were carried out on all patients. Computed
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Table 12.12 Multivariate analysis (using NPC)
of predictors of survival (ALIVE v. DOD)

Risk factor p-value

Paraoesophageal 0.0006
Paracardial 0.0002
Perigastric 0.0035
Subcarinal 0.0570
Tripod 0.0100
Other lymph node sites 0.0170
Tumour stage 0.0002
Presence of positive lymph nodes 0.0002
Presence of metastatic lymph nodes 0.2300
No. of examined lymph nodes 0.4500
No. of metastatic lymph nodes 0.0002
Gender 0.6300
Age group 0.3500
Degree of tumour differentiation 0.0260
Post therapy 0.0300

Global test 0.0002

tomography or magnetic resonance imaging and abdominal ultrasonography were used for clinical
staging. The tumour was staged according to the 2002 TNM classification and graded according to
the 1997 WHO system. The indications for radical cystectomy included muscle invasive bladder
cancer, superficial bladder cancer refractory to intravesical therapy, and multifocal stage T1G3
tumour associated with diffuse carcinoma in situ . No patient had clinically distant metastases at
the time of operation. The patients were initially seen 2 months after surgery, every 4 months in
the first year after surgery and thereafter every 6 months until disease progression or death.

The aim of the study was to identify the variables that best discriminate between dead and
alive patients with a bladder cancer diagnosis. Three phases were identified (which may be seen as
domains in subsequent analyses):

• Phase I : anamnestic findings (i.e. patient’s state of health at first medical visit; this domain
includes the variables measured in the time interval between first symptoms and diagnosis);

• Phase II : diagnostic findings (i.e. patient’s condition after bladder cancer diagnosis; this domain
comprises the variables concerning clinical stadiation or clinical findings);

• Phase III : pathological stadiation and post-surgical status (i.e. patient’s state after surgery).

Patients lost at follow-up or who died from causes other than bladder cancer were excluded. The
total remaining sample size (1003 individuals) was divided into two groups. The first group (469
dead patients) included DOD (dead of disease) and AWD (alive with disease) patients; the second
group (534 alive patients) included NED (no evidence of disease) patients.

Overall survival 5 years after radical cystectomy was chosen as the dependent variable. Patients’
sex and age were not considered, therefore no stratification was performed on the basis of this
information.

Because of the use of the TNM classification of bladder cancer, the original variables were
transformed into categorical (ordinal) variables, giving 30 endpoints.
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12.6.3 NPC Results

Staging systems are the simplest example of a prediction tool, categorizing the disease based on out-
come. The statistical interpretation of medical data represents an alternative solution to the problem
of accurately predicting the behaviour of cancer, but traditional models such as logistic regression
are limited because of their inadequate capacity to handle the variability and complexity of data
(Shabsigh and Bochner, 2006). Recently, newer statistical techniques, such as risk stratification
groups, risk tables, nomograms and artificial intelligence, have been designed. We propose the use

Table 12.13 Results obtained using NPC methodology. Raw and adjusted p-values are shown.
Tippett’s combining function was used and 10 000 permutations were carried out

Domain Variable Code p-value p-FWE

Phase I Previous superficial TCC TCC1 0.8217 0.9973
Focality FOC1 0.0523 0.5392
Tumor T1 0.9488 0.9973
Grading G1 0.7321 0.9947
Carcinoma in situ (CIS) CIS1 0.1803 0.8691

Phase II Focality FOC2 0.8293 0.9973
Tumor T2 0.0010 0.0165
Carcinoma in situ (CIS) CIS2 0.9970 0.9973
Grading G2 0.4876 0.9816
Regional lymph nodes N2 0.0075 0.1085
Metastases M2 0.0001 0.0014
Highway urinary obstruction HighOBSTR2 0.0002 0.0030

Phase III (1) Tumor T3 0.0003 0.0051
Carcinoma in situ (CIS) CIS3 0.0746 0.6302
Grading G3 0.0008 0.0135
Regional lymph nodes N3 0.0002 0.0030
Metastases M3 0.0001 0.0014
Histology Histol3 0.1065 0.7370

Phase III (2) Vesical trigone infiltration infTRIG3 0.1484 0.8362
Corpus invasion infCORPUS3 0.2918 0.9524
Urethral involvement invURETH3 0.0007 0.0116
Vascular invasion invVASC3 0.0616 0.5811
Lymphonodal invasion invLYMPH3 0.0001 0.0014
Prostatic invasion invPROST3 0.0001 0.0014

Phase III (3) Adenocarcinoma of the prostate ADENcrPR3 0.2228 0.9189
Highway TCC HighTCC3 0.0029 0.0460
Desease restarting desease3 0.3785 0.9641
Chemotherapy pre-surgery CHTpreOP3 0.6502 0.9940
Chemotherapy post-surgery CHTpostOP3 0.0001 0.0014
Therapy restarting therapy3 0.3142 0.9524

Global p-value 0.0014
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Table 12.14 Combining variables within domains. Raw and
adjusted p-values are shown, as well as global p-value

Domain p-value p-FWE

Combining anamnestic variables (Phase I) 0.2366 0.2366
Combining diagnostic variables (Phase II) 0.0019 0.0032
Combining variables 13–18 (Phase III (1)) 0.0012 0.0012
Combining variables 19–24 (Phase III (2)) 0.0005 0.0005
Combining variables 25–30 (Phase III (3)) 0.0006 0.0006

Global p-value 0.0005

of the NPC of dependent permutation tests methodology in order to identify prognostic factors in
patients with a diagnosis of bladder cancer. Moreover, we adjust p-values using a closed testing
procedure, controlling the FWE rate.

With reference to the clinical analysis, we did not find significant differences between the two
groups (dead and alive patients) in the first phase of anamnestic findings. However, in the second
phase – the diagnostic findings – we found differences in terms of tumour clinical staging (T2),
metastases (M2) and hydronephrosis (HighOBSTR2). As regards the third phase – pathological
stadiation and post-surgical status – we found significant differences between the two groups in
terms of tumour pathological staging (T3), grading (G3), regional lymph node involvement (N3),
metastases (M3), urethral involvement (invURETH3), lymphatic invasion (invLYMPH3), prostatic
invasion (invPROST3), highway TCC (HighTCC3) and post-surgery chemotherapy (CHTpostOP3).
Moreover, p-values referring to the second and third domains (i.e. the combination of the variables
involved in the second and third phases) as well as the global p-values were significant. Results
are shown in Tables 12.13 and 12.14. All the analyses were done using MATLAB software and
B = 10 000 permutations were carried out to estimate the permutation distribution.

The corresponding MATLAB code used is as follows:

[D,data]=xlsimport(’Urology.xls’);

reminD(D)

B=10000;

Y=data(:,6:35);

X=data(:,1);

dati=expand_categ(Y,2);

p_value=NP_2s(dati,X,B,0,1);

TCC1=NPC(p_value(:,1),’T’);

FOC1=NPC(p_value(:,2:3),’T’);

T1=NPC(p_value(:,4:14),’T’);

G1=NPC(p_value(:,15:18),’T’);

CIS1=NPC(p_value(:,19:20),’T’);

FOC2=NPC(p_value(:,21),’T’);

T2=NPC(p_value(:,22:33),’T’);

CIS2=NPC(p_value(:,34),’T’);

G2=NPC(p_value(:,35:37),’T’);

N2=NPC(p_value(:,38:40),’T’);

M2=NPC(p_value(:,41),’T’);

HighOBSTR2=NPC(p_value(:,42:43),’T’);

T3=NPC(p_value(:,44:55),’T’);
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CIS3=NPC(p_value(:,56),’T’);

G3=NPC(p_value(:,57:59),’T’);

N3=NPC(p_value(:,60:62),’T’);

M3=NPC(p_value(:,63),’T’);

Histol3=NPC(p_value(:,64:68),’T’);

infTRIG3=NPC(p_value(:,69),’T’);

infCORPUS3=NPC(p_value(:,70),’T’);

invURETH3=NPC(p_value(:,71),’T’);

invVASC3=NPC(p_value(:,72),’T’);

invLYMPH3=NPC(p_value(:,73),’T’);

invPROST3=NPC(p_value(:,74),’T’);

ADENcrPR3=NPC(p_value(:,75),’T’);

HighTCC3=NPC(p_value(:,76),’T’);

desease3=NPC(p_value(:,77),’T’);

CHTpreOP3=NPC(p_value(:,78),’T’);

CHTpostOP3=NPC(p_value(:,79),’T’);

therapy3=NPC(p_value(:,80),’T’);

phase1=NPC(p_value(:,1:20),’T’);

phase2=NPC(p_value(:,21:43),’T’);

phase3_1=NPC(p_value(:,44:68),’T’);

phase3_2=NPC(p_value(:,69:74),’T’);

phase3_3=NPC(p_value(:,75:80),’T’);

domain=[phase1 phase2 phase3_1 phase3_2 phase3_3];

P_adj=NPC_FWE(domain,’T’);

variable=[TCC1 FOC1 T1 G1 CIS1 FOC2 T2 CIS2 G2 N2 M2

HighOBSTR2 T3 CIS3 G3 N3 M3 Histol3 infTRIG3 infCORPUS3

invURETH3 invVASC3 invLYMPH3 invPROST3 ADENcrPR3 HighTCC3

desease3 CHTpreOP3 CHTpostOP3 therapy3];

P_adj=NPC_FWE(variable,’T’);

12.6.4 Analysis by Logistic Regression

Here we present the multivariate analysis carried out using standard logistic regression. It is beyond
the scope of this example to discuss alternative statistical techniques (e.g. Cox’s proportional haz-
ards, logistic regression, artificial intelligence, artificial neural networks and neuro-fuzzy modelling)
employed when analysing prognostic information (see Catto et al., 2003; Qureshi et al., 2000). We
use one of the standard methods for processing this kind of data set, emphasizing some of the
difficulties arising when handling missing data.

If we perform a standard logistic regression, we have to invoke the principle of deletion or
imputation in order to deal with missing data. However, following the previous nonparametric
solution, we need not delete/impute. Therefore, if we delete incomplete patient files, our analyses
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Table 12.15 Logistic regression: including all the variables

Estimate Std. Error z-value Pr(·> |z|)
(Intercept) −2.7428 0.9973 −2.75 0.0060

TCC1 1.1855 1.1152 1.06 0.2877
FOC1 0.9105 0.4795 1.90 0.0576

T1 −0.1259 0.1963 −0.64 0.5212
G1 −0.3447 0.2607 −1.32 0.1861

CIS1 −0.5648 0.7430 −0.76 0.4472
FOC2 −0.0980 0.3969 −0.25 0.8050

T2 0.1288 0.0577 2.23 0.0256
CIS2 0.3809 0.5312 0.72 0.4733

G2 −0.1321 0.2361 −0.56 0.5758
N2 −0.7535 0.7490 −1.01 0.3144
M2 0.5308 7174.9827 0.00 0.9999

HighOBSTR2 0.4451 0.2269 1.96 0.0498
T3 0.1087 0.0516 2.11 0.0351

CIS3 0.2799 0.3163 0.88 0.3763
G3 0.2569 0.2759 0.93 0.3517
N3 1.0088 0.5815 1.73 0.0828
M3 18.3200 2989.2411 0.01 0.9951

Histol3 0.2088 0.1389 1.50 0.1329
infTRIG3 −0.3609 0.2554 −1.41 0.1575

infCORPUS3 −0.4591 0.3076 −1.49 0.1355
invURETH3 −0.9715 0.5895 −1.65 0.0994

invVASC3 0.5834 0.4128 1.41 0.1576
invLYMPH3 0.4656 0.2617 1.78 0.0752
invPROST3 0.5103 0.3812 1.34 0.1807

ADENcrPR3 0.1146 0.2915 0.39 0.6942
HighTCC3 0.4137 0.5365 0.77 0.4406

desease3 35.7373 1179.0638 0.03 0.9758
CHTpreOP3 −1.5869 1.1331 −1.40 0.1614

CHTpostOP3 −0.9515 0.7094 −1.34 0.1798
therapy3 −17.2044 987.9492 −0.02 0.9861

are based on a sample of 481 subjects (231 dead patients in total). The results of the stepwise
regression model are summarized in Tables 12.15 and 12.16.

12.6.5 Some Comments

Using the NPC methodology, we are able to obtain more information which is qualitatively and
quantitatively different from that provided by standard statistical methods, such as logistic regres-
sion. Note that, using logistic regression, five significant variables may be identified (FOC1, T1,
HighOBSTR2, T3 and N3). Using the NPC methodology, 12 prognostic factors may be identified.

The NPC methodology allows for the evaluation of new treatment strategies and may be useful
in observational studies. Through application to a real case study, we have shown that the NPC
methodology can offer important and substantial contributious to successful research in biomedical
studies with several endpoints. The advantages of this approach are its flexibility in handling any
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Table 12.16 GLM Stepwise regression (second model)

Estimate Std. Error z-value Pr(·> |z|)
(Intercept) −2.5134 0.3816 −6.59 0.0000

FOC1 0.7849 0.2898 2.71 0.0068
T1 −0.2250 0.1078 −2.09 0.0369
T2 0.0802 0.0472 1.70 0.0894

HighOBSTR2 0.4056 0.1939 2.09 0.0365
T3 0.1750 0.0355 4.92 0.0000
N3 0.5499 0.2033 2.70 0.0068

CHTpreOP3 −1.3631 0.9652 −1.41 0.1579

type of variable (categorical and quantitative, with or without missing values) while at the same
time taking dependencies among those variables into account without the need to model them.

The data set and the corresponding software codes can be found in the Urology folder on the
book’s website.
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tive correlates of occupational exposure to whole-body vibration. A case control study. Psychotherapy and
Psychosomatics 73, 375–379.

Adams, D. C. (1999). Methods for shape analysis of landmark data from articulated structures. Evolutionary
Ecology Research 1, 959–970.

Adams, D. C., Rohlf, F. J. and Slice, D. E. (2004). Geometric morphometrics: ten years of progress following
the ‘revolution’. Italian Journal of Zoology 71, 5–16.

Agresti, A. (2002). Categorical Data Analysis . New York: John Wiley & Sons, Inc.
Albers, W., Bickel, P. J. and Van Zwet, W. R. (1976). Asymptotic expansions for the power of distribution

free tests in the one-sample problem. Annals of Statistics 4, 108–156.
Ali, M. W. (1990). Exact versus asymptotic tests of trend of tumor prevalence in tumorigenicity experiments.

A comparison of p-values for small frequency of tumors. Drug information Journal 24, 727–737.
Altman, D. (1991). Practical Statistics for Medical Research . London: Chapman & Hall.
Amaral, G., Dryden, I. and Wood, A. (2007). Pivotal bootstrap methods for k-sample problems in directional

statistics and shape analysis. Journal of the American Statistical Association 102, 695–707.
Andersen, P. K., Borgan, Ø., Gill, R. and Keiding, N. (1982). Linear nonparametric tests for comparison of

counting process with application to censored survival data (with discussion). International Statistical Review
50, 219–258.

Ansari, A. R. and Bradley, R. A. (1960). Rank-sum tests for dispersions. Annals of Mathematical Statistics 31,
1174–1189.

Arboretti, R. (2008). A permutation approach for multivariate repeated measures with application to a complex
randomized clinical trial. Advances and Applications in Statistics 9, 261–282.

Arboretti Giancristofaro, R. and Bonnini, S. (2008). Moment-based multivariate permutation tests for ordinal
categorical data. Journal of Nonparametric Statistics 20, 383–393.

Arboretti Giancristofaro, R. and Bonnini, S. (2009). Some new results on univariate and multivariate permutation
tests for ordinal categorical variables under restricted alternatives. Statistical Methods and Applications 18,
221–236.

Arboretti Giancristofaro, R. and Salmaso, L. (2003). Model performance analysis and model validation in
logistic regression. Statistica LXIII, 375–396.

Arboretti, R., Pesarin, F., Salmaso, L. and Tognoni, G. (1997). Statistical analysis of repeated measurements:
an application to a comparative epidemiological study. In C.P. Kitsos (ed.), Volume of Abstracts of the
ISI Satellite Conference on Industrial Statistics: Aims and Computational Aspects, Athens University of
Economics and Business, 9–10, Athens.

Arboretti, R., Pesarin, F., Romero, M. and Salmaso, L. (1999). SAS macro for multivariate and multistrata
permutation tests. Proceedings of SUGItalia 99 , 439–451. SAS Institute, Milan.

Permutation Tests for Complex Data: Theory, Applications and Software Fortunato Pesarin, Luigi Salmaso
 2010, John Wiley & Sons, Ltd



388 References

Arboretti, R., Pesarin, F., Romero, M. and Salmaso, L. (2000a). Il progetto SETIG e la valutazione
comparativa delle strategie terapeutiche adottate: metodologia statistica e applicazione. Italian Journal of
Clinical Pharmacy 14, 26–36.

Arboretti, R., Pesarin, F. and Salmaso, L. (2000b). Metodi non parametrici per il confronto tra C≥2 campi-
oni multivariati mediante test di permutazione. Proceedings of SUGItalia 2000 , 591–596. SAS Institute,
Milan.

Arboretti Giancristofaro, R., Marozzi, M. and Salmaso, L. (2005a). Repeated measures designs: a permuta-
tion approach for testing for active effects. Far East Journal of Theoretical Statistics (Special Volume on
Biostatistics) 16, 303–325.

Arboretti Giancristofaro, R., Marozzi, M. and Salmaso, L. (2005b). Nonparametric pooling and testing of pref-
erence ratings for full-profile conjoint analysis experiments. Journal of Modern Applied Statistical Methods
4, 545–552.

Arboretti Giancristofaro, R., Bonnini, S. and Salmaso, L. (2007a). A performance indicator for multivariate
data. Quaderni di Statistica 9, 1–29.

Arboretti Giancristofaro, R., Pesarin, F. and Salmaso, L. (2007b). Permutation Anderson–Darling type and
moment based test statistics for univariate ordered categorical data. Communications in Statistics – Simulation
and Computation 36, 139–150.

Arboretti Giancristofaro, R., Pesarin, F., Salmaso, L. and Solari, A. (2007c). Nonparametric procedures for
testing for dropout rates on university courses with application to an Italian case study. In S. Sawilowsky
(ed.), Real Data Analysis . Charlotte, NC: Information Age Publishing, pp. 335–353.

Arboretti Giancristofaro, R., Pesarin, F. and Salmaso, L. (2007d). Nonparametric approaches for multivariate
testing with mixed variables and for ranking on ordered categorical variables with an application to the
evaluation of PhD programs. In S. Sawilowsky (ed.), Real Data Analysis . Charlotte, NC: Information Age
Publishing, pp. 355–385.

Arboretti Giancristofaro, R., Babbo, G. L., Corain, L. and Salmaso, L. (2007e). Advantages of the nonpara-
metric combination (NPC) multivariate testing method with application to the study of ovarian tumour mass
malignity. JP Journal of Biostatistics 1, 39–52.

Arboretti, R., Solmi, F., Salmaso, L., Grego, F. and Maturi, F. (2007f). Nonparametric methods for the compar-
ison of two techniques of surgical operation to repair abdominal aortic aneurysms. JP Journal of Biostatistics
1, 109–122.

Arboretti Giancristofaro, R., Bonnini, S. and Salmaso, L. (2007g). A performance indicator for multivariate
data. Quaderni di Statistica 9, 1–29.

Arboretti Giancristofaro, R., Bonnini, S. and Pesarin, F. (2008a). A permutation approach for testing hetero-
geneity in two-sample categorical variables. Statistics and Computing 19, 209–216.

Arboretti, R., Brombin, C., Pellizzari, S., Salmaso, L. and Mozzanega, B. (2008b). Nonparametric methods
applied to nuchal translucency and fetal macrosomia. Journal of Biostatistics 2, 19–36.

Arboretti Giancristofaro, R., Bonnini, S. and Pesarin, F. (2009a). A permutation approach for testing hetero-
geneity in two-sample problems. Statistics and Computing 19, 209–216.

Arboretti Giancristofaro, R., Bonnini, S. and Salmaso L. (2009b). Employment status and educa-
tion/employment relationship of PhD graduates from the University of Ferrara. Journal of Applied Statistics .
http://dx.doi.org/10.1080/02664760802638108.

Arboretti Giancristofaro, R., Corain, L., Salmaso, L. and Tempesta, T. (2009c). An integrated approach
using choice-based conjoint analysis and combination-based permutation tests with application to wine
quality perception and landscape. Proceedings of Eursibis’09 Conference, Cagliari, 30 May – 3 June,
pp. 183–184.

Arboretti Giancristofaro, R., Bonnini, S. and Salmaso, L. (2009d). Ordinal classification in multidimensional
problems. In S. M. Ermakov, V. B. Melas and A. N. Pepelyshev (eds), Proceedings of the 6th St. Petersburg
Workshop on Simulation . St. Petersburg, June 28–July 4, pp. 504–550. ISBN 978-5-9651-0354-6.

Azzalini, A. (1984). Estimation and hypothesis testing for collection of autoregressive time series. Biometrika
71, 85–90.

Bacelli, F. and Makowski, A. M. (1989). Multidimensional stochastic ordering and associated random variables.
Operations Research 37, 478–487.

Baker, S. G. and Laird, N. M. (1988). Regression analysis for categorical variables with outcome subject to
nonignorable nonresponse. Journal of the American Statistical Association 83, 62–69.



References 389

Ballin, M. and Pesarin, F. (1990). Una procedura di ricampionamento e di combinazione non parametrica per
il problema di Behrens–Fisher multivariato. Atti della Società Italiana di Statistica 2, 351–358.
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di Statistica Medica ed Epidemiologia Clinica , Monreale, 19–22 September, pp. 347–352.

Basso, D. and Salmaso, L. (2006). A discussion of permutation tests conditional to observed responses in
unreplicated 2M full factorial designs. Communications in Statistics – Theory and Methods 35, 83–97.

Basso, D. and Salmaso, L. (2007). A comparative study of permutation tests for unreplicated two-level exper-
iments. Journal of Applied Statistical Science 15, 87–98.

Basso, D. and Salmaso, L. (2009a). A permutation test for umbrella alternatives. Statistics and Computing .
To appear.

Basso, D. and Salmaso, L. (2009). A permutation test for umbrella alternatives. In M. Bini, P. Monari, D.
Piccolo and L. Salmaso (eds), Statistical Methods for the Evaluation of Educational Services and Quality of
Products. Heidelberg: Physica-Verlag. To appear.

Basso, D., Salmaso, L., Hevangeralas, H. and Koukouvinos, C. (2004). Nonparametric testing for main effects
on inequivalent designs. In A. Di Bucchianico, H. Lauter, and H. P. Wynn (eds), MODA 7 – Advances in
Model-Oriented Design and Analysis . Heldelberg: Physica, pp. 33–40.

Basso, D., Chiarandini, M. and Salmaso, L. (2007a). Synchronized permutation tests in replicated I × J designs.
Journal of Statistical Planning and Inference 137, 2564–2578.

Basso, D., Finos, L. and Salmaso, L. (2007b). A new association test in linear models with application to
experimental designs. Journal of Applied Statistical Science 15, 99–109.

Basso, D., Salmaso, L. and Pesarin, F. (2007c). On synchronized permutation tests in two-way ANOVA, Atti
del convegno internazionale Moda 8 , Castilla-La Mancha, 4–8 June, pp. 25–31.

Basso, D., Pesarin, F. and Salmaso, L. (2008). Testing effects in ANOVA experiments: direct combination of all
pair-wise comparisons using constrained synchronized permutations (invited paper). Proceedings of COMP-
STAT 2008, International Conference on Computational Statistics . Porto, 24–29 August, vol. I. Heidelberg:
Physica-Verlag, pp. 411–422.

Basso, D., Pesarin, F., Salmaso, L. and Solari, A. (2009a). Permutation Tests for Stochastic Ordering and
ANOVA: Theory and Applications in R. New York: Springer.

Basso, D., Corain, L., Salmaso, L., Spadoni, L., Tveit, C. (2009b). Multivariate Ranking Methods for Design
and Analysis of Experiments. In S. M. Ermakov, V. B. Melas and A. N. Pepelyshev (eds), Proceedings
of the 6th St. Petersburg Workshop on Simulation . St. Petersburg, June 28 – July 4, pp. 472–476. ISBN
978-5-9651-0354-6.



390 References

Basawa, I. V. and Prakasa-Rao, B. L. S. (1980). Statistical Inference for Stochastic Processes . New York:
Academic Press.

Bassukas, I. D. (1994). Comparative Gompertzian analysis of tumour growth patterns. Cancer Research 54,
4385–4392.

Bassukas, I. D. and Maurer-Schulze, B. (1988). The recursion formula of the Gompertz function: a simple
method for the estimation and comparison of tumour growth curves. Growth, Development and Ageing 52,
113–122.

Basu, D. (1978). Relevance of randomization in data analysis. In N. K. Namboodiri (ed.), Survey Sampling and
Measurement , pp. 267–292. New York: Academic Press.

Basu, D. (1980). Randomization analysis of experimental data: the Fisher randomization test. Journal of the
American Statistical Association 75, 575–582.

Bell, C. B. and Doksum, K. A. (1967). Distribution-free tests of independence. Annals of Mathematical Statistics
38, 429–446.

Bell, C. B. and Sen, P. K. (1984). Randomization procedures. In P. R. Krishnaiah and P. K. Sen (eds), Handbook
of Statistics 4. Amsterdam: North Holland, pp. 1–29.

Bell, C. B., Woodroofe, M. and Avadhani, T. V. (1970). Some nonparametric tests for stochastic processes.
In M. L. Puri (ed.), Nonparametric Techiques in Statistical Inference. Cambridge: Cambridge University
Press.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society B 57, 289–300.

Benjamini, Y. and Hochberg, Y. (1997). Multiple hypotheses testing with weights. Scandinavian Journal of
Statistics 24, 407–418.

Berger, J. O. and Wolpert, R. L. (1988). The Likelihood Principle. Hayward, CA: Institute of Mathematical
Statistics.

Berger, V. W. (2000). Pros and cons of permutation tests in clinical trials. Statistics in Medicine 19, 1319–1328.
Berger, V. W. (2005). Selection bias and covariate inbalances in randomized clinical trials . Hoboken, NJ: John

Wiley & Sons, Inc.
Berger, V. W., Permutt, P. and Ivanova, A. (1998). Convex hull test for ordered categorical data. Biometrics

54, 1541–1550.
Berk, R. H. and Jones, D. H. (1978). Relatively optimal combination of tests. Scandinavian Journal of Statistics

15, 158–162.
Berry, K. J. (1982). Algorithm AS 179: enumeration of all permutations of multi-sets with fixed repetition

numbers. Applied Statistics 31, 169–173.
Berry, K. J. and Mielke, P. W. (1983). Moment approximations as an alternative to the F test in analysis of

variance. British Journal of Mathematical and Statistical Psychology 36, 202–206.
Berry, K. J. and Mielke, P. W. (1984). Computation of exact probability values for multiresponse permutation

procedures (MRPP). Communications in Statistics – Simulation and Computation 13, 417–432.
Berry, K. J. and Mielke, P. W. (1985). Computation of exact and approximate probability values for a matched

pairs permutation test. Communications in Statistics – Simulation and Computation 14, 229–248.
Berry, K. J., Mielke, P. W. and Wary, R. (1986). Approximate MRPP p-values obtained from four exact

moments. Communications in Statistics – Simulation and Computation 15, 581–589.
Bertacche, R. and Pesarin, F. (1997). Treatment of missing data in multidimensional testing problems for

categorical variables. Metron 55, 135–149.
Berti, G. A., Corain, L., Monti, M. and Salmaso, L. (2006). Nonparametric methods and modelling applied

to the numerical simulation of hot forging. Statistica Applicata – Italian Journal of Applied Statistics 18,
51–70.

Bertoluzzo, F., Pesarin, F. and Salmaso, L. (2009). Nonparametric weighted step down Holm method with
heteroscedastic variables. In S. M. Ermakov, V. B. Melas and A. N. Pepelyshev (eds), Proceedings of the
6th St. Petersburg Workshop on Simulation . St. Petersburg, June 28 – July 4, pp. 477–481. ISBN 978-5-
9651-0354-6.

Bickel, P. J. and Van Zwet, W. R. (1978). Asympototic expansions for the power of distribution free tests in
the two-sample problem. Annals of Statistics 6, 987–1004.

Bird, S. M., Cox, D., Farewell, D. T., Goldstein, H., Holt, T. and Smith, P. C. (2005). Performance indicators:
good, bad and ugly. Journal of the Royal Statistical Society A 168, 1–27.



References 391

Birnbaum, A. (1954). Combining independent tests of significance. Journal of the American Statistical
Association 49, 559–574.

Birnbaum, A. (1955). Characteriazations of complete classes of tests of some multiparametric hypotheses, with
applications to likelihood ratio tests. Annals of Mathematical Statistics 26, 21–36.

Blair, R. C., Higgins, J. J., Karniski, W. and Kromrey, J. D. (1994). A study of multivariate permutation tests
which may replace Hotelling’s t2 test in prescribed circumstances. Multivariate Behavioral Research 29,
141–163.

Blair, R. C., Troendle, J. F. and Beck, R. W. (1996). Control of familywise errors in multiple endpoint
assessments via stepwise permutation tests. Statistics in Medicine 15, 1107–1121.

Bonnini, S., Salmaso, L. and Solari, A. (2005). Multivariate permutation tests for evaluating effectiveness of
universities through the analysis of student dropouts. Statistica & Applicazioni 3, 37–44.
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Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications . New York: Springer-Verla.
Boyett, J. M. and Shuster, J. J. (1977). Nonparametric one-sided tests in multivariate analysis with medical

applications. Journal of the American Statistical Association 72, 665–668.
Braun, T. and Feng, Z. (2001). Optimal permutation tests for the analysis of group randomized trials. Journal

of the American Statistical Association 96, 1424–1432.
Breslow, N. (1970). A generalized Kruskal–Wallis test for comparing K samples subject to unequal patterns

of censorships. Biometrika 57, 579–594.
Breslow, N. E., Edler, L. and Berger, J. (1984). A two-sample censored-data rank test for acceleration.

Biometrics 40, 1049–1062.
Bretz, F., Maurer, W., Brannath, W. and Posch, M. (2009). A graphical approach to sequentially rejective

multiple test procedures. Statistics in Medicine 28, 586–604.
Brombin, C. (2009). A nonparametric permutation approach to statistical shape analysis. Ph.D. thesis, University

of Padua.
Brombin, C. and Salmaso, L. (2008). Searching for powerful tests in shape analysis (contributed paper).

In Proceedings of COMPSTAT 2008, International Conference on Computational Statistics , Porto, 24–29
August, vol. II. Heidelbrg: Physica-Verlag, pp. 3–10.

Brombin, C. and Salmaso, L. (2009). Multi-aspect permutation tests in shape analysis with small sample size.
Computational Statistics & Data Analysis 53(12), 3921–3931.

Brombin, C., Mo, G., Zotti, A., Giurisato, M., Cozzi, B. and Salmaso, L. (2009). A landmark analysis-based
approach to age and sex classification of the skull of the Mediterranean monk seal (Monachus monachus)
(Hermann, 1779). Anatomia, Histologia, Embryologia . To appear.

Brookmeyer, R. and Crowley, J. J. (1982). A confidence interval for the median survival time. Biometrics 38,
29–41.



392 References

Brown, B., Hollander, M. and Korwar, R. M. (1974). Nonparametric tests of independence for censored data,
with applications to heart transplant studies. In F. Proschan and R. J. Serfling (eds), Reliability and Biometry .
Philadelphia: SIAM, pp. 327–354.

Brown, B. M. and Hettmansperger, T. P. (1989). An affine bivariate version of the sign test. Journal of the
Royal Statististical Society B 51, 117–125.

Brunner, E. and Munzel, U. (2000). The nonparametric Behrens–Fisher problem: asymptotic theory and small-
sample approximation. Biometrical Journal 42, 17–25.

Brunner, E., Puri, M. L. and Sun, S. (1995). Nonparametric methods for stratified two-sample design with
application to multiclinic trials. Journal of the American Statistical Association 90, 1004–1014.

Brunner, S., Bryden, M. M. and Shaughnessy, P. D. (2003). Cranial ontogeny of otariid seals. Systematics and
Biodiversity 2, 83–110.

Calian, V., Li, D. and Hsu, J. C. (2008). Partitioning to uncover conditions for permutation tests to control
multiple testing error rates. Biometrical Journal 50, 756–766.

Callegaro, A., Pesarin, F. and Salmaso, L. (2003). Test di permutazione per il confronto di curve di soprav-
vivenza. Statistica Applicata 15, 241–261.

Campigotto, F. (2009). Comparison of nonparametric tests for survival analysis: applications to biomedical
studies. Bachelor’s thesis, University of Padua, Italy.

Catto, J. W. F., Linkens, D. A., Abbod, M. F., Chen, M., Burton, J. L., Feeley, K. M. and Hamdy, F. C.
(2003). Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling
and artificial neural networks. Clinical Cancer Research 9, 4172–4177.

Celant, G. and Pesarin, F. (2000). Alcune osservazioni critiche riguardanti l’analisi bayesiana condizionata.
Statistica 60, 25–37.

Celant, G. and Pesarin, F. (2001). Sulla definizione di analisi condizionata. Statistica 61, 185–194.
Celant, G., Pesarin, F. and Salmaso, L. (2000a). Some comparisons between a parametric and a nonparametric

solution for tests with repeated measures. Metron 58, 64–79.
Celant, G., Pesarin, F., Salmaso, L. (2000). Two sample permutation tests for repeated measures with missing

values. Journal of Applied Statistical Science 9, 291–304.
Chakraborti, S. and Shaafsma, W. (1996). On the choice of scores in contingency tables. In Proceedings of the

Biometric Section of the American Statistical Association , pp. 329–333. American Statistical Association,
Washington, DC.

Chatterjee, S. K. (1984). Restricted alternatives. In P. R. Krishnaiah and P. K. Sen (eds), Handbook of Statistics
4. Amsterdam: North Holland, pp. 327–345.

Chen, J. J. and Gaylor, D. W. (1986). The upper percentiles of the distribution of the log-rank statistics for
small number of tumors. Communications in Statistics – Simulation and Computation 15, 991–1002.

Chiano, M. N. and Clayton, D. G. (1998). Genotypic relative risks under ordered restriction. Genetic Epidemi-
ology 15, 135–146.

Chung, J. H. and Fraser, D. A. S. (1958). Randomization tests for a multivariate two-sample problem. Journal
of the American Statistical Association 53, 729–735.

Cochran, W. G. (1952). The χ2-goodness of fit. Annals of Mathematical Statistics 23, 493–507.
Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias in observational

studies. Biometrics 24, 295–313.
Cohen, A. and Sackrowitz, H. B. (1998). Directional tests for one-sided alternatives in multivariate models.

Annals of Statistics 26, 2321–2338.
Commenges, D. (1996). Permutation tests based on transformation towards exchangeability. In Proceedings of

the 4th World Congress of the Bernoulli Society , 157. Bernoulli Society, Vienna.
Conaway, M. R. (1994). Casual nonresponse models for repeated categorical measurements. Biometrics 50,

1102–1116.
Copas, J. B. and Long, T. (1991). Estimating the residual variance in orthogonal regression with variable

selection. The Statistician 40, 51–59.
Corain, L. and Salmaso, L. (2003). An empirical study on new product development process by nonparametric

combination (NPC) testing methodology and post-stratification. Statistica 63, 335–357.
Corain, L. and Salmaso, L. (2004). Multivariate and multistrata nonparametric tests: the nonparametric combi-

nation method. Journal of Modern Applied Statistical Methods 3, 443–461.



References 393

Corain, L. and Salmaso, L. (2007a). A critical review and a comparative study on conditional permutation tests
for two-way ANOVA. Communications in Statistics – Simulations and Computation 36, 791–805.

Corain, L. and Salmaso, L. (2007b). A nonparametric method for defining a global preference ranking of
industrial products. Journal of Applied Statistics 34, 203–216.

Corain, L. and Salmaso, L. (2009a). Future trends on global performance indicators in industrial research. In
G. I. Hayworth (ed.), Reliability Engineering Advances. Hauppauge, NY: Nova. To appear.

Corain, L. and Salmaso, L. (2009b). Nonparametric tests for the randomized complete block design with ordered
categorical variables. In M. Bini, P. Monari, D. Piccolo and L. Salmaso (eds), Statistical Methods for the
Evaluation of Educational Services and Quality of Products . Heidelberg: Physica-Verlag. To appear.

Corain, L., Salmaso, L. and Tessarolo, P. (2002). Developing successful products: a multivariate permutation
analysis. Statistica Applicata 14, 421–442.

Corain, L., Melas, V. B. and Salmaso, L. (2009a). A discussion on nonlinear models for price decision in
rating based product preference models. Communications in Statistics – Simulations and Computation 38,
1178–1201.

Corain, L., Salmaso, L., Ragazzi, S. (2009b). Permutation tests for the multivariate randomized complete block
design with application to sensorial testing. In S. M. Ermakov, V. B. Melas and A. N. Pepelyshev (eds),
Proceedings of the 6th St. Petersburg Workshop on Simulation . St. Petersburg, June 28 – July 4, pp. 465–471.
ISBN 978-5-9651-0354-6.

Corcoran, C., Ryan, L., Mehta, C. R., Senchaudhuri, P., Patel, N. P. and Molenberghs, G. (2001). An exact
trend test for correlated binary data. Biometrics 57, 941–948.

Corrain, C., Mezzavilla, F., Pesarin, F. and Scardellato, U. (1977). Il valore discriminativo di alcuni fattori Gm,
tra le poplazioni pastorali del Kenya. In Atti e Memorie dell’Accademia Patavina di Scienze, Lettere ed Arti,
LXXXIX, Parte II: Classe di Scienze Matematiche e Naturali , pp. 55–63.

Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society
B 34, 187–220.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics . London: Chapman & Hall.
Cressie, N. A. C. and Read, T. R. C. (1988). Goodness of Fit Statistics for Discrete Multivariate Data . New

York: Springer-Verlag.
Crowder, M. J. and Hand, D. J. (1990). Analysis of Repeated Measures . London: Chapman & Hall.
D’Agostino, R. B. and Stephens, M. A. (1986). Goodness of Fit Techniques . New York: Marcel Dekker.
Dalla Valle, F., Pesarin, F. and Salmaso, L. (2000). A comparative simulation study on permutation tests for

effects in two-level factorial designs. Metron 58, 147–161.
Dalla Valle, F., Pesarin, F. and Salmaso, L. (2003). Paired permutation testing in 2k unreplicated factorials.

Journal of the Italian Statistical Society – Statistical Methods and Applications 11, 265–276.
Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measurement Data . London: Chapman

& Hall.
Davison, A. C. and Hinkley, D. V. (1988). Saddlepoint approximations in resampling methods. Biometrika 75,

417–431.
De Martini, D. (1998). Metodi per il calcolo della potenza e la determinazione della numerosità campionaria
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Hájek, J., Šidák, Z. and Sen, P. K. (1999). Theory of Rank Tests . San Diego, CA: Academic Press.
Han, K. E., Catalano, P. J., Senchaudhuri, P. and Metha, C. (2004). Exact analysis of dose response for multiple

correlated binary outcomes (2004) Biometrics 60, 216–224.
Harrington, D. P. and Fleming, T. R. (1982), A class of rank test procedures for censored survival data.

Biometrika 69, 553–566.
Harshman, R. A. and Lundy, M. E. (2006). A randomization method of obtaining valid p-values for model

changes selected ‘post hoc’. Poster presented at the Seventy-first Annual Meeting of the Psychometric Society .
Montreal, Canada, June. Available at http://publish.uwo.ca/∼harshman/imps2006.pdf.

Heimann, G. and Neuhaus, G. (1998). Permutational distribution of the log-rank statistic under random cen-
sorship with applications to carcinogenicity assays. Biometrics 54, 168–184.

Heinze, G., Guant, M. and Schemper, M. (2003). Exact log-rank tests for unequal follow-up. Biometrics 59,
1151–1157.



References 397

Heyse, J. F. and Rom, D. (1988). Adjusting for multiplicity of statistical tests in the analysis of carcinogenicity
studies. Biometrical Journal 30, 883–896.

Heller, G. and Venkatraman, E. S. (2004). A nonparametric test to compare survival distributions with covariate
adjustment. Journal of the Royal Statistical Society B 66, 719–733.

Heritier, S. R., Gebski, V. J. and Keech, A. C. (2003). Inclusion of patients in clinical trial analysis: the
intention-to-treat principle. Medical Journal of Australia 179, 438–440.

Hettmansperger, T. P. (1984). Statistical Inference Based on Ranks . New York: John Wiley & Sons, Inc.
Hettmansperger, T. P. and McKean, J. W. (1998). Robust Nonparametric Statistical Methods . London: Arnold.
Higgins, J. J. and Noble, W. (1993). A permutation test for a repeated measures design. In D. Johnson (ed.),

Proceedings of the 5th Annual Conference on Applied Statistics in Agriculture. Kansas State University,
Manhattan, KS, pp. 240–254.

Hinkley, D. V. (1975). On power transformations to symmetry. Biometrika 62, 101–111.
Hinkley, D. V. (1989). Bootstrap significance tests. In Bulletin of the International Statistical Institute: Pro-

ceedings of the 47th Session (Paris), Invited Papers, 2, pp. 65–74. ISI, Voorburg, Netherlands.
Hirotsu, C. (1986). Cumulative chi-squared statistic or a tool for testing goodness of fit. Biometrika 73,

165–173.
Hirotsu, C. (1998a). Max t test for analysing a dose-response relationship – an efficient algorithm for p value

calculation. In L. Pronzato (ed.), Volume of Abstracts of MODA-5 (5th International Conference on Advances
in Model Oriented Data Analysis and Experimental Design). CIRM, Marseille.

Hirotsu, C. (1998b). Isotonic inference. In Encyclopedia of Biostatistics . New York: John Wiley & Sons, Inc,
pp. 2107–2115.

Hjorth, J. S. U. (1994). Computer intensive statistical methods: validation model selection and bootstrap. New
York: Chapman & Hall.

Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures . New York: John Wiley & Sons,
Inc.

Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics 32, 1–49.
Hoeffding, W. (1951a). Optimum nonparametric tests. In J. Neyman (ed.), Proceedings of the Second Berke-

ley Symposium on Mathematical Statististics and Probabability . University of California Press, Berkeley,
pp. 83–92.

Hoeffding, W. (1951b). A combinatorial central limit theorem. Annals of Statistics 22, 558–566.
Hoeffding, W. (1952). The large-sample power of tests based on permutations of observations. Annals of

Mathematical Statistics 23, 169–192.
Hogg, R. (1962). Iterated tests of equality of several distributions. Journal of the American Statistical Association

57, 579–585.
Hoh, J. and Ott, J. (2000). Scan statistics to scan markers for susceptibility genes. Proceedings of the National

Academy of Sciences USA 96, 9615–9617.
Hollander, M. and Wolfe, D. A. (1999). Nonparametric Statistical Methods , 2nd edn. New York: John Wiley

& Sons, Inc.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6,

65–70.
Horn, M. and Dunnet, C. W. (2004). Power and sample size comparisons of stepwise FWE and FDR controlling test

procedures in the normal many-one case. In Y. Benjamini, F. Bretz and S. Sarkar (eds), Recent Developments
in Multiple Comparison Procedures . Beachwood, OH: Institute of Mathematical Statistics, pp. 48–64.

Hossein-Zadeh, G. A., Soltanian-Zadeh, H. and Ardekani, B. A. (2003). Multiresolution fMRI activation
detection using translation invariant wavelet transform and statistical analysis based on resampling. IEEE
Transactions on Medical Imaging 22, 302–314.

Hsu, J. C. (1996). Multiple Comparisons. Theory and Methods . London: Chapman & Hall.
Hudgens, M. and Satten, G. (2002). Midrank unification of rank tests for exact, tied and censored data. Journal

of Nonparametric Statistics 14, 569–581.
Hung, H. M. J., Wang, S. J., Tsong, Y., Lawrence, J. and O’Neil, R. T. (2003). Some fundamental issues with

non-inferiority testing in active controlled trial. Statistics in Medicine 22, 213–225.
Huque, M. F. and Alosh, M. (2008). A flexible fixed-sequence testing method for hierarchically ordered

correlated multiple endpoints in clinical trials. Journal of Statistical Planning and Inference 138, 321–335.



398 References

Ives, F. M. (1976). Permutation enumeration: four new permutation algorithms. Communications of the
Association for Computing Machinery 19, 68–70.

Jacod, J. and Protter, P. (2000). Probability Essentials. Berlin: Springer-Verlag.
James, B., James, K. L. and Siegmund, D. (1987). Tests for a change-point. Biometrika 74, 71–83.
Janssen, A. J. and Pauls, T. (2003). How do bootstrap and permutation tests work? Annals of Statistics 31,

768–806.
Joe, H. (1997). Multivariate Models and Dependence Concepts . London: Chapman & Hall.
Jogdeo, K. (1968). Asymptotic normality in nonparametric methods. Annals of Mathematical Statistics 39,

905–922.
John, R. D. and Robinson, J. (1983a). Edgeworth expansions for the power of permutation tests. Annals of

Statistics 11, 625–631.
John, R. D. and Robinson, J. (1983b). Significance levels and confidence intervals for permutation tests. Journal

of Statistical Computation and Simulation 16, 161–173.
Johnson, N. L. and Leone, F. C. (1964). Statistical and Experimental Design in Engineering and the Physical

Sciences . New York: John Wiley & Sons, Inc.
Johnson, R. A. and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis , 6th edn. Upper Saddle

River, NJ: Pearson Prentice Hall.
Johnson, W. M., Karamanlidis, A. A., Dendrinos, P., Fernández de Larrinoa, P., Gazo, G., González, L.

M., Güçlüsoy, H., Pores, R. and Schnellmann, M. (2006). Monk seal fact files. Biology, behaviour, sta-
tus and conservation of the foca monje del mediterráneo, Monachus monachus. The Monachus Guardian
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Index
additive

response model, 14, 53, 65
rule, see combination function, additive

admissibility
of combining functions, 124, 135

algorithm
CMC, 20, 27, 30, 44

actual post-hoc power, 97
conditional power, 93
empirical ROC curve, 97
for confidence interval, 100
for confidence region, 141
for NPC, 126
for NPC conditional power, 139
for NPC unconditional power, 141
multivariate, 125
post-hoc empirical power, 94
unconditional power, 97

alternative
multi-sided, 35, 164, 173
non-dominance, see alternative two-sided
non-homoscedastic, 34, 101, 166, 167
non-inferiority, 89, 164, 173
one-sided, see alternative restricted
ordered, 34, 156, 164, 166, 172, 197, 204,

229, 243, 267, 269–273, 286
restricted, 8, 16, 24, 66, 72, 74, 77, 230,

245
multivariate, 119

two-sided, 18, 50, 56, 66, 72, 79, 80, 90
two-sided separate, 163
umbrella, 269–272

analysis
deformation, 307
shape, 303
survival, 289, 291

right-censored data, 289, 291–293

Permutation Tests for Complex Data: Theory, Applications and Software Fortunato Pesarin, Luigi Salmaso
 2010, John Wiley & Sons, Ltd

time-to-time, 225, 228, 230
ANCOVA, 16, 17, 229
ANOVA

generalized one-way, 115
one-way, 29, 30, 32, 68, 79, 80, 110, 114,

236, 242
two-way, 2, 59, 60, 68, 69, 115, 119, 131,

228, 231
approach

conditional, see conditional approach
heuristic, 7
invariant, see conditional approach

approximation
central limit theorem, 22, 53, 54, 77, 94,

174
Edgeworth expansion, 174
empirical likelihood, 174
Fourier, 174
permutation c.d.f., 28, 174
permutation distribution

combined, 127
multivariate, 125

saddle point, 174
sequential, 174

area under the curve, 132
associative statistics, see statistics, associative
attainable alpha-value, 51
AUC, 132

Bahadur efficiency, 146
Bayesian approach

parametric, 3
Behrens–Fisher problem, 2, 17, 28, 90, 123,

131, 166
generalized, 25, 54, 166, 167, 173
multivariate, 166
restricted, 166
univariate, 159
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binary
data, 28

multivariate, 235
response, 18, 28, 63, 81, 244

multivariate, 198
block, 59
Bonferroni inequality, 119, 128
Bonferroni–Holm, 183–186, 196
bootstrap

inference, 9
method, 41
sample space, 113
technique, 10
test, 9, 113

carry-over design, 226, 231
categorical data

multivariate, 119
nominal, 79, 204
ordered, 18, 74, 76

censoring
treatment-dependent, 298
treatment-independent, 297

change point
testing for, see test for change point

closed testing, 128
CMC, see conditional Monte Carlo method

algorithm, see conditional Monte Carlo
method, 44

coefficient time-varying, see functional
time-varying

coherence, 181
combination

algorithm for, 125
derived variable, 132, 136, 161
function, 72, 123, 128

additive, 139
admissible, 124, 135
asymptotically optimal, 124
best, 124
class, 124
cumulative chi-square, 130
direct, 80, 131, 143, 145, 167, 200, 242,

252
Fisher, 128, 247, 274
Hadamard, 131
iterated, 133, 134
Lancaster, 129, 143
linear, 168, 241
Liptak, 128, 143, 274

locally asymptotically optimal, 124
locally optimal, 119
logistic, 128
Mahalanobis, 130
max t test, 128
max chi-square, 129
neutral, 134
quadratic, 130, 132, 158
Tippett, 128, 274
weighted, 131, 174

methodology, 5, 74, 119, 121, 122, 127,
128, 173, 175, 245

of independent tests, 168
pseudo-parametric, 132, 136

combining function, see combination function
comparison

of two distributions, see equality of two
distributions, see goodness-of-fit

of two means, 23, see also test on location
conditional

algebra, 13, 40
approach, 7, 19
consistency, 99, 147
distribution, see permutation distribution
inference, 3, 6, 8, 9
Monte Carlo method, 10, 11, 20, 23, 30,

76, 77, 100, 121, 125, 137, 175, 240
power, 6, 9, 93, 99, 107

multivariate, 139
power function, 19
resampling method, 20
support, 13, 102
testing principle, see permutation testing

principle
UMPU, 18
unbiasedness, 6
variance, 54

conditionality
principle, 33, 69, 117, 130

confidence interval, see permutation
confidence interval

confidence region
multivariate, 141

consistency, 99
finite sample

application of, 152
conditional, 148
definition of, 147
unconditional, 149

marginal, 5
of combination tests, 137
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strong, 137
conditional, 147

unconditional, 150
weak, 137, 142

conditional, 147
consonance, 181
control

FDR, 177, 180, 193
FWE, 177, 180, 182, 183, 185, 186,

196
strong, 180, 181, 185
weak, 180, 195, 196, 207

FWE- and FDR-weighted methods, 193,
194

convexity
of rejection regions, 124, 135, 136

correlation, 327
critical value

asymptotically finite, 99
cross-over design, 38

data
configuration, see inclusion indicator
generating process, 234
imputation, 235
observational, see observational data
pooled, 4, 13, 26, 28, 30, 76, 100

insufficiency of, 70
representation, see representation

unit-by-unit
separate sufficiency of, 72
sufficiency of, 4, 26, 28, 64, 73, 80, 173

transformations, 13, 16, 50, 51, 53, 54, 65,
101, 115, 117, 132, 160, 169, 229,
234

monotonic, 157
deletion principle, 235
dependence positive, 122
derived variable, 132, 136, 161
design

carry-over, see carry-over design
cross-over, see cross-over design
post-stratification, 38
repeated measures, see repeated measures

design
unbalanced, 69

distribution
asymmetric, 167, 169
empirical, see EDF
heavy-tailed, 53

symmetric, 15, 37, 53, 54, 108, 167
distribution-free property, 17, 51
domain, 278, 287, 304, 310, 312, 314, 316,

319, 335, 346, 381
dominance

permutation, 86
dominating measure, 4, 107

EDF, 20, 40
multivariate, 125
normalized, 47
of combined test, 127
ordered categorical, 66, 75

EPM, 40, 41, 52
comparison of, 65

equality
of C > 2 distributions, 67
of C > 2 mean vectors, see MANOVA
of C > 2 means, see ANOVA
of two distributions, 161

categorical, 66
continuous, 65
general, 64

error
fourth type, 164
third type, 163

error term, 14, 19, 73, 227
exchangeable, 41, 59, 65, 67, 68, 71, 72,

107, 159, 161, 165, 227
time-dependent, 227

ESF
univariate, 20

estimate
boundedly complete, 6, 8
Kaplan–Meier, 292

estimator
Kalbfleisch–Prentice, 294
Kaplan–Meier, 294
Peto–Peto, 294

exact
algorithms, 10, 11, 174
test, 1, 64, 68, 72, 89, 166, 252

combined, 121, 124, 136
exchangeability, 3, 5, 25, 26, 30, 68, 120, 121,

166, 228, 230, 237, 245
and symmetry, 15
approximate, 73
of empirical deviates, 36, 37
of ranks, 36
paired data, 37
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exchangeability (continued )
testing for, see test for exchangeability
violation of, 113, 122, 166, 168
within strata, 37
within unit, 19
without independence, 36

exchangeable error, see error term
exchangeable

experimental
problem, see experimental study
study, 2, 4, 6, 9, 73, 159, 166, 167

extending conditional inference, 319

fixed effects, 24, 29, 89, 114, 227
individually varying, 14, 24, 116
model for, 14
non-homogeneous units, 14

function
significance level

empirical (ESF), 45
symmetric, 47, 84

functional, 8, 13, 101, 102, 127, 160, 166, 173
confidence interval, 103, 124
cross-, 245
location, 15, 19, 25, 73, 123
non-centrality

treatment effect, 10
scale, 17, 19, 64, 73, 89, 123, 166
time-varying, 73, 227

generalized
Procrustes analysis, 307, 309
resistant fit, 307

goodness-of-fit, 65, 77, 161
categorical data

ordered, 66
growth curve, see process growth

heterogeneity, 218, 219, 221
indicator, 219, 220
test, 80

heuristic approach, see approach, heuristic
homoscedasticity

generalized, 56
relaxation, 89

hypothesis
breakdown of, 120, 121, 136, 204, 230,

232, 237
composite, 88, 129

global, 69, 118, 120, 121
separate, 69, 163

inclusion indicator, 235, 237, 238, 240,
251–253

independence test, see test for independence
index, 333
indifference

principle, 90
inference

bootstrap, 112
conditional, 3, 6, 113, 130
extension, 104
global, 119
isotonic, 74, 119, 121, 164, 211–215

multivariate, 166
marginal, 117
monotonic, 165
multivariate, 117
unconditional, 6, 113

interaction, 59, 68, 69, 334, 344–350
invariance, 17

hypothesis, 107, 113
testing for, 107

invariant
approximately, 239
permutationally, 26
statistic, see statistic invariant

landmark, 305
classification, 305, 306
landmark-based representation, 304, 305
semi-, 306, 308

sliding, 308
likelihood

empirical, 101
permutation, see permutation likelihood
ratio, 38

monotonic, 53
logistic regression, 378, 382, 384
longitudinal data, see repeated measures

MANCOVA
one-way, 120

MANOVA, 225
one-way, 119, 226, 228, 234
two-way, 344, 346

interaction effects, 344, 345
main factors, 344, 345

with categorical data, 203
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with mixed data, 203
matched pairs, see paired data
MCAR, see missing completely at random
measurable space, 12, 19
missing, 233

at random, 234
completely at random, 2, 232–234, 238,

240, 253
configuration, see inclusion indicator
non-ignorable, 8, 119, 233
not at random, 2, 233, 234, 237, 238, 245,

253
permutation analysis, 232
process, 233–235, 238, 252
repeated measures, 232

mixed variables, 8, 203, 245
MNAR, see missing not at random
model

additive, 25, 29, 59, 64, 157, 227
MCAR, 240, 254
MNAR, 237, 243, 244, 252
multiplicative, 23, 24, 63
random censoring, 240
statistical, 12, 75

morphometrics, 306
geometric, 307
multivariate, 306

multi-aspect
monotonic inference, 165
setting, 125
testing, 2, 3, 8, 35, 65, 89, 119, 123, 132,

156, 157, 159–161, 166, 167, 169,
171, 173, 229, 230, 244–246, 304,
310

multi-phase procedure, 175
multi-sided

alternative, 35, 164, 173
multiple

comparisons, 119, 128
testing, 128, 163, 180

multiplicative rule, see combination function
Fisher

multiplicity, 117

non-associative
statistics, 47

non-experimental data, see observational data
non-homoscedastic

alternative, 34, 101, 166, 167
nonparametric

Bayesian approach, 102
combination, see combination methodology

motivation of, 134
density estimate, 102
family of distributions, 4, 8, 12, 18, 102,

158
normal distances, 130, 158
NPC ranking, 223, 224

observational
data, 6, 9, 166, 235
of two means, 24
study, 4, 24, 166, 325, 333, 351, 359, 380

observed
at random, 234
configuration, see inclusion indicator

one-sample problem
location, 54

optimal subset procedure, 177, 196
ordering

componentwise, 166
condition, 90
property, 114, 138
restriction, see alternative restricted

p-value, 19, 21
adjusted, 177, 182, 183
raw, 177, 178
stochastic ordering of, 88
test, 43
uniform null distribution, 44

paired data, 2, 16, 23, 37, 54, 60, 108, 114
multivariate, 2, 232, 251

panel data, see repeated measures
partial test, see test partial
PCLT, see permutation central limit theorem
permutation

asymptotic distribution, 63
Bayesian approach, 3, 5
Bayesian inference, 3, 102, 114
best test, 52
bilinear statistic, 112
c.d.f., 19, 20
central limit theorem, 22, 53, 54, 76, 94,

110, 111
confidence interval, 18, 19, 99–102, 173

balanced, 101
confidence level, 100
confidence region

multivariate, 124
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permutation (continued )
covariance matrix, 130
critical value, 106
distribution, 10, 39, 41, 48, 107, 109, 170

CLT approximation of, 22
CMC estimate of, 20, 68
multivariate, 125, 199, 240
of combined test, 125, 127

equivalence, 48
conditional, 48
sufficient condition for, 48

likelihood, 101, 102, 127
linear statistic, 111
measurable space, 40, 48
non-null distribution, 38
robustness, 53
sample space, 10, 13, 19, 26, 32, 35, 38,

54, 102, 107, 109, 169, 175, 231,
239–242

cardinality of, 20
definition of, 35
multivariate, 36, 125
partition of, 13, 240, 241

similar test, 107
structure, 68, 69, 71, 85, 159, 161, 232

definition of, 64
missing values, 239

support, 41, 54, 169
synchronized, 70

constrained, 72, 346, 349
unconstrained, 72, 346

test, 9, 18
approximate, 11
definition of, 41, 43
modified, 11
most powerful, 107
non-randomized, 43
optimal, 107
randomized, 42, 108
similarity of, 42

testing, 5
testing principle, 38, 76, 122, 174, 203,

225, 230, 235, 245, 253
definition of, 5

tests
equipower of, 155

unbiasedness, 84
permutational equivalence, 17, 28, 31, 47, 50,

54, 63, 68, 76, 100, 123, 124, 136
sufficient condition for, 47

placebo effect, 25, 231
pointwise

relationship, 86
representation, 85
weak dominance, 86

POSET method, 175
post-hoc

power, 9
post-stratification

design, 2, 3, 7, 8, 13, 38, 236, 354
of two means, 24

power, 21
conditional, 93, 109, 114

multivariate, 139
function

monotonic, 53
monotonic ordering of, 108
non-decreasing, 53

of combined tests, 139
post-hoc, 94
unconditional, 114, 119

principle
conditionality, see permutation testing

principle, 33, 69, 117, 130
indifference, 90
sufficiency, 5, 33, 117

problem, breakdown of, 132
procedure

multiple comparison, 177, 178, 179, 181
multiple testing, 177, 178, 179
single step, 185
stepwise, 185, 194–196

process
autoregressive, 227
censoring, 251
empirical, 52
growth, 227, 273
missing, 119, 233, 251
stationary, 227
white noise, 227

propensity score, 236, 354
pseudo-group, 165, 166, 229

pooled, 165
pseudo-random number, 20

random
assignment, 6, 9, 30, 90
effects, see stochastic effects, 30

randomization
auxiliary, 18, 23, 51, 63
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notion, 9, 30, 90
test, see permutation test

rank, 28, 60, 70
operator, 17
test, 51, 112
transformation, 28, 51

re-randomization
test, see permutation test
method, see permutation test

realignment, 72
reference space

conditional, see permutation sample space
rejection probability, see power
rejection region

convex, 124, 135, 136
repeated measures, 59, 73, 115, 119, 166, 225,

273, 325, 333
design, 226, 227, 232

representation
pointwise, 159
unit-by-unit, 12, 27, 30, 34, 76, 80, 120,

125, 203
definition of, 26

response profile, 59, 225, see also repeated
measures

multivariate, 226
response trajectory, see repeated measures
restricted

algebra, see conditional algebra
alternative, see alternative restricted

ROC curve
empirical, 97

sample size
actual, 235, 239–241, 252, 253
balanced, 242
unbalanced, 242

sample space, 11
sampling

selection-bias, see selection-bias procedure
scale coefficient, see functional scale
score

function, 131, 136
transformations, 17, 76, 77, 79, 139

selection-bias, 2
procedure, 6, 8, 85, 105
sampling, 2, 8, 88, 105, 106

shape, 304
analysis, 303
correlation, 312

inferential methods, 308
mean, 307
size and shape, 304
space, 307
variables, 308, 312, 319

shuffling, 72
significance level, 20, 123, 125, 128

function, 20, 123, 126, 128, 135, 136
empirical (ESF), 45

similar
rejection region, 5, 6

definition of, 5
UMP test, 16

similarity, 6, 166
almost sure, 44
of permutation tests, 42
uniform, 42

size effect, 25
spline

thin-plate, 308
statistic

ancillary, 8
Anderson–Darling, 65
best, 52
invariant, 6, 8, 16
Kolmogorov–Smirnov, 65
minimal sufficient, 35, 37, 38
observed value, 13

statistics
associative, 10, 19, 26

step-down procedure, 128
weighted, 193

stochastic
dominance, 14, 24, 28, 34, 74–76, 89, 90,

115, 165, 167, 171, 230
componentwise, 118, 166
multivariate, 119
pairwise, 160
two-sample, 230

effects, 14, 24, 65, 76, 114, 115, 119, 160,
164, 165, 227

autoregressive, 227
dependent, 227
generalized, 14

ordered
alternative, 156, 164, 166, 172, 197,

204, 229, 243, 267, 269–273
ordering, 30, 73, 204, 243, 267, 270, 272

monotonic, 156, 164, 274, 328
of combined tests, 138
pairwise, 30, 115, 227
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stochastic (continued )
ordering of p-value, 88
process, 72, 147, 225, 233

profile of, 147
stratification

design, 38
sufficiency, 28

complete minimal, 4
principle, 33, 117

survival
analysis, 291
function, 20, 289, 290, 292–294, 353

empirical (ESF), 45
hazard function, 290, 292, 293
hazard rate, 292, 294
stratification

propensity score, 351, 358, 359, 365,
371

survival function, 20
symbolic

experiment, 4, 9, 11
treatment, 4, 59, 64, 75, 118, 203
treatment effect, 4

symmetric
function, 47, 84, 124
statistics, 31, 47, 84

symmetric function, 26, 53
symmetry

and exchangeability, 15
testing for, see test symmetry

test, 13
admissible, 107
Anderson–Darling, 46, 67, 77, 79
approximate, 9
Aspin–Welch, 167
asymptotically best, 144, 145
binomial, 18, 23, 50, 56
bootstrap, 9, 113
chi-square, 57, 67, 79, 81, 204, 243
Cochran, 79, 80
componentwise, 120
composite hypotheses, 88
conservative, 88, 89
consistent, 122
convex hull, 74
Cramér–von Mises, 46, 77
Cressie–Read, 79
EDMA, 303, 308, 309
exact, 71, 89

F, 29, 32, 60, 110
Fisher exact, 28, 76, 80, 81, 203, 243, 245
Fisher–Yates, 17, 46
for change point, 55
for exchangeability, 56
for independence, 54
for linear regression, 55
Freeman–Tukey, 79
Friedman, 60, 70
Goodall, 303
heterogeneity, 80, 218–224
Hotelling, 132, 145, 232, 303, 308
Kendall, 55
Kolmogorov–Smirnov, 46, 55, 77
Kruskal–Wallis, 30, 32
likelihood ratio, 75, 77, 79, 118

restricted alternatives, 77
log-rank, 46, 47, 292, 301
Mahalanobis, 124, 144, 158
marginal, 121
maximal invariant, 28
McNemar, 18, 23, 50, 56, 63, 108

multivariate, 198
median

divergence of, 47
Mood, 28, 32
Mood median, 46, 50
most powerful, 110
multi-aspect, see multi-aspect testing
multi focus, 207–211
multi-sided, 164
non-inferiority, 164
non-randomized, 72, 73, see also

permutation test non-randomized
nonparametric, 17, 51
on location, 23, 64, 161, 170
on location and scale, 2, 170
on moments, 215, 217, 218
on scale, 170
optimal, 106
partial, 117, 120–124, 126, 138
quantile

divergence of, 47
quasi-invariant, 159
randomized, 6, 17, 18, 23, 42, 51,

63, 108
rank, 112
score transformations, 17, 76
separate, 69, 71

uncorrelated, 69
sign, 18
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Smirnov–Anderson–Darling
goodness-of-fit, 56

Spearman, 55
Student t , 16, 17, 23, 25, 51, 99, 110
symmetry, 23, 54, 57, 110, 161, 168, 231
synchronized permutation, 71, 72
trimmed means

divergence of, 47
two-sided, 90

biased, 92
separate, 163

uncorrelated, 2, 69, 71, 72
van der Waerden, 17, 46
weakly randomized, 72
Wilcoxon signed rank, 17, 51
Wilcoxon–Mann–Whitney, 28, 46, 76, 81

testing, see test
closed, 128, 177, 181, 182

procedure, 177
procedures, 163, 181–184, 186

umbrella, 267, 269–272
change-point, 270

theorem
central limit, see permutation central limit

theorem
factorization, see sufficient statistic
Glivenko–Cantelli, 21, 41, 45, 52, 53, 126,

220
on continuous functionals, 52
Slutsky, 169

time-to-time analysis, see analysis
time-to-time

transformations
finite group of, 7, 107
group of, 110
of data, see data transformations
permutationally invariant, see

permutational equivalence
score, see score transformations

treatment
effect, 10, 25
independent censoring, 352, 353,

358, 371
two-sample problem, 27

unbiasedness, 6, 107, 114
conditional, 68, 84

characterization, 85
marginal, 5, 122, 123, 138, 159

definition of, 122
of combination tests, 137
two-sided, 164
unconditional, 68, 84
uniform, 86, 88

unconditional
consistency, 99
inference, 6, 9, 53

weak extension, 6, 9
parametric testing procedure, 7
power, 9, 99, 106

monotonically non-decreasing, 107
unit-by-unit

representation, see representation,
unit-by-unit
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